Documentation Verification Report

Canonical

πŸ“ Source: Mathlib/Algebra/Order/GroupWithZero/Canonical.lean

Statistics

MetricCount
DefinitionslinearOrderedCommMonoidWithZero, LinearOrderedCommGroupWithZero, toCommGroupWithZero, toDiv, toInv, toLinearOrderedCommMonoidWithZero, zpow, LinearOrderedCommMonoidWithZero, toCommMonoidWithZero, toLinearOrder, toOrderBot, decidableEq, decidableLE, decidableLT, expOrderIso, instBot, instBoundedOrder, instLT, instLattice, instLinearOrder, instLinearOrderedCommGroupWithZero, instLinearOrderedCommMonoidWithZero, instOrderBot, instPartialOrder, instPreorder, le, logOrderIso, semilatticeInf, semilatticeSup, instLinearOrderedAddCommGroupWithTopAdditiveOrderDual, instLinearOrderedAddCommGroupWithTopOrderDualAdditive, instLinearOrderedAddCommMonoidWithTopAdditiveOrderDual, instLinearOrderedAddCommMonoidWithTopOrderDualAdditive, instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop, instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
35
TheoremswithZero, div_eq_mul_inv, inv_zero, mul_inv_cancel, toNontrivial, zpow_neg', zpow_succ', zpow_zero', toIsMulTorsionFree, toIsOrderedMonoid, toMulPosStrictMono, toPosMulStrictMono, toZeroLeOneClass, zero_le, zero_lt, addLeftMono, coe_inf, coe_le_coe, coe_le_iff, coe_le_one, coe_lt_coe, coe_lt_one, coe_sup, exists_ne_zero_and_le_and_le, exists_ne_zero_and_lt, exists_ne_zero_and_lt_and_lt, expOrderIso_symm_apply, exp_le_exp, exp_lt_exp, exp_pos, instCanonicallyOrderedAdd, instExistsAddOfLE, instMulLeftMono, instMulLeftReflectLT, isOrderedAddMonoid, isOrderedMonoid, le_coe_iff, le_def, le_exp_log, le_exp_of_log_le, le_log_iff_exp_le, le_log_of_exp_le, le_max_iff, le_ofAdd_iff, le_ofAdd_of_toAdd_unzero_le, le_unzero_iff, logOrderIso_apply, log_le_iff_le_exp, log_le_log, log_lt_iff_lt_exp, log_lt_log, lt_coe_iff, lt_def, lt_exp_of_log_lt, lt_iff_exists, lt_iff_exists_coe, lt_log_iff_exp_lt, lt_log_of_exp_lt, lt_mul_exp_iff_le, lt_ofAdd_iff, lt_ofAdd_of_toAdd_unzero_lt, lt_unzero_iff, map'_mono, map'_strictMono, min_le_iff, nonpos_iff_eq_zero, not_coe_le_zero, not_lt_zero, one_le_coe, one_lt_coe, pos_iff_ne_zero, toAdd_unzero_le_of_lt_ofAdd, toAdd_unzero_lt_of_lt_ofAdd, total_le, unbot_le_iff, unzero_le_unzero, unzero_lt_iff, val_expOrderIso_apply, val_inv_expOrderIso_apply, val_inv_logOrderIso_symm_apply, val_logOrderIso_symm_apply, zero_eq_bot, zero_le, zero_lt_coe, bot_eq_zero'', denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units, denselyOrdered_units_iff, instDenselyOrderedUnits, instIsCancelMulZero_1, instNontrivialUnitsOfDenselyOrdered, inv_mul_lt_of_lt_mulβ‚€, le_zero_iff, lt_of_mul_lt_mul_of_leβ‚€, mul_inv_lt_of_lt_mulβ‚€, ne_zero_of_lt, not_lt_zero', ofAdd_bot, ofAdd_toDual_eq_zero_iff, ofDual_toAdd_eq_top_iff, ofDual_toAdd_zero, pow_pos_iff, zero_le', zero_lt_iff
103
Total138

Function.Injective

Definitions

NameCategoryTheorems
linearOrderedCommMonoidWithZero πŸ“–CompOpβ€”

IsMax

Theorems

NameKindAssumesProvesValidatesDepends On
withZero πŸ“–mathematicalIsMaxWithZero
WithZero.le
WithZero.coe
β€”withBot

LinearOrderedCommGroupWithZero

Definitions

NameCategoryTheorems
toCommGroupWithZero πŸ“–CompOp
170 mathmath: Valuation.IsRankOneDiscrete.generator_lt_one, ValuationSubring.valuation_lt_one_iff, Valuation.ltIdeal_le_leIdeal, Valuation.isEquiv_iff_val_sub_one_lt_one, Valuation.mem_maximalIdeal_iff, Valued.toNormedField.norm_le_one_iff, Valuation.IsRankOneDiscrete.exists_generator_lt_one', WithZeroTopology.nhds_zero, Valuation.mem_ltIdeal_iff, Valuation.val_le_one_or_val_inv_lt_one, Valuation.IsRankOneDiscrete.generator_mem_valueGroup, inl_mul_inr_eq_coe_toLex, Valued.toUniformSpace_eq, ValuationSubring.ofPrime_valuation_eq_one_iff_mem_primeCompl, Valuation.instNontrivialSubtypeUnitsMemSubmonoidValueMonoidOfIsNontrivial, ValuationSubring.valuation_unit, Valuation.IsEquiv.valuedCompletion_le_one_iff, Valuation.isNontrivial_iff_exists_lt_one, Valuation.Integers.valuation_irreducible_lt_one, WithZeroTopology.nhds_zero_of_units, ValuationSubring.mapOfLE_valuation_apply, Valuation.Integers.map_le_one, MonoidWithZeroHom.fst_mono, Valuation.ltAddSubgroup_monotone, Valuation.ltIdeal_v_le_of_mem, ValuativeRel.ValueGroupWithZero.embed_strictMono, ValuativeRel.subsingleton_units_valueGroupWithZero_of_trivialRel, ValuativeRel.ValueGroupWithZero.mk_eq_div, ValuativeExtension.mapValueGroupWithZero_mk, Valuation.leIdeal_map_algebraMap_eq_leSubmodule_min, Valuation.val_lt_one_iff, Valuation.IsUniformizer.zpowers_eq_valueGroup, Valuation.val_le_one_or_val_inv_le_one, Valued.is_topological_valuation, Valuation.map_div, Valuation.one_lt_val_iff, ValuationSubring.valuation_lt_one_or_eq_one, Valuation.val_eq_one_iff, Valued.extension_eq_zero_iff, ValuativeExtension.mapValueGroupWithZero_strictMono, OrderMonoidIso.withZeroUnits_symm_apply, MonoidWithZeroHom.inl_strictMono, Valuation.subgroups_basis, OrderMonoidIso.withZeroUnits_apply, Valuation.mem_unitGroup_iff, ValuationSubring.valuation_le_one, denselyOrdered_units_iff, OrderIso.withZeroUnits_symm_apply, Valued.hasBasis_nhds_zero, Valuation.IsRankOneDiscrete.instIsCyclicSubtypeUnitsMemSubgroupValueGroup, IsValuativeTopology.mem_nhds_iff', WithZero.withZeroUnitsEquiv_symm_strictMono, instNontrivialUnitsOfDenselyOrdered, Valuation.isEquiv_iff_val_le_one, Valuation.IsUniformizer.val, ValuativeRel.exists_valuation_posSubmonoid_div_valuation_posSubmonoid_eq, Valuation.mem_valuationSubring_iff, Valuation.Integers.isIntegral_iff_v_le_one, ValuativeExtension.mapValueGroupWithZero_valuation, Valuation.isEquiv_iff_val_eq_one, Valuation.RankOne.strictMono, ValuationSubring.valuation_le_one_iff, Valued.coe_valuation_eq_rankOne_hom_comp_valuation, ValuationSubring.mem_unitGroup_iff, inl_eq_coe_inlβ‚—, Valuation.IsRankOneDiscrete.valueGroup_genLTOne_eq_generator, IsValuativeTopology.mem_nhds_zero_iff, Valuation.IsRankOneDiscrete.generator_zpowers_eq_range, WithZeroTopology.isClosed_iff, WithZeroTopology.hasBasis_nhds_zero, ValuationSubring.monotone_mapOfLE, Valuation.ltSubmodule_monotone, ValuativeRel.RankLeOneStruct.strictMono, Valued.integer.mulArchimedean_mrange_of_isCompact_integer, Valuation.Integers.valuation_unit, Valued.closure_coe_completion_v_lt, WithZeroTopology.nhds_coe_units, Valued.closure_coe_completion_v_mul_v_lt, Valued.cauchy_iff, ValuativeRel.one_apply_posSubmonoid, Valued.norm_def, MonoidWithZeroHom.inr_mono, IsValuativeTopology.hasBasis_nhds, Valued.toNormedField.one_lt_norm_iff, IsValuativeTopology.hasBasis_nhds_zero, Valuation.IsNontrivial_iff_exists_one_lt, Valuation.mem_ltAddSubgroup_iff, Valuation.IsRankOneDiscrete.generator_zpowers_eq_valueGroup, Valuation.map_inv, inr_eq_coe_inrβ‚—, Valuation.integer.v_irreducible_pos, Valuation.ltSubmodule_le_leSubmodule, ValuativeRel.exists_valuation_div_valuation_eq, Valuation.leIdeal_zero, Valuation.ltAddSubgroup_le_leAddSubgroup, fst_comp_inl, Valuation.IsNontrivial.exists_one_lt, WithZeroTopology.isOpen_iff, WithZeroTopology.instContinuousMul, MonoidWithZeroHom.snd_mono, Valuation.IsUniformizer.val_pos, Valuation.RankOne.strictMono', Valuation.IsEquiv.val_sub_one_lt_one_iff, Valuation.Integers.valuation_pos_iff_ne_zero, Valuation.instNontrivialSubtypeUnitsMemSubgroupValueGroupOfIsNontrivial, ValuativeRel.isNontrivial_iff_nontrivial_units, Valuation.ltSubmodule_v_le_of_mem, Valued.mem_nhds_zero, ValuationSubring.mem_principalUnitGroup_iff, Valued.mem_nhds, Valued.integer.locallyFiniteOrder_units_mrange_of_isCompact_integer, wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero, ValuativeRel.ValueGroupWithZero.embed_mk, Valuation.Integer.not_isUnit_iff_valuation_lt_one, fst_apply, Valuation.map_eq_one_of_forall_lt, Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange, WithZeroTopology.tendsto_units, OrderIso.withZeroUnits_apply, Valuation.leAddSubgroup_zero, WithZeroTopology.Iio_mem_nhds_zero, ValuationSubring.mem_nonunits_iff, Valuation.Integers.valuation_irreducible_pos, MonoidWithZeroHom.inr_strictMono, Valuation.IsUniformizer.iff, Valued.hasBasis_uniformity, Valuation.mem_ltSubmodule_iff, Valuation.integer.v_irreducible_lt_one, Valuation.IsNontrivial.exists_lt_one, Valuation.Integers.isUnit_iff_valuation_eq_one, WithZeroTopology.tendsto_zero, Valuation.coe_ltAddSubgroup, MonoidWithZeroHom.inl_mono, Irreducible.maximalIdeal_pow_eq_setOf_le_v_coe_pow, Valuation.one_le_val_iff, ValuationSubring.valuation_eq_one_iff, Units.zero_lt, Valuation.ltIdeal_mono, Valuation.isEquiv_iff_val_lt_one, Valuation.IsUniformizer.val_lt_one, LocallyFiniteOrder.orderMonoidWithZeroHom_strictMono, Valuation.leSubmodule_zero, Valuation.mem_integer_iff, Units.mulArchimedean_iff, WithZeroTopology.singleton_mem_nhds_of_units, Valuation.RankOne.hom_eq_zero_iff, discrete_iff_not_denselyOrdered, inl_apply, inr_apply, IsValuativeTopology.mem_nhds_iff, Valued.norm_pos_iff_valuation_pos, Valued.toNormedField.norm_lt_one_iff, denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units, Valuation.Integers.one_of_isUnit, WithZeroTopology.nhds_eq_update, Valuation.IsRankOneDiscrete.exists_generator_lt_one, ValuativeRel.ValueGroupWithZero.embed_valuation, ValuationSubring.mapOfLE_comp_valuation, Valuation.val_le_one_iff, Valued.toNormedField.one_le_norm_iff, wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero, Valuation.IsRankOneDiscrete.generator_mem_range, Valuation.exists_div_eq_of_surjective, Valuation.Integers.maximalIdeal_pow_eq_setOf_le_v_algebraMap_pow, Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered_mrange, WithZero.withZeroUnitsEquiv_strictMono, discrete_or_denselyOrdered, WithZeroTopology.hasBasis_nhds_units, instDenselyOrderedUnits, WithZeroTopology.instContinuousInvβ‚€
toDiv πŸ“–CompOp
1 mathmath: div_eq_mul_inv
toInv πŸ“–CompOp
4 mathmath: mul_inv_cancel, inv_zero, div_eq_mul_inv, zpow_neg'
toLinearOrderedCommMonoidWithZero πŸ“–CompOp
279 mathmath: Valuation.IsRankOneDiscrete.generator_lt_one, Valued.isOpen_closedball, Irreducible.maximalIdeal_eq_setOf_le_v_coe, ValuationSubring.valuation_lt_one_iff, Valuation.leSubmodule_v_le_of_mem, Valuation.isEquiv_iff_val_sub_one_lt_one, mul_inv_cancel, Valuation.mem_maximalIdeal_iff, Valuation.mem_leSubmodule_iff, Padic.withValUniformEquiv_norm_le_one_iff, Valued.toNormedField.norm_le_one_iff, Valued.extension_extends, Valued.valuedCompletion_surjective_iff, ValuativeRel.valuation_eq_zero_iff, ValuationSubring.valuation_le_iff, PadicComplex.valuation_extends, Valuation.IsRankOneDiscrete.exists_generator_lt_one', WithZeroTopology.nhds_zero, Valuation.isEquiv_valuation_valuationSubring, Valuation.mem_ltIdeal_iff, Valuation.val_le_one_or_val_inv_lt_one, Valuation.leSubmodule_monotone, IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers, Valuation.IsRankOneDiscrete.generator_mem_valueGroup, Valuation.Integers.isPrincipal_iff_exists_isGreatest, inl_mul_inr_eq_coe_toLex, LaurentSeries.valuation_le_iff_coeff_lt_eq_zero, LaurentSeries.valuation_single_zpow, ValuationSubring.ofPrime_valuation_eq_one_iff_mem_primeCompl, Valuation.instNontrivialSubtypeUnitsMemSubmonoidValueMonoidOfIsNontrivial, ValuationSubring.valuation_unit, Valuation.isNontrivial_iff_exists_lt_one, Valuation.Integers.valuation_irreducible_lt_one, WithZeroTopology.nhds_zero_of_units, ValuationSubring.mapOfLE_valuation_apply, WithVal.instCompatibleValuation, Valuation.Integers.map_le_one, zpow_zero', MonoidWithZeroHom.fst_mono, ValuativeRel.supp_eq_valuation_supp, Valuation.ltAddSubgroup_monotone, Valuation.ltIdeal_v_le_of_mem, Valued.isClopen_ball, ValuativeRel.ValueGroupWithZero.embed_strictMono, Valued.exists_coe_eq_v, ValuativeRel.ValueGroupWithZero.mk_eq_div, Valuation.Integers.le_of_dvd, Valuation.Compatible.ofValuation, Valuation.leIdeal_map_algebraMap_eq_leSubmodule_min, Valuation.val_lt_one_iff, Valuation.IsUniformizer.zpowers_eq_valueGroup, Valuation.val_le_one_or_val_inv_le_one, ValuationSubring.eq_top_iff, Valued.is_topological_valuation, IsValuativeTopology.isOpen_ball, Valuation.map_div, Valuation.one_lt_val_iff, ValuationSubring.valuation_lt_one_or_eq_one, Valued.continuous_valuation, WithVal.apply_symm_equiv, Valuation.val_eq_one_iff, LaurentSeries.val_le_one_iff_eq_coe, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_def, IsValuativeTopology.isClopen_sphere, OrderMonoidIso.withZeroUnits_symm_apply, FunctionField.valuedFqtInfty.def, MonoidWithZeroHom.inl_strictMono, Valuation.HasExtension.ofComapInteger, WithZeroMulInt.toNNReal_lt_one_iff, WithVal.apply_equiv, OrderMonoidIso.withZeroUnits_apply, Valuation.mem_unitGroup_iff, Valued.isOpen_sphere, IsDedekindDomain.HeightOneSpectrum.valuation_def, ValuationSubring.valuation_le_one, denselyOrdered_units_iff, OrderIso.withZeroUnits_symm_apply, Valuation.nonempty_rankOne_iff_mulArchimedean, LaurentSeries.exists_ratFunc_val_lt, Valued.hasBasis_nhds_zero, Valuation.IsRankOneDiscrete.instIsCyclicSubtypeUnitsMemSubgroupValueGroup, IsValuativeTopology.continuous_valuation, IsValuativeTopology.mem_nhds_iff', WithZero.withZeroUnitsEquiv_symm_strictMono, Valuation.isEquiv_iff_val_le_one, Valuation.Integers.not_denselyOrdered_of_isPrincipalIdealRing, Valuation.IsUniformizer.val, ValuativeRel.exists_valuation_posSubmonoid_div_valuation_posSubmonoid_eq, Valuation.mem_valuationSubring_iff, Valuation.Integers.isIntegral_iff_v_le_one, ValuativeExtension.mapValueGroupWithZero_valuation, Valuation.isEquiv_iff_val_eq_one, Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered, Valuation.RankOne.strictMono, Valuation.Integers.le_iff_dvd, Valued.continuous_extensionValuation, ValuationSubring.valuation_le_one_iff, Valued.coe_valuation_eq_rankOne_hom_comp_valuation, ValuationSubring.mem_unitGroup_iff, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation', Valued.isClosed_ball, Valued.isClopen_sphere, PadicAlgCl.valuation_p, PadicComplex.valuation_p, inl_eq_coe_inlβ‚—, Valued.isClosed_sphere, IsValuativeTopology.isClosed_closedBall, WithZeroMulInt.toNNReal_le_one_iff, Valuation.IsRankOneDiscrete.valueGroup_genLTOne_eq_generator, WithVal.lt_def, IsValuativeTopology.mem_nhds_zero_iff, ModP.preVal_mk, ModP.v_p_lt_preVal, Valuation.IsRankOneDiscrete.generator_zpowers_eq_range, WithZeroTopology.isClosed_iff, WithZeroTopology.hasBasis_nhds_zero, Valuation.mem_leAddSubgroup_iff, ValuationSubring.monotone_mapOfLE, Valued.toNormedField.norm_le_iff, Valuation.ltSubmodule_monotone, Valued.integer.mulArchimedean_mrange_of_isCompact_integer, Valuation.Integers.dvdNotUnit_iff_lt, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, Valuation.Integers.valuation_unit, Valued.closure_coe_completion_v_lt, Valued.valuation_isClosedMap, Valued.closure_coe_completion_v_mul_v_lt, Valued.valuedCompletion_apply, Valued.cauchy_iff, ValuationSubring.valuation_eq_iff, ValuativeRel.one_apply_posSubmonoid, ValuativeRel.trivialRel_eq_ofValuation_one, Valued.norm_def, IsDedekindDomain.HeightOneSpectrum.adicValued_apply, Valuation.leIdeal_v_le_of_mem, MonoidWithZeroHom.inr_mono, IsValuativeTopology.hasBasis_nhds_zero', Valuation.Integers.maximalIdeal_eq_setOf_le_v_algebraMap, Valuation.RankOne.instIsNontrivial, IsValuativeTopology.isClopen_ball, IsValuativeTopology.hasBasis_nhds, Valued.toNormedField.one_lt_norm_iff, IsValuativeTopology.hasBasis_nhds_zero, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation, Valuation.IsNontrivial_iff_exists_one_lt, Valuation.mem_ltAddSubgroup_iff, Valuation.IsRankOneDiscrete.generator_zpowers_eq_valueGroup, LaurentSeries.valuation_LaurentSeries_equal_extension, RatFunc.v_def, Valuation.map_inv, Valuation.Integers.wfDvdMonoid_iff_wellFounded_gt_on_v, Valuation.isNontrivial_valuation_valuationSubring_iff, IsValuativeTopology.isOpen_closedBall, inr_eq_coe_inrβ‚—, Valuation.integer.v_irreducible_pos, Valuation.leIdeal_mono, ValuativeRel.exists_valuation_div_valuation_eq, fst_comp_inl, ValuativeRel.instCompatibleValueGroupWithZeroValuation, Valuation.IsNontrivial.exists_one_lt, PadicAlgCl.valuation_def, WithZeroTopology.isOpen_iff, Delone.DeloneSet.mapBilipschitz_trans, MonoidWithZeroHom.snd_mono, PadicAlgCl.valuation_coe, Valuation.IsUniformizer.val_pos, FunctionField.inftyValuedFqt.def, Valuation.RankOne.strictMono', Valuation.Integers.coe_span_singleton_eq_setOf_le_v_algebraMap, IsValuativeTopology.hasBasis_nhds', Valuation.Integers.valuation_pos_iff_ne_zero, Valued.isOpen_closedBall, Valuation.instNontrivialSubtypeUnitsMemSubgroupValueGroupOfIsNontrivial, Valuation.ltSubmodule_v_le_of_mem, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_surjective, Valued.mem_nhds_zero, Valued.isOpen_ball, ValuationSubring.mem_principalUnitGroup_iff, NormedField.v_eq_valuation, Valued.mem_nhds, IsNonarchimedeanLocalField.isCompact_closedBall, Valued.integer.locallyFiniteOrder_units_mrange_of_isCompact_integer, Valued.extensionValuation_apply_coe, ValuativeRel.valuation_surjective, wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero, LaurentSeries.valuation_coe_ratFunc, ValuativeRel.ValueGroupWithZero.embed_mk, Valuation.Integers.isPrincipal_iff_exists_eq_setOf_valuation_le, IsValuativeTopology.isClosed_ball, Valuation.Integer.not_isUnit_iff_valuation_lt_one, fst_apply, LaurentSeries.valuation_compare, Valuation.RankOne.toIsNontrivial, WithZeroMulInt.toNNReal_strictMono, LaurentSeries.tendsto_valuation, Valuation.integer.coe_span_singleton_eq_setOf_le_v_coe, Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange, IsDedekindDomain.HeightOneSpectrum.adicValued_apply', OrderIso.withZeroUnits_apply, WithZeroTopology.Iio_mem_nhds_zero, Valuation.HasExtension.mk_smul_mk, inv_zero, zpow_succ', ValuationSubring.mem_nonunits_iff, Valued.toNormedField.norm_lt_iff, Valuation.Integers.valuation_irreducible_pos, NumberField.toNNReal_valued_eq_adicAbv, MonoidWithZeroHom.inr_strictMono, Valuation.IsUniformizer.iff, Valued.hasBasis_uniformity, Valuation.mem_ltSubmodule_iff, ModP.v_p_lt_val, Valuation.integer.v_irreducible_lt_one, Valuation.IsNontrivial.exists_lt_one, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.isUnit_iff_valued_eq_one, Valuation.Integers.isUnit_iff_valuation_eq_one, LaurentSeries.valuation_le_iff_coeff_lt_log_eq_zero, IsNonarchimedeanLocalField.instCompatibleValueGroupWithZeroV, Valuation.mem_leIdeal_iff, WithZeroTopology.tendsto_zero, Valued.isClosed_closedBall, PreTilt.map_eq_zero, Valuation.coe_ltAddSubgroup, MonoidWithZeroHom.inl_mono, WithZeroTopology.orderClosedTopology, Irreducible.maximalIdeal_pow_eq_setOf_le_v_coe_pow, WithVal.le_def, Valuation.one_le_val_iff, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, ValuationSubring.valuation_eq_one_iff, WithZeroTopology.isOpen_Iio, Valuation.isEquiv_tfae, Valuation.valuationSubring_eq_top_iff, ValuativeRel.ValueGroupWithZero.lift_valuation, Units.zero_lt, Valuation.ltIdeal_mono, Valuation.isEquiv_iff_val_lt_one, WithVal.valuation_equiv_symm, NormedField.valuation_apply, Valuation.IsUniformizer.val_lt_one, LocallyFiniteOrder.orderMonoidWithZeroHom_strictMono, Valued.loc_const, div_eq_mul_inv, Valuation.mem_integer_iff, Units.mulArchimedean_iff, discrete_iff_not_denselyOrdered, Valued.isClopen_closedBall, inl_apply, Valuation.leAddSubgroup_monotone, inr_apply, IsValuativeTopology.mem_nhds_iff, ValuationSubring.valuation_surjective, Valued.norm_pos_iff_valuation_pos, Valuation.IsRankOneDiscrete.instIsNontrivial, Valued.toNormedField.norm_lt_one_iff, denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units, Valuation.Integers.one_of_isUnit, WithZeroTopology.nhds_eq_update, Valuation.IsRankOneDiscrete.exists_generator_lt_one, IsValuativeTopology.isOpen_sphere, ValuationSubring.mapOfLE_comp_valuation, Valuation.val_le_one_iff, LaurentSeries.exists_ratFunc_eq_v, Valued.toNormedField.one_le_norm_iff, wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero, ValuativeRel.ValueGroupWithZero.mk_eq_valuation, Valuation.coeff_zero_minpoly, Valuation.IsRankOneDiscrete.generator_mem_range, IsValuativeTopology.isClopen_closedBall, Valuation.Integers.maximalIdeal_pow_eq_setOf_le_v_algebraMap_pow, Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered_mrange, LaurentSeries.valuation_X_pow, Valuation.Integers.dvd_iff_le, Valuation.isNontrivial_iff_not_a_field, WithZero.withZeroUnitsEquiv_strictMono, discrete_or_denselyOrdered, IsDedekindDomain.HeightOneSpectrum.notMem_adicCompletionIntegers, instDenselyOrderedUnits, Valuation.isEquiv_iff_valuationSubring
zpow πŸ“–CompOp
3 mathmath: zpow_zero', zpow_succ', zpow_neg'

Theorems

NameKindAssumesProvesValidatesDepends On
div_eq_mul_inv πŸ“–mathematicalβ€”toDiv
Semigroup.toMul
Monoid.toSemigroup
CommMonoid.toMonoid
CommMonoidWithZero.toCommMonoid
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
toLinearOrderedCommMonoidWithZero
toInv
β€”β€”
inv_zero πŸ“–mathematicalβ€”toInv
CommMonoidWithZero.toZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
toLinearOrderedCommMonoidWithZero
β€”β€”
mul_inv_cancel πŸ“–mathematicalβ€”Semigroup.toMul
Monoid.toSemigroup
CommMonoid.toMonoid
CommMonoidWithZero.toCommMonoid
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
toLinearOrderedCommMonoidWithZero
toInv
Monoid.toOne
β€”β€”
toNontrivial πŸ“–mathematicalβ€”Nontrivialβ€”β€”
zpow_neg' πŸ“–mathematicalβ€”zpow
toInv
β€”β€”
zpow_succ' πŸ“–mathematicalβ€”zpow
Semigroup.toMul
Monoid.toSemigroup
CommMonoid.toMonoid
CommMonoidWithZero.toCommMonoid
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
toLinearOrderedCommMonoidWithZero
β€”β€”
zpow_zero' πŸ“–mathematicalβ€”zpow
Monoid.toOne
CommMonoid.toMonoid
CommMonoidWithZero.toCommMonoid
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
toLinearOrderedCommMonoidWithZero
β€”β€”

LinearOrderedCommMonoidWithZero

Definitions

NameCategoryTheorems
toCommMonoidWithZero πŸ“–CompOp
80 mathmath: Valuation.IsTrivialOn.valuation_algebraMap_le_one, ofDual_toAdd_zero, Valuation.FiniteField.algebraMap_le_one, Valuation.FiniteField.algebraMap_eq_one, Valuation.one_apply_lt_one_iff, LinearOrderedCommGroupWithZero.mul_inv_cancel, Valuation.val_mrange_zero, Valuation.mem_supp_iff, Valuation.IsTrivialOn.eq_one, Valuation.toFun_eq_coe, le_zero_iff, ValuationClass.toMonoidWithZeroHomClass, LinearOrderedCommGroupWithZero.zpow_zero', Valuation.IsEquiv.pos_iff, Valuation.unit_map_eq, Valuation.one_apply_of_ne_zero, OrderMonoidWithZeroHom.mul_comp, Valuation.coe_coe, ofAdd_bot, Valuation.IsEquiv.one_lt_iff_one_lt, Valuation.nonempty_rankOne_iff_mulArchimedean, toIsOrderedMonoid, Valuation.toMonoidWithZeroHom_one, Valuation.HasExtension.val_map_le_one_iff, Valuation.map_add_le_max', Valuation.zero_iff, Valuation.IsRankOneDiscrete.valueGroup_genLTOne_eq_generator, Valuation.one_apply_eq_zero_iff, Valuation.apply_posSubmonoid_pos, Valuation.one_srel_iff, Valued.integer.mulArchimedean_mrange_of_isCompact_integer, Padic.valuation_p_lt_one, Valuation.map_mul, Valuation.one_apply_le_one, Valuation.map_one, Valuation.one_vlt_iff, Valuation.one_vle_iff, Valuation.IsEquiv.eq_zero, not_lt_zero', Valuation.toMonoidWithZeroHom_coe_eq_coe, Valuation.srel_one_iff, Valuation.vle_one_iff, Valuation.IsEquiv.one_le_iff_one_le, Valuation.HasExtension.val_map_eq_one_iff, OrderMonoidWithZeroHom.coe_mul, zero_le, ofDual_toAdd_eq_top_iff, Valued.integer.locallyFiniteOrder_units_mrange_of_isCompact_integer, Valuation.rel_one_iff, Valuation.IsEquiv.eq_one_iff_eq_one, Valuation.vlt_one_iff, Valuation.IsEquiv.le_one_iff_le_one, Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange, zero_le', toIsMulTorsionFree, Valuation.HasExtension.mk_smul_mk, LinearOrderedCommGroupWithZero.inv_zero, LinearOrderedCommGroupWithZero.zpow_succ', Valuation.map_pow, zero_lt_iff, toMulPosStrictMono, pow_pos_iff, instIsCancelMulZero_1, bot_eq_zero'', Valuation.HasExtension.val_map_lt_one_iff, OrderMonoidWithZeroHom.comp_mul, Valuation.IsEquiv.lt_one_iff_lt_one, LinearOrderedCommGroupWithZero.div_eq_mul_inv, Valuation.one_apply_def, Units.mulArchimedean_iff, Valuation.pos_iff, Valuation.map_zero, ofAdd_toDual_eq_zero_iff, toPosMulStrictMono, Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered_mrange, OrderMonoidWithZeroHom.mul_apply, Valuation.one_rel_iff, Valuation.le_one_of_subsingleton, Valuation.one_apply_eq_one_iff, toZeroLeOneClass
toLinearOrder πŸ“–CompOp
196 mathmath: Valuation.IsRankOneDiscrete.generator_lt_one, Valued.isOpen_closedball, Valuation.IsTrivialOn.valuation_algebraMap_le_one, Irreducible.maximalIdeal_eq_setOf_le_v_coe, ValuationSubring.valuation_lt_one_iff, Valuation.FiniteField.algebraMap_le_one, Valuation.HasExtension.val_map_le_iff, Valuation.isEquiv_iff_val_sub_one_lt_one, Valuation.one_apply_lt_one_iff, Valuation.mem_maximalIdeal_iff, Valuation.mem_leSubmodule_iff, Valued.toNormedField.norm_le_one_iff, ValuationSubring.valuation_le_iff, Valuation.IsRankOneDiscrete.exists_generator_lt_one', WithZeroTopology.nhds_zero, Valuation.mem_ltIdeal_iff, Valuation.val_le_one_or_val_inv_lt_one, Valuation.leSubmodule_monotone, Valuation.Integers.isPrincipal_iff_exists_isGreatest, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, le_zero_iff, Valuation.Compatible.srel_iff_lt, Valuation.IsEquiv.valuedCompletion_le_one_iff, Valuation.isEquiv_iff_val_lt_val, Valuation.isNontrivial_iff_exists_lt_one, Valuation.Integers.valuation_irreducible_lt_one, WithZeroTopology.nhds_zero_of_units, Valuation.Integers.map_le_one, MonoidWithZeroHom.fst_mono, Valuation.ltAddSubgroup_monotone, Valued.isClopen_ball, ValuativeRel.ValueGroupWithZero.embed_strictMono, Valuation.IsEquiv.pos_iff, Valuation.Integers.le_of_dvd, Valuation.leIdeal_map_algebraMap_eq_leSubmodule_min, Valuation.val_lt_one_iff, Valuation.val_le_one_or_val_inv_le_one, Valuation.map_add_of_distinct_val, Valuation.map_add, Valuation.HasExtension.val_map_lt_iff, Valued.is_topological_valuation, Valuation.one_lt_val_iff, ValuationSubring.valuation_lt_one_or_eq_one, OrderMonoidWithZeroHom.mul_comp, OrderMonoidIso.withZeroUnits_symm_apply, MonoidWithZeroHom.inl_strictMono, OrderMonoidIso.withZeroUnits_apply, Valuation.IsEquiv.one_lt_iff_one_lt, ValuationClass.map_add_le_max, ValuationSubring.valuation_le_one, denselyOrdered_units_iff, OrderIso.withZeroUnits_symm_apply, Valuation.nonempty_rankOne_iff_mulArchimedean, toIsOrderedMonoid, Valued.hasBasis_nhds_zero, WithZero.withZeroUnitsEquiv_symm_strictMono, Valuation.isEquiv_iff_val_le_one, Valuation.Integers.not_denselyOrdered_of_isPrincipalIdealRing, Valuation.HasExtension.val_map_le_one_iff, Valuation.map_sub, Valuation.mem_valuationSubring_iff, Valuation.Integers.isIntegral_iff_v_le_one, Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered, Valuation.RankOne.strictMono, Valuation.Integers.le_iff_dvd, ValuationSubring.valuation_le_one_iff, Valuation.map_add_le_max', Valued.isClosed_ball, Valuation.srel_iff_lt, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, Valuation.IsRankOneDiscrete.valueGroup_genLTOne_eq_generator, WithVal.lt_def, Valuation.apply_posSubmonoid_pos, Valuation.one_srel_iff, WithZeroTopology.isClosed_iff, WithZeroTopology.hasBasis_nhds_zero, Valuation.mem_leAddSubgroup_iff, Valuation.vle_iff_le, ValuationSubring.monotone_mapOfLE, Valued.toNormedField.norm_le_iff, Valuation.map_add', Valuation.ltSubmodule_monotone, Valued.integer.mulArchimedean_mrange_of_isCompact_integer, Valuation.Integers.dvdNotUnit_iff_lt, Padic.valuation_p_lt_one, Valuation.IsEquiv.lt_iff_lt, Valued.closure_coe_completion_v_lt, Valued.closure_coe_completion_v_mul_v_lt, Valued.cauchy_iff, Valuation.one_apply_le_one, MonoidWithZeroHom.inr_mono, Valuation.Integers.maximalIdeal_eq_setOf_le_v_algebraMap, Valuation.one_vlt_iff, Valuation.one_vle_iff, Valued.toNormedField.one_lt_norm_iff, Valuation.IsNontrivial_iff_exists_one_lt, Valuation.mem_ltAddSubgroup_iff, Valuation.Integers.wfDvdMonoid_iff_wellFounded_gt_on_v, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, Valuation.integer.v_irreducible_pos, Valuation.leIdeal_mono, LinearOrderedCommGroupWithZero.fst_comp_inl, Valuation.IsNontrivial.exists_one_lt, not_lt_zero', WithZeroTopology.isOpen_iff, Valuation.srel_one_iff, MonoidWithZeroHom.snd_mono, Valuation.IsUniformizer.val_pos, Valuation.RankOne.strictMono', Valuation.vle_one_iff, Valuation.IsEquiv.val_sub_one_lt_one_iff, Valuation.Integers.coe_span_singleton_eq_setOf_le_v_algebraMap, Valuation.Integers.valuation_pos_iff_ne_zero, Valued.isOpen_closedBall, Valuation.IsEquiv.one_le_iff_one_le, Valued.mem_nhds_zero, Valued.isOpen_ball, ValuationSubring.mem_principalUnitGroup_iff, Valued.mem_nhds, OrderMonoidWithZeroHom.coe_mul, zero_le, Valued.integer.locallyFiniteOrder_units_mrange_of_isCompact_integer, Valuation.rel_one_iff, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero, Valuation.Integers.isPrincipal_iff_exists_eq_setOf_valuation_le, Valuation.Integer.not_isUnit_iff_valuation_lt_one, LinearOrderedCommGroupWithZero.fst_apply, Valuation.vlt_one_iff, Valuation.IsEquiv.le_one_iff_le_one, Valuation.integer.coe_span_singleton_eq_setOf_le_v_coe, Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange, zero_le', OrderIso.withZeroUnits_apply, WithZeroTopology.Iio_mem_nhds_zero, Valuation.HasExtension.mk_smul_mk, ValuationSubring.mem_nonunits_iff, Valued.toNormedField.norm_lt_iff, Valuation.rel_iff_le, Valuation.Integers.valuation_irreducible_pos, Valuation.vlt_iff_lt, MonoidWithZeroHom.inr_strictMono, Valued.hasBasis_uniformity, Valuation.mem_ltSubmodule_iff, zero_lt_iff, Valuation.integer.v_irreducible_lt_one, toMulPosStrictMono, Valuation.IsNontrivial.exists_lt_one, pow_pos_iff, Valuation.mem_leIdeal_iff, WithZeroTopology.tendsto_zero, Valued.isClosed_closedBall, Valuation.coe_ltAddSubgroup, MonoidWithZeroHom.inl_mono, WithZeroTopology.orderClosedTopology, Irreducible.maximalIdeal_pow_eq_setOf_le_v_coe_pow, bot_eq_zero'', WithVal.le_def, Valuation.HasExtension.val_map_lt_one_iff, Valuation.one_le_val_iff, Valuation.Compatible.vle_iff_le, WithZeroTopology.isOpen_Iio, Units.zero_lt, OrderMonoidWithZeroHom.comp_mul, Valuation.ltIdeal_mono, Valuation.IsEquiv.lt_one_iff_lt_one, Valuation.isEquiv_iff_val_lt_one, Valuation.IsUniformizer.val_lt_one, LocallyFiniteOrder.orderMonoidWithZeroHom_strictMono, Valuation.mem_integer_iff, Units.mulArchimedean_iff, LinearOrderedCommGroupWithZero.discrete_iff_not_denselyOrdered, Valued.isClopen_closedBall, LinearOrderedCommGroupWithZero.inl_apply, Valuation.leAddSubgroup_monotone, LinearOrderedCommGroupWithZero.inr_apply, Valuation.pos_iff, Valued.norm_pos_iff_valuation_pos, Valued.toNormedField.norm_lt_one_iff, denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units, WithZeroTopology.nhds_eq_update, Valuation.IsRankOneDiscrete.exists_generator_lt_one, Valuation.val_le_one_iff, Valued.toNormedField.one_le_norm_iff, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero, Valuation.exists_div_eq_of_surjective, Valuation.Integers.maximalIdeal_pow_eq_setOf_le_v_algebraMap_pow, toPosMulStrictMono, Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered_mrange, Valuation.Integers.dvd_iff_le, OrderMonoidWithZeroHom.mul_apply, Valuation.one_rel_iff, Valuation.le_one_of_subsingleton, WithZero.withZeroUnitsEquiv_strictMono, LinearOrderedCommGroupWithZero.discrete_or_denselyOrdered, instDenselyOrderedUnits, toZeroLeOneClass
toOrderBot πŸ“–CompOp
2 mathmath: Finset.sup_divβ‚€, bot_eq_zero''

Theorems

NameKindAssumesProvesValidatesDepends On
toIsMulTorsionFree πŸ“–mathematicalβ€”IsMulTorsionFree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
toCommMonoidWithZero
β€”StrictMonoOn.injOn
pow_left_strictMonoOnβ‚€
toPosMulStrictMono
MulPosStrictMono.toMulPosMono
toMulPosStrictMono
toIsOrderedMonoid πŸ“–mathematicalβ€”IsOrderedMonoid
CommMonoidWithZero.toCommMonoid
toCommMonoidWithZero
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
β€”eq_or_ne
MulZeroClass.mul_zero
LE.le.eq_or_lt
LT.lt.le
mul_lt_mul_of_pos_right
toMulPosStrictMono
zero_lt_iff
toMulPosStrictMono πŸ“–mathematicalβ€”MulPosStrictMono
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
toCommMonoidWithZero
MulZeroClass.toZero
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
β€”posMulStrictMono_iff_mulPosStrictMono
CommMagma.to_isCommutative
toPosMulStrictMono
toPosMulStrictMono πŸ“–mathematicalβ€”PosMulStrictMono
Semigroup.toMul
Monoid.toSemigroup
CommMonoid.toMonoid
CommMonoidWithZero.toCommMonoid
toCommMonoidWithZero
CommMonoidWithZero.toZero
PartialOrder.toPreorder
LinearOrder.toPartialOrder
toLinearOrder
β€”β€”
toZeroLeOneClass πŸ“–mathematicalβ€”ZeroLEOneClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
toCommMonoidWithZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
toLinearOrder
β€”zero_le'
zero_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
toLinearOrder
CommMonoidWithZero.toZero
toCommMonoidWithZero
β€”β€”

Units

Theorems

NameKindAssumesProvesValidatesDepends On
zero_lt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
val
MonoidWithZero.toMonoid
β€”zero_lt_iff
ne_zero
GroupWithZero.toNontrivial

WithZero

Definitions

NameCategoryTheorems
decidableEq πŸ“–CompOpβ€”
decidableLE πŸ“–CompOpβ€”
decidableLT πŸ“–CompOpβ€”
expOrderIso πŸ“–CompOp
3 mathmath: val_expOrderIso_apply, expOrderIso_symm_apply, val_inv_expOrderIso_apply
instBot πŸ“–CompOp
1 mathmath: zero_eq_bot
instBoundedOrder πŸ“–CompOpβ€”
instLT πŸ“–CompOp
12 mathmath: lt_iff_exists, lt_iff_exists_coe, pos_iff_ne_zero, one_lt_coe, not_lt_zero, coe_lt_one, lt_unzero_iff, zero_lt_coe, unzero_lt_iff, coe_lt_coe, lt_coe_iff, lt_def
instLattice πŸ“–CompOpβ€”
instLinearOrder πŸ“–CompOpβ€”
instLinearOrderedCommGroupWithZero πŸ“–CompOp
96 mathmath: IsDedekindDomain.HeightOneSpectrum.adicValued.has_uniform_continuous_const_smul', ValuationSubring.integralClosure_algebraMap_injective, NumberField.prod_nonarchAbsVal_eq, NumberField.FinitePlace.mk_apply, Padic.withValUniformEquiv_norm_le_one_iff, LaurentSeries.LaurentSeriesRingEquiv_def, IsDedekindDomain.HeightOneSpectrum.instFaithfulSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, Set.unit_eq, NumberField.FinitePlace.norm_def', IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers, NumberField.FinitePlace.embedding_apply, LaurentSeries.valuation_le_iff_coeff_lt_eq_zero, instIsDiscreteValuationRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation, LaurentSeries.valuation_single_zpow, IsDedekindDomain.HeightOneSpectrum.adicCompletion.instIsScalarTower', NumberField.FinitePlace.norm_embedding_eq, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, LaurentSeries.val_le_one_iff_eq_coe, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_def, IsDiscreteValuationRing.isRankOneDiscrete, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.integers, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, NumberField.AdeleRing.algebraMap_snd_apply, IsDedekindDomain.HeightOneSpectrum.algebraMap_adicCompletionIntegers_apply, FunctionField.valuedFqtInfty.def, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletionIntegers, IsDedekindDomain.HeightOneSpectrum.coe_algebraMap_mem, IsDedekindDomain.HeightOneSpectrum.valuation_def, LaurentSeries.exists_ratFunc_val_lt, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, NumberField.FinitePlace.norm_lt_one_iff_mem, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation', ValuationSubring.instIsScalarTowerSubtypeMemValuationSubringWithZeroMultiplicativeInt, IsDedekindDomain.HeightOneSpectrum.instIsTorsionFreeSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, PadicInt.coe_adicCompletionIntegersEquiv_apply, NumberField.isFinitePlace_iff, LaurentSeries.coe_X_compare, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, NumberField.FinitePlace.coe_apply, IsDedekindDomain.HeightOneSpectrum.adicValued_apply, NumberField.FinitePlace.norm_def_int, ValuationSubring.isIntegral_of_mem_ringOfIntegers', IsDiscreteValuationRing.map_algebraMap_eq_valuationSubring, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation, IsDedekindDomain.HeightOneSpectrum.coe_mem_adicCompletionIntegers, Padic.toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, LaurentSeries.valuation_LaurentSeries_equal_extension, RatFunc.v_def, LaurentSeries.LaurentSeries_coe, LaurentSeries.powerSeries_ext_subring, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, LaurentSeries.powerSeriesRingEquiv_coe_apply, instIsDiscreteValuationRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, FunctionField.inftyValuedFqt.def, IsDedekindDomain.HeightOneSpectrum.adicValued.uniformContinuousConstSMul, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_surjective, LaurentSeries.instLaurentSeriesComplete, Padic.withValUniformEquiv_cast_apply, LaurentSeries.valuation_coe_ratFunc, Padic.coe_withValRingEquiv, NumberField.FinitePlace.norm_eq_one_iff_notMem, LaurentSeries.valuation_compare, Padic.isUniformInducing_cast_withVal, LaurentSeries.tendsto_valuation, LaurentSeries.coe_range_dense, IsDedekindDomain.HeightOneSpectrum.adicValued_apply', Padic.coe_withValRingEquiv_symm, LaurentSeries.comparePkg_eq_extension, NumberField.toNNReal_valued_eq_adicAbv, LaurentSeries.valuation_def, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.isUnit_iff_valued_eq_one, LaurentSeries.valuation_le_iff_coeff_lt_log_eq_zero, LaurentSeries.uniformContinuous_coeff, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletion, NumberField.FinitePlace.isFinitePlace, instIsPrincipalIdealRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, LaurentSeries.ratfuncAdicComplRingEquiv_apply, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, Set.integer_eq, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, NumberField.FinitePlace.norm_le_one, LaurentSeries.mem_integers_of_powerSeries, IsDedekindDomain.HeightOneSpectrum.algebraMap_adicCompletion, ValuationSubring.algebraMap_injective, IsDedekindDomain.HeightOneSpectrum.adicCompletion.mul_nonZeroDivisor_mem_adicCompletionIntegers, instIsPrincipalIdealRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation, LaurentSeries.exists_ratFunc_eq_v, Padic.isDenseInducing_cast_withVal, LaurentSeries.valuation_X_pow, NumberField.FinitePlace.norm_def, IsDedekindDomain.HeightOneSpectrum.notMem_adicCompletionIntegers
instLinearOrderedCommMonoidWithZero πŸ“–CompOp
67 mathmath: Rat.padicValuation_cast, Padic.instCompatibleWithZeroMultiplicativeIntMulValuation, NumberField.FinitePlace.norm_def', FunctionField.inftyValuation.X_inv, Int.padicValuation_lt_one_iff, IsDedekindDomain.HeightOneSpectrum.intValuation_if_neg, IsDedekindDomain.HeightOneSpectrum.valuation_of_algebraMap, IsDedekindDomain.HeightOneSpectrum.intValuation_le_one, WeierstrassCurve.valuation_Ξ”_aux_eq_of_isIntegral, IsDedekindDomain.HeightOneSpectrum.instIsNontrivialWithZeroMultiplicativeIntValuation, Int.padicValuation_eq_one_iff, IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_mem, IsDedekindDomain.HeightOneSpectrum.intValuation_singleton, FunctionField.instIsNontrivialRatFuncWithZeroMultiplicativeIntInftyValuation, Rat.padicValuation_self, Polynomial.valuation_of_mk, Padic.norm_eq_zpow_log_mulValuation, PowerSeries.intValuation_eq_of_coe, IsDedekindDomain.HeightOneSpectrum.valuation_exists_uniformizer, IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_dvd, IsDedekindDomain.HeightOneSpectrum.valuation_def, Padic.mulValuation_toFun, IsDedekindDomain.HeightOneSpectrum.valuation_div_le_one_iff, IsDedekindDomain.HeightOneSpectrum.valuation_lt_one_iff_dvd, Padic.comap_mulValuation_eq_padicValuation, Rat.valuation_le_one_iff_den, WeierstrassCurve.isGoodReduction_iff, LaurentSeries.exists_Polynomial_intValuation_lt, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation', IsDedekindDomain.HeightOneSpectrum.valuation_of_mk', RatFunc.valuation_eq_LaurentSeries_valuation, IsDedekindDomain.HeightOneSpectrum.valuation_lt_one_iff_mem, NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def, Int.padicValuation_self, IsDedekindDomain.HeightOneSpectrum.adicValued_apply, NumberField.FinitePlace.norm_def_int, IsDedekindDomain.HeightOneSpectrum.intValuation_lt_one_iff_dvd, IsDedekindDomain.HeightOneSpectrum.intValuation_zero_lt, IsDedekindDomain.HeightOneSpectrum.valuedAdicCompletion_eq_valuation, RatFunc.v_def, Rat.padicValuation_eq_zero_iff, IsDedekindDomain.HeightOneSpectrum.intValuation_eq_one_iff, Set.unit_valuation_eq_one, FunctionField.inftyValuation.X_zpow, IsDedekindDomain.HeightOneSpectrum.intValuation_def, FunctionField.inftyValuation.X, IsDedekindDomain.HeightOneSpectrum.valuationOfNeZero_eq, IsDedekindDomain.HeightOneSpectrum.valuation_surjective, Padic.comap_mulValuation_eq_int_padicValuation, PowerSeries.intValuation_X, IsDedekindDomain.HeightOneSpectrum.adicValued_apply', FunctionField.inftyValuation.C, Rat.HeightOneSpectrum.valuation_equiv_padicValuation, Padic.norm_rat_le_one_iff_padicValuation_le_one, Set.integer_valuation_le_one, Rat.surjective_padicValuation, IsDedekindDomain.HeightOneSpectrum.intValuation_exists_uniformizer, Int.padicValuation_le_one, WeierstrassCurve.IsGoodReduction.goodReduction, IsDedekindDomain.HeightOneSpectrum.valuation_le_one, IsDedekindDomain.HeightOneSpectrum.valuationOfNeZeroToFun_eq, FunctionField.inftyValuation_apply, IsDedekindDomain.HeightOneSpectrum.intValuation_apply, IsDedekindDomain.HeightOneSpectrum.intValuation_lt_one_iff_mem, Int.padicValuation_eq_zero_iff, Rat.padicValuation_le_one_iff, Polynomial.valuation_X_eq_neg_one
instOrderBot πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
4 mathmath: isOrderedMonoid, mulArchimedean_iff, isOrderedAddMonoid, instMulArchimedean
instPreorder πŸ“–CompOp
114 mathmath: logOrderIso_apply, instExistsAddOfLE, OrderMonoidIso.val_inv_unitsWithZero_symm_apply, val_expOrderIso_apply, instPosMulMonoWithZeroOfMulLeftMono, map'_mono, Padic.withValUniformEquiv_norm_le_one_iff, OrderMonoidIso.withZero_symm_apply_symm_apply, OrderMonoidIso.withZero_symm_apply_apply, IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers, Int.padicValuation_lt_one_iff, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, LaurentSeries.valuation_le_iff_coeff_lt_eq_zero, exp_lt_exp, log_le_log, IsDedekindDomain.HeightOneSpectrum.intValuation_le_one, WeierstrassCurve.valuation_Ξ”_aux_eq_of_isIntegral, map'_strictMono, IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_mem, MonoidWithZeroHom.fst_mono, log_le_iff_le_exp, expOrderIso_symm_apply, ValuativeRel.nonempty_orderIso_withZeroMul_int_iff, lt_ofAdd_iff, LaurentSeries.val_le_one_iff_eq_coe, lt_mul_exp_iff_le, OrderMonoidIso.withZeroUnits_symm_apply, MonoidWithZeroHom.inl_strictMono, WithZeroMulInt.toNNReal_lt_one_iff, OrderMonoidIso.withZeroUnits_apply, IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_dvd, OrderMonoidIso.val_unitsWithZero_symm_apply, OrderIso.withZeroUnits_symm_apply, FunctionField.InftyValuation.map_add_le_max', WeierstrassCurve.IsMinimal.val_Ξ”_maximal, LaurentSeries.exists_ratFunc_val_lt, IsDedekindDomain.HeightOneSpectrum.valuation_div_le_one_iff, IsDedekindDomain.HeightOneSpectrum.valuation_lt_one_iff_dvd, withZeroUnitsEquiv_symm_strictMono, IsDedekindDomain.HeightOneSpectrum.intValuation.map_add_le_max', OrderMonoidIso.withZero_apply_symm_apply, Rat.valuation_le_one_iff_den, le_max_iff, LaurentSeries.exists_Polynomial_intValuation_lt, exp_le_exp, toMulBot_lt, exists_ne_zero_and_le_and_le, instDenselyOrderedWithZeroOfNoMinOrder, exists_ne_zero_and_lt_and_lt, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, OrderMonoidIso.unitsWithZero_apply, WithZeroMulInt.toNNReal_le_one_iff, val_inv_expOrderIso_apply, exists_ne_zero_and_lt, log_lt_log, OrderMonoidIso.withZero_apply_apply, le_exp_of_log_le, IsDedekindDomain.HeightOneSpectrum.valuation_lt_one_iff_mem, instMulLeftMono, LaurentSeries.intValuation_le_iff_coeff_lt_eq_zero, le_ofAdd_of_toAdd_unzero_le, le_log_iff_exp_le, MonoidWithZeroHom.inr_mono, instMulLeftReflectLT, lt_exp_of_log_lt, IsDedekindDomain.HeightOneSpectrum.intValuation_lt_one_iff_dvd, denselyOrdered_set_iff_subsingleton, IsDedekindDomain.HeightOneSpectrum.intValuation_zero_lt, WeierstrassCurve.isMinimal_iff, instMulPosMonoWithZeroOfMulRightMono, le_ofAdd_iff, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, lt_log_iff_exp_lt, LinearOrderedCommGroupWithZero.fst_comp_inl, MonoidWithZeroHom.snd_mono, exp_pos, addLeftMono, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero, LinearOrderedCommGroupWithZero.fst_apply, WithZeroMulInt.toNNReal_strictMono, Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange, OrderIso.withZeroUnits_apply, MonoidWithZeroHom.inr_strictMono, LaurentSeries.valuation_le_iff_coeff_lt_log_eq_zero, Padic.norm_rat_le_one_iff_padicValuation_le_one, Set.integer_valuation_le_one, MonoidWithZeroHom.inl_mono, denselyOrdered_iff, not_denselyOrdered_withZero_int, instMulPosStrictMonoWithZeroOfMulRightStrictMono, toMulBot_le, Int.padicValuation_le_one, LocallyFiniteOrder.orderMonoidWithZeroHom_strictMono, log_lt_iff_lt_exp, LinearOrderedCommGroupWithZero.discrete_iff_not_denselyOrdered, LinearOrderedCommGroupWithZero.inl_apply, LinearOrderedCommGroupWithZero.inr_apply, total_le, instPosMulStrictMonoWithZeroOfMulLeftStrictMono, IsDedekindDomain.HeightOneSpectrum.valuation_le_one, min_le_iff, le_exp_log, val_logOrderIso_symm_apply, instWellFoundedGTWithZeroMultiplicativeIntLeOne, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero, instCanonicallyOrderedAdd, toMulBot_strictMono, val_inv_logOrderIso_symm_apply, IsDedekindDomain.HeightOneSpectrum.intValuation_lt_one_iff_mem, lt_ofAdd_of_toAdd_unzero_lt, withZeroUnitsEquiv_strictMono, LinearOrderedCommGroupWithZero.discrete_or_denselyOrdered, Rat.padicValuation_le_one_iff, IsDedekindDomain.HeightOneSpectrum.notMem_adicCompletionIntegers
le πŸ“–CompOp
13 mathmath: coe_le_iff, nonpos_iff_eq_zero, coe_le_one, le_def, unzero_le_unzero, zero_le, unbot_le_iff, le_unzero_iff, one_le_coe, le_coe_iff, coe_le_coe, not_coe_le_zero, IsMax.withZero
logOrderIso πŸ“–CompOp
3 mathmath: logOrderIso_apply, val_logOrderIso_symm_apply, val_inv_logOrderIso_symm_apply
semilatticeInf πŸ“–CompOp
2 mathmath: coe_inf, min_le_iff
semilatticeSup πŸ“–CompOp
4 mathmath: FunctionField.InftyValuation.map_add_le_max', coe_sup, IsDedekindDomain.HeightOneSpectrum.intValuation.map_add_le_max', le_max_iff

Theorems

NameKindAssumesProvesValidatesDepends On
addLeftMono πŸ“–mathematicalPreorder.toLE
AddZero.toZero
AddZeroClass.toAddZero
AddLeftMono
WithZero
instAdd
AddZero.toAdd
instPreorder
β€”zero_add
add_zero
le_refl
coe_add
coe_le_coe
le_add_of_nonneg_right
coe_le_iff
add_le_add_right
coe_inf πŸ“–mathematicalβ€”coe
SemilatticeInf.toMin
WithZero
semilatticeInf
β€”β€”
coe_le_coe πŸ“–mathematicalβ€”WithZero
le
coe
β€”WithBot.coe_le_coe
coe_le_iff πŸ“–mathematicalβ€”WithZero
le
coe
β€”WithBot.coe_le_iff
coe_le_one πŸ“–mathematicalβ€”WithZero
le
coe
one
β€”coe_le_coe
coe_lt_coe πŸ“–mathematicalβ€”WithZero
instLT
coe
β€”β€”
coe_lt_one πŸ“–mathematicalβ€”WithZero
instLT
coe
one
β€”coe_lt_coe
coe_sup πŸ“–mathematicalβ€”coe
SemilatticeSup.toMax
WithZero
semilatticeSup
β€”β€”
exists_ne_zero_and_le_and_le πŸ“–mathematicalβ€”WithZero
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”
exists_ne_zero_and_lt πŸ“–mathematicalβ€”WithZero
Preorder.toLT
instPreorder
β€”NoMinOrder.exists_lt
coe_ne_zero
coe_unzero
coe_lt_coe
exists_ne_zero_and_lt_and_lt πŸ“–mathematicalβ€”WithZero
Preorder.toLT
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”exists_ne_zero_and_le_and_le
exists_ne_zero_and_lt
lt_of_lt_of_le
expOrderIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Units
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Preorder.toLE
Units.instPreorder
instPreorder
Multiplicative.preorder
RelIso.instFunLike
RelIso.symm
expOrderIso
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
unzero
Units.val
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Multiplicative.group
β€”β€”
exp_le_exp πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
instPreorder
Multiplicative.preorder
exp
β€”β€”
exp_lt_exp πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLT
instPreorder
Multiplicative.preorder
exp
β€”β€”
exp_pos πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLT
instPreorder
Multiplicative.preorder
instZero
exp
β€”β€”
instCanonicallyOrderedAdd πŸ“–mathematicalβ€”CanonicallyOrderedAdd
WithZero
instAdd
AddZero.toAdd
AddZeroClass.toAddZero
Preorder.toLE
instPreorder
β€”instExistsAddOfLE
CanonicallyOrderedAdd.toExistsAddOfLE
bot_le
le_rfl
coe_le_coe
le_add_self
le_self_add
instExistsAddOfLE πŸ“–mathematicalβ€”ExistsAddOfLE
WithZero
instAdd
Preorder.toLE
instPreorder
β€”zero_add
instIsEmptyFalse
ExistsAddOfLE.exists_add_of_le
coe_le_coe
instMulLeftMono πŸ“–mathematicalβ€”MulLeftMono
WithZero
MulZeroClass.toMul
instMulZeroClass
Preorder.toLE
instPreorder
β€”zero_le
coe_le_iff
coe_mul
coe_le_coe
mul_le_mul_right
instMulLeftReflectLT πŸ“–mathematicalβ€”MulLeftReflectLT
WithZero
MulZeroClass.toMul
instMulZeroClass
Preorder.toLT
instPreorder
PartialOrder.toPreorder
β€”LT.lt.ne'
LE.le.trans_lt
zero_le
MulZeroClass.zero_mul
MulZeroClass.mul_zero
zero_lt_coe
coe_lt_coe
lt_of_mul_lt_mul_left'
isOrderedAddMonoid πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsOrderedAddMonoid
WithZero
instAddCommMonoid
AddCommMonoid.toAddCommSemigroup
instPartialOrder
β€”addLeftMono
IsOrderedAddMonoid.toAddLeftMono
add_le_add_left
covariant_swap_add_of_covariant_add
add_comm
isOrderedMonoid πŸ“–mathematicalβ€”IsOrderedMonoid
WithZero
CommMonoidWithZero.toCommMonoid
instCommMonoidWithZero
instPartialOrder
β€”mul_le_mul_left
covariant_swap_mul_of_covariant_mul
instMulLeftMono
IsOrderedMonoid.toMulLeftMono
le_coe_iff πŸ“–mathematicalβ€”WithZero
le
coe
β€”WithBot.le_coe_iff
le_def πŸ“–mathematicalβ€”WithZero
le
coe
β€”WithBot.le_iff_forall
le_exp_log πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
instPreorder
Multiplicative.preorder
exp
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”le_refl
le_exp_of_log_le πŸ“–mathematicalPreorder.toLE
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPreorder
Multiplicative.preorder
exp
β€”eq_or_ne
le_log_iff_exp_le πŸ“–mathematicalβ€”Preorder.toLE
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPreorder
Multiplicative.preorder
exp
β€”CanLift.prf
instCanLift
le_log_of_exp_le πŸ“–mathematicalWithZero
Multiplicative
Preorder.toLE
instPreorder
Multiplicative.preorder
exp
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”le_log_iff_exp_le
LT.lt.ne'
LT.lt.trans_le
exp_pos
le_max_iff πŸ“–mathematicalβ€”WithZero
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
coe
SemilatticeSup.toMax
semilatticeSup
Lattice.toSemilatticeSup
β€”β€”
le_ofAdd_iff πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
instPreorder
Multiplicative.preorder
coe
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Multiplicative.toAdd
unzero
β€”toAdd_unzero_le_of_lt_ofAdd
le_ofAdd_of_toAdd_unzero_le
le_ofAdd_of_toAdd_unzero_le πŸ“–mathematicalPreorder.toLE
DFunLike.coe
Equiv
Multiplicative
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
unzero
WithZero
instPreorder
Multiplicative.preorder
coe
Multiplicative.ofAdd
β€”coe_unzero
coe_le_coe
ofAdd_toAdd
Multiplicative.ofAdd_le
le_unzero_iff πŸ“–mathematicalβ€”unzero
WithZero
le
coe
β€”WithBot.le_unbot_iff
logOrderIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Units
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Preorder.toLE
Units.instPreorder
instPreorder
Multiplicative.preorder
RelIso.instFunLike
logOrderIso
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
unzero
Units.val
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Multiplicative.group
β€”β€”
log_le_iff_le_exp πŸ“–mathematicalβ€”Preorder.toLE
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPreorder
Multiplicative.preorder
exp
β€”CanLift.prf
instCanLift
log_le_log πŸ“–mathematicalβ€”Preorder.toLE
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPreorder
Multiplicative.preorder
β€”CanLift.prf
instCanLift
log_lt_iff_lt_exp πŸ“–mathematicalβ€”Preorder.toLT
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPreorder
Multiplicative.preorder
exp
β€”CanLift.prf
instCanLift
log_lt_log πŸ“–mathematicalβ€”Preorder.toLT
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPreorder
Multiplicative.preorder
β€”CanLift.prf
instCanLift
lt_coe_iff πŸ“–mathematicalβ€”WithZero
instLT
coe
β€”WithBot.lt_coe_iff
lt_def πŸ“–mathematicalβ€”WithZero
instLT
instZero
coe
β€”WithBot.lt_def
lt_exp_of_log_lt πŸ“–mathematicalPreorder.toLT
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPreorder
Multiplicative.preorder
exp
β€”eq_or_ne
lt_iff_exists πŸ“–mathematicalβ€”WithZero
instLT
coe
β€”WithBot.lt_iff_exists
lt_iff_exists_coe πŸ“–mathematicalβ€”WithZero
instLT
coe
β€”WithBot.lt_iff_exists_coe
lt_log_iff_exp_lt πŸ“–mathematicalβ€”Preorder.toLT
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
WithZero
Multiplicative
instPreorder
Multiplicative.preorder
exp
β€”CanLift.prf
instCanLift
lt_log_of_exp_lt πŸ“–mathematicalWithZero
Multiplicative
Preorder.toLT
instPreorder
Multiplicative.preorder
exp
log
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”lt_log_iff_exp_lt
LT.lt.ne'
LT.lt.trans
exp_pos
lt_mul_exp_iff_le πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLT
instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toMul
instMulZeroClass
Multiplicative.mul
exp
Preorder.toLE
β€”CanLift.prf
instCanLift
eq_or_ne
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Multiplicative.isOrderedCancelMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
Int.instIsOrderedAddMonoid
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
log_le_log
log_lt_log
instNoZeroDivisors
log_mul
lt_ofAdd_iff πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLT
instPreorder
Multiplicative.preorder
coe
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Multiplicative.toAdd
unzero
β€”toAdd_unzero_lt_of_lt_ofAdd
lt_ofAdd_of_toAdd_unzero_lt
lt_ofAdd_of_toAdd_unzero_lt πŸ“–mathematicalPreorder.toLT
DFunLike.coe
Equiv
Multiplicative
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
unzero
WithZero
instPreorder
Multiplicative.preorder
coe
Multiplicative.ofAdd
β€”coe_unzero
coe_lt_coe
ofAdd_toAdd
Multiplicative.ofAdd_lt
lt_unzero_iff πŸ“–mathematicalβ€”unzero
WithZero
instLT
coe
β€”WithBot.lt_unbot_iff
map'_mono πŸ“–mathematicalMonotone
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
WithZero
instPreorder
MonoidWithZeroHom
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
map'_strictMono πŸ“–mathematicalStrictMono
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
WithZero
instPreorder
MonoidWithZeroHom
instMulZeroOneClass
MonoidWithZeroHom.funLike
map'
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
min_le_iff πŸ“–mathematicalβ€”WithZero
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeInf.toMin
semilatticeInf
coe
β€”β€”
nonpos_iff_eq_zero πŸ“–mathematicalβ€”WithZero
le
instZero
β€”WithBot.le_bot_iff
not_coe_le_zero πŸ“–mathematicalβ€”WithZero
le
coe
instZero
β€”WithBot.not_coe_le_bot
not_lt_zero πŸ“–mathematicalβ€”WithZero
instLT
instZero
β€”β€”
one_le_coe πŸ“–mathematicalβ€”WithZero
le
one
coe
β€”coe_le_coe
one_lt_coe πŸ“–mathematicalβ€”WithZero
instLT
one
coe
β€”coe_lt_coe
pos_iff_ne_zero πŸ“–mathematicalβ€”WithZero
instLT
instZero
β€”WithBot.bot_lt_iff_ne_bot
toAdd_unzero_le_of_lt_ofAdd πŸ“–mathematicalWithZero
Multiplicative
Preorder.toLE
instPreorder
Multiplicative.preorder
coe
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Multiplicative.toAdd
unzero
β€”toAdd_ofAdd
Multiplicative.toAdd_le
coe_le_coe
coe_unzero
toAdd_unzero_lt_of_lt_ofAdd πŸ“–mathematicalWithZero
Multiplicative
Preorder.toLT
instPreorder
Multiplicative.preorder
coe
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Multiplicative.toAdd
unzero
β€”toAdd_ofAdd
Multiplicative.toAdd_lt
coe_lt_coe
coe_unzero
total_le πŸ“–mathematicalβ€”WithZero
Preorder.toLE
instPreorder
β€”β€”
unbot_le_iff πŸ“–mathematicalβ€”unzero
WithZero
le
coe
β€”WithBot.unbot_le_iff
unzero_le_unzero πŸ“–mathematicalβ€”unzero
WithZero
le
β€”WithBot.unbot_le_unbot_iff
unzero_lt_iff πŸ“–mathematicalβ€”unzero
WithZero
instLT
coe
β€”WithBot.unbot_lt_iff
val_expOrderIso_apply πŸ“–mathematicalβ€”Units.val
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DFunLike.coe
RelIso
Units
Preorder.toLE
Units.instPreorder
instPreorder
Multiplicative.preorder
RelIso.instFunLike
expOrderIso
coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
val_inv_expOrderIso_apply πŸ“–mathematicalβ€”Units.val
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Units
Units.instInv
DFunLike.coe
RelIso
Preorder.toLE
Units.instPreorder
instPreorder
Multiplicative.preorder
RelIso.instFunLike
expOrderIso
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
instGroupWithZero
Multiplicative.group
coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
val_inv_logOrderIso_symm_apply πŸ“–mathematicalβ€”Units.val
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Multiplicative.group
Units
Units.instInv
DFunLike.coe
RelIso
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Preorder.toLE
Units.instPreorder
instPreorder
Multiplicative.preorder
RelIso.instFunLike
RelIso.symm
logOrderIso
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
instGroupWithZero
coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
val_logOrderIso_symm_apply πŸ“–mathematicalβ€”Units.val
WithZero
Multiplicative
MonoidWithZero.toMonoid
instMonoidWithZero
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Multiplicative.group
DFunLike.coe
RelIso
Units
Multiplicative.monoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Preorder.toLE
Units.instPreorder
instPreorder
Multiplicative.preorder
RelIso.instFunLike
RelIso.symm
logOrderIso
coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
zero_eq_bot πŸ“–mathematicalβ€”WithZero
instZero
Bot.bot
instBot
β€”β€”
zero_le πŸ“–mathematicalβ€”WithZero
le
instZero
β€”bot_le
zero_lt_coe πŸ“–mathematicalβ€”WithZero
instLT
instZero
coe
β€”β€”

(root)

Definitions

NameCategoryTheorems
LinearOrderedCommGroupWithZero πŸ“–CompDataβ€”
LinearOrderedCommMonoidWithZero πŸ“–CompDataβ€”
instLinearOrderedAddCommGroupWithTopAdditiveOrderDual πŸ“–CompOpβ€”
instLinearOrderedAddCommGroupWithTopOrderDualAdditive πŸ“–CompOpβ€”
instLinearOrderedAddCommMonoidWithTopAdditiveOrderDual πŸ“–CompOpβ€”
instLinearOrderedAddCommMonoidWithTopOrderDualAdditive πŸ“–CompOp
6 mathmath: Valuation.ofAddValuation_apply, Valuation.toAddValuation_apply, Valuation.ofAddValuation_toAddValuation, Valuation.toAddValuation_symm_eq, Valuation.toValuation_ofValuation, Valuation.ofAddValuation_symm_eq
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop πŸ“–CompOp
11 mathmath: ArchimedeanClass.FiniteResidueField.mk_eq_zero, ArchimedeanClass.FiniteElement.val_add, ArchimedeanClass.FiniteElement.not_isUnit_iff_mk_pos, ArchimedeanClass.FiniteElement.val_mul, ArchimedeanClass.FiniteElement.val_sub, ArchimedeanClass.FiniteResidueField.mk_eq_mk, ArchimedeanClass.FiniteElement.val_zero, ArchimedeanClass.FiniteElement.isUnit_iff_mk_eq_zero, ArchimedeanClass.FiniteResidueField.mk_ne_zero, ArchimedeanClass.FiniteElement.val_one, ArchimedeanClass.FiniteElement.ext_iff
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual πŸ“–CompOp
22 mathmath: ofDual_toAdd_zero, ArchimedeanClass.FiniteResidueField.mk_eq_zero, ArchimedeanClass.FiniteElement.val_add, AddValuation.toValuation_ofValuation, ArchimedeanClass.FiniteElement.not_isUnit_iff_mk_pos, ofAdd_bot, ArchimedeanClass.FiniteElement.val_mul, ArchimedeanClass.FiniteElement.val_sub, ArchimedeanClass.FiniteResidueField.mk_eq_mk, AddValuation.ofValuation_toValuation, ArchimedeanClass.FiniteElement.val_zero, ArchimedeanClass.FiniteElement.isUnit_iff_mk_eq_zero, ArchimedeanClass.FiniteResidueField.mk_ne_zero, ArchimedeanClass.FiniteElement.val_one, ofDual_toAdd_eq_top_iff, AddValuation.toValuation_apply, AddValuation.toValuation_symm_eq, AddValuation.ofValuation_symm_eq, ofAdd_toDual_eq_zero_iff, AddValuation.supp_quot_supp, AddValuation.ofValuation_apply, ArchimedeanClass.FiniteElement.ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
bot_eq_zero'' πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommMonoidWithZero.toOrderBot
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
β€”eq_of_forall_ge_iff
denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units πŸ“–mathematicalβ€”DenselyOrdered
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
Nontrivial
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Units.instPreorder
β€”exists_between
zero_lt_one'
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.one
GroupWithZero.toNontrivial
LT.lt.ne'
LT.lt.ne
Units.val_lt_val
ne_zero_of_lt
CanLift.prf
instCanLiftUnitsValIsUnit
Ne.isUnit
LE.le.eq_or_lt
zero_le'
exists_one_lt'
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Units.val_inv_eq_inv_val
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
contravariant_lt_of_covariant_le
DenselyOrdered.dense
denselyOrdered_units_iff πŸ“–mathematicalβ€”DenselyOrdered
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Preorder.toLT
Units.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
β€”denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units
instDenselyOrderedUnits πŸ“–mathematicalβ€”DenselyOrdered
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Preorder.toLT
Units.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
β€”denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units
instIsCancelMulZero_1 πŸ“–mathematicalβ€”IsCancelMulZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
MulZeroClass.toZero
β€”StrictMono.injective
strictMono_mul_left_of_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
zero_lt_iff
strictMono_mul_right_of_pos
LinearOrderedCommMonoidWithZero.toMulPosStrictMono
instNontrivialUnitsOfDenselyOrdered πŸ“–mathematicalβ€”Nontrivial
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
β€”denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units
inv_mul_lt_of_lt_mulβ‚€ πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
β€”mul_comm
mul_inv_lt_of_lt_mulβ‚€
le_zero_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
β€”β€”
lt_of_mul_lt_mul_of_leβ‚€ πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
MulZeroClass.toZero
Preorder.toLE
β€”β€”ne_of_gt
lt_of_lt_of_le
inv_mul_cancel_leftβ‚€
LT.lt.ne'
mul_lt_mul_of_le_of_lt_of_nonneg_of_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
MulPosStrictMono.toMulPosMono
LinearOrderedCommMonoidWithZero.toMulPosStrictMono
inv_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
zero_lt_iff
zero_le'
inv_pos
mul_inv_lt_of_lt_mulβ‚€ πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
β€”Mathlib.Tactic.Contrapose.contrapose₁
inv_inv
mul_inv_le_of_le_mulβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
LinearOrderedCommMonoidWithZero.toMulPosStrictMono
zero_le'
ne_zero_of_lt πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
β€”β€”not_lt_zero'
not_lt_zero' πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
β€”LE.le.not_gt
zero_le'
ofAdd_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
Multiplicative
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Bot.bot
OrderDual.instBot
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
LinearOrderedAddCommMonoidWithTop.toOrderTop
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
β€”β€”
ofAdd_toDual_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
Multiplicative
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
OrderDual.toDual
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
LinearOrderedAddCommMonoidWithTop.toOrderTop
β€”β€”
ofDual_toAdd_eq_top_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
Multiplicative
Multiplicative.toAdd
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
LinearOrderedAddCommMonoidWithTop.toOrderTop
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
β€”β€”
ofDual_toAdd_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
Multiplicative
Multiplicative.toAdd
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
LinearOrderedAddCommMonoidWithTop.toLinearOrder
LinearOrderedAddCommMonoidWithTop.toOrderTop
β€”β€”
pow_pos_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
β€”pow_ne_zero_iff
isReduced_of_noZeroDivisors
zero_le' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
β€”LinearOrderedCommMonoidWithZero.zero_le
zero_lt_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
β€”β€”

---

← Back to Index