Documentation Verification Report

Extended

πŸ“ Source: Mathlib/Algebra/Order/Floor/Extended.lean

Statistics

MetricCount
Definitionsceil, floor, Β«term⌈_βŒ‰β‚‘Β», Β«term⌊_βŒ‹β‚‘Β», evalENatCeil
5
Theoremsceil_add_le, ceil_add_natCast, ceil_add_ofNat, ceil_add_one, ceil_add_toENNReal, ceil_coe, ceil_congr, ceil_eq_top, ceil_eq_zero, ceil_le, ceil_le_ceil, ceil_le_floor_add_one, ceil_lt, ceil_lt_add_one, ceil_lt_top, ceil_mono, ceil_natCast, ceil_natCast_add, ceil_ofNat, ceil_one, ceil_pos, ceil_sub_natCast, ceil_sub_ofNat, ceil_sub_one, ceil_sub_toENNReal, ceil_toENNReal_add, ceil_top, ceil_zero, floor_add_natCast, floor_add_ofNat, floor_add_one, floor_add_toENNReal, floor_coe, floor_congr, floor_eq_top, floor_eq_zero, floor_le, floor_le_ceil, floor_le_floor, floor_le_self, floor_lt, floor_lt_ceil, floor_lt_top, floor_mono, floor_natCast, floor_natCast_add, floor_ofNat, floor_one, floor_pos, floor_sub_natCast, floor_sub_ofNat, floor_sub_one, floor_sub_toENNReal, floor_toENNReal_add, floor_top, floor_zero, gc_ceil_toENNReal, gc_toENNReal_floor, le_ceil, le_ceil_self, le_floor, lt_ceil, lt_floor, toENNReal_iInf, toENNReal_iSup, natCeil_pos
66
Total71

ENat

Definitions

NameCategoryTheorems
ceil πŸ“–CompOp
35 mathmath: ceil_eq_top, le_ceil_self, ceil_add_ofNat, ceil_top, ceil_le_ceil, ceil_add_natCast, ceil_sub_one, ceil_lt_add_one, floor_le_ceil, ceil_lt_top, ceil_le, ceil_lt, ceil_pos, ceil_add_le, lt_ceil, floor_lt_ceil, ceil_natCast_add, gc_ceil_toENNReal, ceil_sub_natCast, ceil_zero, ceil_add_toENNReal, le_ceil, ceil_sub_toENNReal, ceil_congr, ceil_mono, ceil_one, ceil_sub_ofNat, ceil_natCast, ceil_add_one, ceil_coe, ceil_toENNReal_add, ceil_le_floor_add_one, ceil_eq_zero, Mathlib.Meta.Positivity.natCeil_pos, ceil_ofNat
floor πŸ“–CompOp
32 mathmath: floor_pos, gc_toENNReal_floor, floor_add_ofNat, le_floor, floor_add_one, floor_add_natCast, floor_top, floor_le_ceil, floor_lt_ceil, floor_lt_top, floor_sub_natCast, floor_coe, floor_one, floor_mono, floor_sub_toENNReal, floor_le_self, floor_congr, floor_zero, floor_eq_top, floor_ofNat, floor_lt, floor_natCast_add, floor_sub_ofNat, floor_toENNReal_add, floor_add_toENNReal, floor_sub_one, lt_floor, floor_eq_zero, floor_le_floor, floor_natCast, ceil_le_floor_add_one, floor_le
Β«term⌈_βŒ‰β‚‘Β» πŸ“–CompOpβ€”
Β«term⌊_βŒ‹β‚‘Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ceil_add_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
instCommSemiringENat
β€”top_add
add_top
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.ceil_add_le
NNReal.instIsStrictOrderedRing
ceil_add_natCast πŸ“–mathematicalβ€”ceil
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instCommSemiringENat
instNatCast
β€”ceil_add_toENNReal
ceil_add_ofNat πŸ“–mathematicalβ€”ceil
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENat
instCommSemiringENat
β€”ceil_add_natCast
ceil_add_one πŸ“–mathematicalβ€”ceil
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instCommSemiringENat
NonAssocSemiring.toAddCommMonoidWithOne
β€”Nat.cast_one
ceil_add_natCast
ceil_add_toENNReal πŸ“–mathematicalβ€”ceil
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
toENNReal
ENat
instCommSemiringENat
β€”top_add
add_top
ENNReal.ofNNReal_add_natCast
Nat.ceil_add_natCast
NNReal.instIsStrictOrderedRing
zero_le'
ceil_coe πŸ“–mathematicalβ€”ceil
ENNReal.ofNNReal
ENat
instNatCast
Nat.ceil
NNReal
instSemiringNNReal
instPartialOrderNNReal
NNReal.instFloorSemiring
β€”β€”
ceil_congr πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
toENNReal
ceilβ€”eq_of_forall_ge_iff
ceil_eq_top πŸ“–mathematicalβ€”ceil
Top.top
ENat
instTopENat
ENNReal
instTopENNReal
β€”β€”
ceil_eq_zero πŸ“–mathematicalβ€”ceil
ENat
instZeroENat
ENNReal
instZeroENNReal
β€”toENNReal_zero
ENNReal.instCanonicallyOrderedAdd
ceil_le
ceil_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
ENNReal
ENNReal.instPartialOrder
toENNReal
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ceil_le_ceil πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENat
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
β€”ceil_mono
ceil_le_floor_add_one πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
floor
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”le_rfl
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.ceil_le_floor_add_one
NNReal.instIsStrictOrderedRing
ceil_lt πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
ENNReal.instSub
toENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”Iff.not
le_ceil
ceil_lt_add_one πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
toENNReal
ceil
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”CanLift.prf
ENNReal.canLift
Nat.cast_one
Nat.ceil_lt_add_one
NNReal.instIsStrictOrderedRing
zero_le
NNReal.instCanonicallyOrderedAdd
ceil_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
Top.top
instTopENat
ENNReal
ENNReal.instPartialOrder
instTopENNReal
β€”β€”
ceil_mono πŸ“–mathematicalβ€”Monotone
ENNReal
ENat
PartialOrder.toPreorder
ENNReal.instPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
β€”LE.le.trans
le_ceil_self
ceil_natCast πŸ“–mathematicalβ€”ceil
toENNReal
β€”eq_of_forall_ge_iff
ceil_natCast_add πŸ“–mathematicalβ€”ceil
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instCommSemiringENat
instNatCast
β€”ceil_toENNReal_add
ceil_ofNat πŸ“–mathematicalβ€”ceilβ€”ceil_natCast
ceil_one πŸ“–mathematicalβ€”ceil
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”toENNReal_one
ceil_natCast
ceil_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
ceil
ENNReal
ENNReal.instPartialOrder
instZeroENNReal
β€”toENNReal_zero
ceil_sub_natCast πŸ“–mathematicalβ€”ceil
ENNReal
ENNReal.instSub
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instSubENat
instNatCast
β€”ceil_sub_toENNReal
ceil_sub_ofNat πŸ“–mathematicalβ€”ceil
ENNReal
ENNReal.instSub
ENat
instSubENat
β€”ceil_sub_toENNReal
ceil_sub_one πŸ“–mathematicalβ€”ceil
ENNReal
ENNReal.instSub
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instSubENat
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Nat.cast_one
toENNReal_one
ceil_sub_toENNReal
ceil_sub_toENNReal πŸ“–mathematicalβ€”ceil
ENNReal
ENNReal.instSub
toENNReal
ENat
instSubENat
β€”tsub_self
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
ceil_zero
ENNReal.top_sub
ENNReal.sub_top
sub_top
ENNReal.ofNNReal_sub_natCast
Nat.ceil_sub_natCast
NNReal.instIsStrictOrderedRing
NNReal.instOrderedSub
CanonicallyOrderedAdd.toExistsAddOfLE
NNReal.instCanonicallyOrderedAdd
ceil_toENNReal_add πŸ“–mathematicalβ€”ceil
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
toENNReal
ENat
instCommSemiringENat
β€”add_comm
ceil_add_toENNReal
ceil_top πŸ“–mathematicalβ€”ceil
Top.top
ENNReal
instTopENNReal
ENat
instTopENat
β€”β€”
ceil_zero πŸ“–mathematicalβ€”ceil
ENNReal
instZeroENNReal
ENat
instZeroENat
β€”toENNReal_zero
ceil_natCast
floor_add_natCast πŸ“–mathematicalβ€”floor
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instCommSemiringENat
instNatCast
β€”floor_add_toENNReal
floor_add_ofNat πŸ“–mathematicalβ€”floor
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENat
instCommSemiringENat
β€”floor_add_natCast
floor_add_one πŸ“–mathematicalβ€”floor
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instCommSemiringENat
NonAssocSemiring.toAddCommMonoidWithOne
β€”Nat.cast_one
floor_add_natCast
floor_add_toENNReal πŸ“–mathematicalβ€”floor
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
toENNReal
ENat
instCommSemiringENat
β€”top_add
add_top
ENNReal.ofNNReal_add_natCast
Nat.floor_add_natCast
NNReal.instIsStrictOrderedRing
zero_le'
floor_coe πŸ“–mathematicalβ€”floor
ENNReal.ofNNReal
ENat
instNatCast
Nat.floor
NNReal
instSemiringNNReal
instPartialOrderNNReal
NNReal.instFloorSemiring
β€”β€”
floor_congr πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
toENNReal
floorβ€”eq_of_forall_le_iff
floor_eq_top πŸ“–mathematicalβ€”floor
Top.top
ENat
instTopENat
ENNReal
instTopENNReal
β€”β€”
floor_eq_zero πŸ“–mathematicalβ€”floor
ENat
instZeroENat
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”toENNReal_zero
zero_add
floor_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
ENNReal
Preorder.toLT
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
toENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”lt_add_one_iff
toENNReal_add
toENNReal_one
floor_le_ceil πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
ceil
β€”LE.le.trans
floor_le_self
le_ceil_self
floor_le_floor πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENat
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
β€”floor_mono
floor_le_self πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
toENNReal
floor
β€”le_floor
le_rfl
floor_lt πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
ENNReal
ENNReal.instPartialOrder
toENNReal
β€”lt_iff_lt_of_le_iff_le
le_floor
floor_lt_ceil πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENat
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
ceil
β€”floor_lt
LT.lt.trans_le
le_ceil_self
floor_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
Top.top
instTopENat
ENNReal
ENNReal.instPartialOrder
instTopENNReal
β€”β€”
floor_mono πŸ“–mathematicalβ€”Monotone
ENNReal
ENat
PartialOrder.toPreorder
ENNReal.instPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
β€”LE.le.trans'
floor_le_self
floor_natCast πŸ“–mathematicalβ€”floor
toENNReal
β€”eq_of_forall_le_iff
floor_natCast_add πŸ“–mathematicalβ€”floor
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instCommSemiringENat
instNatCast
β€”floor_toENNReal_add
floor_ofNat πŸ“–mathematicalβ€”floorβ€”floor_natCast
floor_one πŸ“–mathematicalβ€”floor
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”toENNReal_one
floor_natCast
floor_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
floor
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”toENNReal_zero
zero_add
floor_sub_natCast πŸ“–mathematicalβ€”floor
ENNReal
ENNReal.instSub
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instSubENat
instNatCast
β€”floor_sub_toENNReal
floor_sub_ofNat πŸ“–mathematicalβ€”floor
ENNReal
ENNReal.instSub
ENat
instSubENat
β€”floor_sub_toENNReal
floor_sub_one πŸ“–mathematicalβ€”floor
ENNReal
ENNReal.instSub
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ENat
instSubENat
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Nat.cast_one
toENNReal_one
floor_sub_toENNReal
floor_sub_toENNReal πŸ“–mathematicalβ€”floor
ENNReal
ENNReal.instSub
toENNReal
ENat
instSubENat
β€”tsub_self
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
floor_zero
ENNReal.top_sub
ENNReal.sub_top
sub_top
ENNReal.ofNNReal_sub_natCast
Nat.floor_sub_natCast
NNReal.instIsStrictOrderedRing
NNReal.instOrderedSub
CanonicallyOrderedAdd.toExistsAddOfLE
NNReal.instCanonicallyOrderedAdd
floor_toENNReal_add πŸ“–mathematicalβ€”floor
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
toENNReal
ENat
instCommSemiringENat
β€”add_comm
floor_add_toENNReal
floor_top πŸ“–mathematicalβ€”floor
Top.top
ENNReal
instTopENNReal
ENat
instTopENat
β€”β€”
floor_zero πŸ“–mathematicalβ€”floor
ENNReal
instZeroENNReal
ENat
instZeroENat
β€”toENNReal_zero
floor_natCast
gc_ceil_toENNReal πŸ“–mathematicalβ€”GaloisConnection
ENNReal
ENat
PartialOrder.toPreorder
ENNReal.instPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
toENNReal
β€”ceil_le
gc_toENNReal_floor πŸ“–mathematicalβ€”GaloisConnection
ENat
ENNReal
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENNReal.instPartialOrder
toENNReal
floor
β€”le_floor
le_ceil πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
ENNReal
Preorder.toLT
ENNReal.instPartialOrder
ENNReal.instSub
toENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”CanLift.prf
canLift
Nat.cast_one
ENNReal.coe_lt_top
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.natCast_sub
Nat.cast_tsub
NNReal.instIsOrderedRing
NNReal.instCanonicallyOrderedAdd
NNReal.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.addLeftReflectLT
ENNReal.coe_sub
Nat.add_one_le_ceil_iff
le_ceil_self πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
toENNReal
ceil
β€”ceil_le
le_rfl
le_floor πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
ENNReal
ENNReal.instPartialOrder
toENNReal
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
NNReal.instCanonicallyOrderedAdd
lt_ceil πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ceil
ENNReal
ENNReal.instPartialOrder
toENNReal
β€”lt_iff_lt_of_le_iff_le
ceil_le
lt_floor πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
floor
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
toENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”add_one_le_iff
toENNReal_add
toENNReal_one
toENNReal_iInf πŸ“–mathematicalβ€”toENNReal
iInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENNReal
ENNReal.instCompleteLinearOrder
β€”eq_of_forall_le_iff
toENNReal_iSup πŸ“–mathematicalβ€”toENNReal
iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENNReal
ENNReal.instCompleteLinearOrder
β€”eq_of_forall_ge_iff

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalENatCeil πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
natCeil_pos πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
ENat
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
ENat.ceil
β€”ENat.ceil_pos

---

← Back to Index