Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Order/GroupWithZero/Unbundled/Defs.lean

Statistics

MetricCount
DefinitionsMulPosMono, MulPosReflectLE, MulPosReflectLT, MulPosStrictMono, PosMulMono, PosMulReflectLE, PosMulReflectLT, PosMulStrictMono
8
TheoremsmulPosMono, mulPosStrictMono, posMulMono, posMulStrictMono, toPosMulMono, toPosMulReflectLT, toPosMulReflectLE, toPosMulStrictMono, mul_le_mul_of_nonneg_right, toMulPosReflectLT, to_covariantClass_nonneg_mul_le, to_covariantClass_pos_mul_le, toContravariantClass, toMulPosStrictMono, toContravariantClass, toMulPosMono, to_contravariantClass_pos_mul_lt, mul_lt_mul_of_pos_right, toMulPosReflectLE, to_covariantClass_pos_mul_le, toMulPosMono, toMulPosReflectLT, toMulPosReflectLE, toMulPosStrictMono, mul_le_mul_of_nonneg_left, toMulPosMono, toPosMulReflectLT, to_covariantClass_nonneg_mul_le, to_covariantClass_pos_mul_le, toContravariantClass, toMulPosReflectLE, toPosMulStrictMono, toContravariantClass, toMulPosReflectLT, toPosMulMono, to_contravariantClass_pos_mul_lt, mul_lt_mul_of_pos_left, toMulPosStrictMono, toPosMulReflectLE, to_covariantClass_pos_mul_le, le_mul_of_le_mul_of_nonneg_left, le_mul_of_le_mul_of_nonneg_right, le_of_mul_le_mul_left, le_of_mul_le_mul_of_pos_left, le_of_mul_le_mul_of_pos_right, le_of_mul_le_mul_right, lt_mul_of_lt_mul_of_nonneg_left, lt_mul_of_lt_mul_of_nonneg_right, lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_of_nonneg_left, lt_of_mul_lt_mul_of_nonneg_right, lt_of_mul_lt_mul_right, mulPosMono_iff, mulPosMono_iff_mulPosReflectLT, mulPosReflectLE_iff, mulPosReflectLT_iff, mulPosStrictMono_iff, mulPosStrictMono_iff_mulPosReflectLE, mul_le_mul, mul_le_mul_iff_leftβ‚€, mul_le_mul_iff_of_pos_left, mul_le_mul_iff_of_pos_right, mul_le_mul_iff_rightβ‚€, mul_le_mul_of_nonneg, mul_le_mul_of_nonneg', mul_le_mul_of_nonneg_left, mul_le_mul_of_nonneg_right, mul_le_of_mul_le_of_nonneg_left, mul_le_of_mul_le_of_nonneg_right, mul_lt_mul, mul_lt_mul', mul_lt_mul_iff_leftβ‚€, mul_lt_mul_iff_of_pos_left, mul_lt_mul_iff_of_pos_right, mul_lt_mul_iff_rightβ‚€, mul_lt_mul_of_le_of_lt_of_nonneg_of_pos, mul_lt_mul_of_le_of_lt_of_pos_of_nonneg, mul_lt_mul_of_lt_of_le_of_nonneg_of_pos, mul_lt_mul_of_lt_of_le_of_pos_of_nonneg, mul_lt_mul_of_nonneg_of_pos, mul_lt_mul_of_nonneg_of_pos', mul_lt_mul_of_pos, mul_lt_mul_of_pos', mul_lt_mul_of_pos_left, mul_lt_mul_of_pos_of_nonneg, mul_lt_mul_of_pos_of_nonneg', mul_lt_mul_of_pos_right, mul_lt_of_mul_lt_of_nonneg_left, mul_lt_of_mul_lt_of_nonneg_right, posMulMono_iff, posMulMono_iff_mulPosMono, posMulMono_iff_posMulReflectLT, posMulReflectLE_iff, posMulReflectLE_iff_mulPosReflectLE, posMulReflectLT_iff, posMulReflectLT_iff_mulPosReflectLT, posMulStrictMono_iff, posMulStrictMono_iff_mulPosStrictMono, posMulStrictMono_iff_posMulReflectLE
99
Total107

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
mulPosMono πŸ“–mathematicalPreorder.toLEMulPosMonoβ€”mul_le_mul_of_nonneg_right
mulPosStrictMono πŸ“–mathematicalPreorder.toLTMulPosStrictMonoβ€”mul_lt_mul_of_pos_right
posMulMono πŸ“–mathematicalPreorder.toLEPosMulMonoβ€”mul_le_mul_of_nonneg_left
posMulStrictMono πŸ“–mathematicalPreorder.toLTPosMulStrictMonoβ€”mul_lt_mul_of_pos_left

MulLeftMono

Theorems

NameKindAssumesProvesValidatesDepends On
toPosMulMono πŸ“–mathematicalβ€”PosMulMonoβ€”CovariantClass.elim
toPosMulReflectLT πŸ“–mathematicalβ€”PosMulReflectLTβ€”ContravariantClass.elim

MulLeftStrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
toPosMulReflectLE πŸ“–mathematicalβ€”PosMulReflectLEβ€”ContravariantClass.elim
toPosMulStrictMono πŸ“–mathematicalβ€”PosMulStrictMonoβ€”CovariantClass.elim

MulPosMono

Theorems

NameKindAssumesProvesValidatesDepends On
mul_le_mul_of_nonneg_right πŸ“–β€”Preorder.toLEβ€”β€”β€”
toMulPosReflectLT πŸ“–mathematicalβ€”MulPosReflectLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”covariant_le_iff_contravariant_lt
mul_le_mul_of_nonneg_right
to_covariantClass_nonneg_mul_le πŸ“–mathematicalβ€”CovariantClass
Preorder.toLE
β€”mul_le_mul_of_nonneg_right
to_covariantClass_pos_mul_le πŸ“–mathematicalβ€”CovariantClass
Preorder.toLT
Preorder.toLE
β€”mul_le_mul_of_nonneg_right
LT.lt.le

MulPosReflectLE

Theorems

NameKindAssumesProvesValidatesDepends On
toContravariantClass πŸ“–mathematicalβ€”ContravariantClass
Preorder.toLT
Preorder.toLE
β€”β€”
toMulPosStrictMono πŸ“–mathematicalβ€”MulPosStrictMono
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”not_le
LT.lt.not_ge
le_of_mul_le_mul_right

MulPosReflectLT

Theorems

NameKindAssumesProvesValidatesDepends On
toContravariantClass πŸ“–mathematicalβ€”ContravariantClass
Preorder.toLE
Preorder.toLT
β€”β€”
toMulPosMono πŸ“–mathematicalβ€”MulPosMono
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”not_lt
LE.le.not_gt
lt_of_mul_lt_mul_right
to_contravariantClass_pos_mul_lt πŸ“–mathematicalβ€”ContravariantClass
Preorder.toLT
β€”ContravariantClass.elim
toContravariantClass
LT.lt.le

MulPosStrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
mul_lt_mul_of_pos_right πŸ“–β€”Preorder.toLTβ€”β€”β€”
toMulPosReflectLE πŸ“–mathematicalβ€”MulPosReflectLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”covariant_lt_iff_contravariant_le
CovariantClass.elim
to_covariantClass_pos_mul_le
to_covariantClass_pos_mul_le πŸ“–mathematicalβ€”CovariantClass
Preorder.toLT
β€”mul_lt_mul_of_pos_right

MulRightMono

Theorems

NameKindAssumesProvesValidatesDepends On
toMulPosMono πŸ“–mathematicalβ€”MulPosMonoβ€”CovariantClass.elim
toMulPosReflectLT πŸ“–mathematicalβ€”MulPosReflectLTβ€”ContravariantClass.elim

MulRightStrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
toMulPosReflectLE πŸ“–mathematicalβ€”MulPosReflectLEβ€”ContravariantClass.elim
toMulPosStrictMono πŸ“–mathematicalβ€”MulPosStrictMonoβ€”CovariantClass.elim

PosMulMono

Theorems

NameKindAssumesProvesValidatesDepends On
mul_le_mul_of_nonneg_left πŸ“–β€”Preorder.toLEβ€”β€”β€”
toMulPosMono πŸ“–mathematicalβ€”MulPosMonoβ€”posMulMono_iff_mulPosMono
toPosMulReflectLT πŸ“–mathematicalβ€”PosMulReflectLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”covariant_le_iff_contravariant_lt
mul_le_mul_of_nonneg_left
to_covariantClass_nonneg_mul_le πŸ“–mathematicalβ€”CovariantClass
Preorder.toLE
β€”mul_le_mul_of_nonneg_left
to_covariantClass_pos_mul_le πŸ“–mathematicalβ€”CovariantClass
Preorder.toLT
Preorder.toLE
β€”mul_le_mul_of_nonneg_left
LT.lt.le

PosMulReflectLE

Theorems

NameKindAssumesProvesValidatesDepends On
toContravariantClass πŸ“–mathematicalβ€”ContravariantClass
Preorder.toLT
Preorder.toLE
β€”β€”
toMulPosReflectLE πŸ“–mathematicalβ€”MulPosReflectLEβ€”posMulReflectLE_iff_mulPosReflectLE
toPosMulStrictMono πŸ“–mathematicalβ€”PosMulStrictMono
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”not_le
LT.lt.not_ge
le_of_mul_le_mul_left

PosMulReflectLT

Theorems

NameKindAssumesProvesValidatesDepends On
toContravariantClass πŸ“–mathematicalβ€”ContravariantClass
Preorder.toLE
Preorder.toLT
β€”β€”
toMulPosReflectLT πŸ“–mathematicalβ€”MulPosReflectLTβ€”posMulReflectLT_iff_mulPosReflectLT
toPosMulMono πŸ“–mathematicalβ€”PosMulMono
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”not_lt
LE.le.not_gt
lt_of_mul_lt_mul_left
to_contravariantClass_pos_mul_lt πŸ“–mathematicalβ€”ContravariantClass
Preorder.toLT
β€”ContravariantClass.elim
toContravariantClass
LT.lt.le

PosMulStrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
mul_lt_mul_of_pos_left πŸ“–β€”Preorder.toLTβ€”β€”β€”
toMulPosStrictMono πŸ“–mathematicalβ€”MulPosStrictMonoβ€”posMulStrictMono_iff_mulPosStrictMono
toPosMulReflectLE πŸ“–mathematicalβ€”PosMulReflectLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
β€”covariant_lt_iff_contravariant_le
CovariantClass.elim
to_covariantClass_pos_mul_le
to_covariantClass_pos_mul_le πŸ“–mathematicalβ€”CovariantClass
Preorder.toLT
β€”mul_lt_mul_of_pos_left

(root)

Definitions

NameCategoryTheorems
MulPosMono πŸ“–CompData
14 mathmath: PosMulMono.toMulPosMono, WithBot.instMulPosMono, mulPosMono_iff_covariant_pos, EReal.instMulPosMono, MulPosStrictMono.toMulPosMono, MulRightMono.toMulPosMono, mulPosMono_iff, Function.Injective.mulPosMono, mulPosMono_iff_mulPosReflectLT, posMulMono_iff_mulPosMono, instMulPosMonoWithZeroOfMulRightMono, MulPosReflectLT.toMulPosMono, IsOrderedRing.toMulPosMono, mulPosMono_iff_mulPosStrictMono
MulPosReflectLE πŸ“–CompData
12 mathmath: PosMulReflectLE.toMulPosReflectLE, FractionalIdeal.instMulPosReflectLENonZeroDivisors, MulRightStrictMono.toMulPosReflectLE, RCLike.instMulPosReflectLE, mulPosStrictMono_iff_mulPosReflectLE, MulPosReflectLE.of_posMulReflectLT_of_mulPosMono, mulPosReflectLE_iff_mulPosReflectLT, mulPosReflectLE_iff, posMulReflectLE_iff_mulPosReflectLE, WithBot.instMulPosReflectLE, MulPosStrictMono.toMulPosReflectLE, MulPosReflectLT.toMulPosReflectLE
MulPosReflectLT πŸ“–CompData
11 mathmath: mulPosReflectLT_iff, MulPosReflectLE.toMulPosReflectLT, mulPosMono_iff_mulPosReflectLT, mulPosReflectLE_iff_mulPosReflectLT, EReal.instMulPosReflectLT, posMulReflectLT_iff_mulPosReflectLT, WithBot.instMulPosReflectLT, mulPosReflectLT_iff_contravariant_pos, PosMulReflectLT.toMulPosReflectLT, MulRightMono.toMulPosReflectLT, MulPosMono.toMulPosReflectLT
MulPosStrictMono πŸ“–CompData
17 mathmath: FractionalIdeal.instMulPosStrictMonoNonZeroDivisors, IsStrictOrderedRing.toMulPosStrictMono, MulPosMono.toMulPosStrictMono, MulPosReflectLE.toMulPosStrictMono, Function.Injective.mulPosStrictMono, WithBot.instMulPosStrictMono, mulPosStrictMono_iff_mulPosReflectLE, MulPosReflectLT.toMulPosStrictMono, mulPosStrictMono_iff, PosMulStrictMono.toMulPosStrictMono, posMulStrictMono_iff_mulPosStrictMono, MulRightStrictMono.toMulPosStrictMono, instMulPosStrictMonoIdeal, LinearOrderedCommMonoidWithZero.toMulPosStrictMono, instMulPosStrictMonoWithZeroOfMulRightStrictMono, ConditionallyCompleteLinearOrderedField.toMulPosStrictMono, mulPosMono_iff_mulPosStrictMono
PosMulMono πŸ“–CompData
14 mathmath: instPosMulMonoWithZeroOfMulLeftMono, IsOrderedRing.toPosMulMono, posMulMono_iff_covariant_pos, EReal.instPosMulMono, Function.Injective.posMulMono, PosMulReflectLT.toPosMulMono, Rat.instPosMulMono, WithBot.instPosMulMono, posMulMono_iff_mulPosMono, posMulMono_iff, PosMulStrictMono.toPosMulMono, MulLeftMono.toPosMulMono, posMulMono_iff_posMulStrictMono, posMulMono_iff_posMulReflectLT
PosMulReflectLE πŸ“–CompData
11 mathmath: PosMulReflectLT.toPosMulReflectLE, WithBot.instPosMulReflectLE, MulLeftStrictMono.toPosMulReflectLE, posMulReflectLE_iff_posMulReflectLT, posMulStrictMono_iff_posMulReflectLE, posMulReflectLE_iff_mulPosReflectLE, FractionalIdeal.instPosMulReflectLEIdealOfIsDedekindDomain, posMulReflectLE_iff, PosMulStrictMono.toPosMulReflectLE, RCLike.instPosMulReflectLE, FractionalIdeal.instPosMulReflectLENonZeroDivisors
PosMulReflectLT πŸ“–CompData
11 mathmath: RCLike.toPosMulReflectLT, posMulReflectLT_iff_contravariant_pos, posMulReflectLT_iff, posMulReflectLE_iff_posMulReflectLT, PosMulMono.toPosMulReflectLT, posMulReflectLT_iff_mulPosReflectLT, MulLeftMono.toPosMulReflectLT, WithBot.instPosMulReflectLT, posMulMono_iff_posMulReflectLT, PosMulReflectLE.toPosMulReflectLT, EReal.instPosMulReflectLT
PosMulStrictMono πŸ“–CompData
17 mathmath: WithBot.instPosMulStrictMono, ConditionallyCompleteLinearOrderedField.toPosMulStrictMono, instPosMulStrictMonoIdeal, Ordinal.instPosMulStrictMono, posMulStrictMono_iff_mulPosStrictMono, posMulStrictMono_iff, posMulStrictMono_iff_posMulReflectLE, FractionalIdeal.instPosMulStrictMonoNonZeroDivisors, MulLeftStrictMono.toPosMulStrictMono, PosMulReflectLE.toPosMulStrictMono, PosMulReflectLT.toPosMulStrictMono, posMulMono_iff_posMulStrictMono, PosMulMono.toPosMulStrictMono, instPosMulStrictMonoWithZeroOfMulLeftStrictMono, IsStrictOrderedRing.toPosMulStrictMono, Function.Injective.posMulStrictMono, LinearOrderedCommMonoidWithZero.toPosMulStrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
le_mul_of_le_mul_of_nonneg_left πŸ“–β€”Preorder.toLEβ€”β€”LE.le.trans
mul_le_mul_of_nonneg_left
le_mul_of_le_mul_of_nonneg_right πŸ“–β€”Preorder.toLEβ€”β€”LE.le.trans
mul_le_mul_of_nonneg_right
le_of_mul_le_mul_left πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”ContravariantClass.elim
PosMulReflectLE.toContravariantClass
le_of_mul_le_mul_of_pos_left πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”le_of_mul_le_mul_left
le_of_mul_le_mul_of_pos_right πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”le_of_mul_le_mul_right
le_of_mul_le_mul_right πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”ContravariantClass.elim
MulPosReflectLE.toContravariantClass
lt_mul_of_lt_mul_of_nonneg_left πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”LT.lt.trans_le
mul_le_mul_of_nonneg_left
lt_mul_of_lt_mul_of_nonneg_right πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”LT.lt.trans_le
mul_le_mul_of_nonneg_right
lt_of_mul_lt_mul_left πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”ContravariantClass.elim
PosMulReflectLT.toContravariantClass
lt_of_mul_lt_mul_of_nonneg_left πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”lt_of_mul_lt_mul_left
lt_of_mul_lt_mul_of_nonneg_right πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”lt_of_mul_lt_mul_right
lt_of_mul_lt_mul_right πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”ContravariantClass.elim
MulPosReflectLT.toContravariantClass
mulPosMono_iff πŸ“–mathematicalβ€”MulPosMono
Preorder.toLE
β€”β€”
mulPosMono_iff_mulPosReflectLT πŸ“–mathematicalβ€”MulPosMono
PartialOrder.toPreorder
LinearOrder.toPartialOrder
MulPosReflectLT
β€”MulPosMono.toMulPosReflectLT
MulPosReflectLT.toMulPosMono
mulPosReflectLE_iff πŸ“–mathematicalβ€”MulPosReflectLE
ContravariantClass
Preorder.toLT
Preorder.toLE
β€”β€”
mulPosReflectLT_iff πŸ“–mathematicalβ€”MulPosReflectLT
ContravariantClass
Preorder.toLE
Preorder.toLT
β€”β€”
mulPosStrictMono_iff πŸ“–mathematicalβ€”MulPosStrictMono
Preorder.toLT
β€”β€”
mulPosStrictMono_iff_mulPosReflectLE πŸ“–mathematicalβ€”MulPosStrictMono
PartialOrder.toPreorder
LinearOrder.toPartialOrder
MulPosReflectLE
β€”MulPosStrictMono.toMulPosReflectLE
MulPosReflectLE.toMulPosStrictMono
mul_le_mul πŸ“–β€”Preorder.toLEβ€”β€”mul_le_mul_of_nonneg'
mul_le_mul_iff_leftβ‚€ πŸ“–mathematicalPreorder.toLTPreorder.toLEβ€”rel_iff_cov
MulPosMono.to_covariantClass_pos_mul_le
MulPosReflectLE.toContravariantClass
mul_le_mul_iff_of_pos_left πŸ“–mathematicalPreorder.toLTPreorder.toLEβ€”mul_le_mul_iff_rightβ‚€
mul_le_mul_iff_of_pos_right πŸ“–mathematicalPreorder.toLTPreorder.toLEβ€”mul_le_mul_iff_leftβ‚€
mul_le_mul_iff_rightβ‚€ πŸ“–mathematicalPreorder.toLTPreorder.toLEβ€”rel_iff_cov
PosMulMono.to_covariantClass_pos_mul_le
PosMulReflectLE.toContravariantClass
mul_le_mul_of_nonneg πŸ“–β€”Preorder.toLEβ€”β€”LE.le.trans
mul_le_mul_of_nonneg_left
mul_le_mul_of_nonneg_right
mul_le_mul_of_nonneg' πŸ“–β€”Preorder.toLEβ€”β€”LE.le.trans
mul_le_mul_of_nonneg_right
mul_le_mul_of_nonneg_left
mul_le_mul_of_nonneg_left πŸ“–β€”Preorder.toLEβ€”β€”PosMulMono.mul_le_mul_of_nonneg_left
mul_le_mul_of_nonneg_right πŸ“–β€”Preorder.toLEβ€”β€”MulPosMono.mul_le_mul_of_nonneg_right
mul_le_of_mul_le_of_nonneg_left πŸ“–β€”Preorder.toLEβ€”β€”LE.le.trans
mul_le_mul_of_nonneg_left
mul_le_of_mul_le_of_nonneg_right πŸ“–β€”Preorder.toLEβ€”β€”LE.le.trans
mul_le_mul_of_nonneg_right
mul_lt_mul πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”mul_lt_mul_of_pos_of_nonneg'
mul_lt_mul' πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”mul_lt_mul_of_nonneg_of_pos'
mul_lt_mul_iff_leftβ‚€ πŸ“–β€”Preorder.toLTβ€”β€”lt_of_mul_lt_mul_right
LT.lt.le
mul_lt_mul_of_pos_right
mul_lt_mul_iff_of_pos_left πŸ“–β€”Preorder.toLTβ€”β€”mul_lt_mul_iff_rightβ‚€
mul_lt_mul_iff_of_pos_right πŸ“–β€”Preorder.toLTβ€”β€”mul_lt_mul_iff_leftβ‚€
mul_lt_mul_iff_rightβ‚€ πŸ“–β€”Preorder.toLTβ€”β€”lt_of_mul_lt_mul_left
LT.lt.le
mul_lt_mul_of_pos_left
mul_lt_mul_of_le_of_lt_of_nonneg_of_pos πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”LE.le.trans_lt
mul_le_mul_of_nonneg_right
mul_lt_mul_of_pos_left
mul_lt_mul_of_le_of_lt_of_pos_of_nonneg πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”LT.lt.trans_le
mul_lt_mul_of_pos_left
mul_le_mul_of_nonneg_right
mul_lt_mul_of_lt_of_le_of_nonneg_of_pos πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”LE.le.trans_lt
mul_le_mul_of_nonneg_left
mul_lt_mul_of_pos_right
mul_lt_mul_of_lt_of_le_of_pos_of_nonneg πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”LT.lt.trans_le
mul_lt_mul_of_pos_right
mul_le_mul_of_nonneg_left
mul_lt_mul_of_nonneg_of_pos πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”mul_lt_mul_of_lt_of_le_of_nonneg_of_pos
mul_lt_mul_of_nonneg_of_pos' πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”mul_lt_mul_of_le_of_lt_of_nonneg_of_pos
mul_lt_mul_of_pos πŸ“–β€”Preorder.toLTβ€”β€”LT.lt.trans
mul_lt_mul_of_pos_left
mul_lt_mul_of_pos_right
mul_lt_mul_of_pos' πŸ“–β€”Preorder.toLTβ€”β€”LT.lt.trans
mul_lt_mul_of_pos_right
mul_lt_mul_of_pos_left
mul_lt_mul_of_pos_left πŸ“–β€”Preorder.toLTβ€”β€”PosMulStrictMono.mul_lt_mul_of_pos_left
mul_lt_mul_of_pos_of_nonneg πŸ“–β€”Preorder.toLE
Preorder.toLT
β€”β€”mul_lt_mul_of_le_of_lt_of_pos_of_nonneg
mul_lt_mul_of_pos_of_nonneg' πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”mul_lt_mul_of_lt_of_le_of_pos_of_nonneg
mul_lt_mul_of_pos_right πŸ“–β€”Preorder.toLTβ€”β€”MulPosStrictMono.mul_lt_mul_of_pos_right
mul_lt_of_mul_lt_of_nonneg_left πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”LE.le.trans_lt
mul_le_mul_of_nonneg_left
mul_lt_of_mul_lt_of_nonneg_right πŸ“–β€”Preorder.toLT
Preorder.toLE
β€”β€”LE.le.trans_lt
mul_le_mul_of_nonneg_right
posMulMono_iff πŸ“–mathematicalβ€”PosMulMono
Preorder.toLE
β€”β€”
posMulMono_iff_mulPosMono πŸ“–mathematicalβ€”PosMulMono
MulPosMono
β€”β€”
posMulMono_iff_posMulReflectLT πŸ“–mathematicalβ€”PosMulMono
PartialOrder.toPreorder
LinearOrder.toPartialOrder
PosMulReflectLT
β€”PosMulMono.toPosMulReflectLT
PosMulReflectLT.toPosMulMono
posMulReflectLE_iff πŸ“–mathematicalβ€”PosMulReflectLE
ContravariantClass
Preorder.toLT
Preorder.toLE
β€”β€”
posMulReflectLE_iff_mulPosReflectLE πŸ“–mathematicalβ€”PosMulReflectLE
MulPosReflectLE
β€”β€”
posMulReflectLT_iff πŸ“–mathematicalβ€”PosMulReflectLT
ContravariantClass
Preorder.toLE
Preorder.toLT
β€”β€”
posMulReflectLT_iff_mulPosReflectLT πŸ“–mathematicalβ€”PosMulReflectLT
MulPosReflectLT
β€”β€”
posMulStrictMono_iff πŸ“–mathematicalβ€”PosMulStrictMono
Preorder.toLT
β€”β€”
posMulStrictMono_iff_mulPosStrictMono πŸ“–mathematicalβ€”PosMulStrictMono
MulPosStrictMono
β€”β€”
posMulStrictMono_iff_posMulReflectLE πŸ“–mathematicalβ€”PosMulStrictMono
PartialOrder.toPreorder
LinearOrder.toPartialOrder
PosMulReflectLE
β€”PosMulStrictMono.toPosMulReflectLE
PosMulReflectLE.toPosMulStrictMono

---

← Back to Index