Documentation Verification Report

Ideal

📁 Source: Mathlib/Algebra/Order/Group/Ideal.lean

Statistics

MetricCount
Definitions0
Theoremsfg_of_wellQuasiOrderedLE, instWellFoundedGT, fg_of_wellQuasiOrderedLE, instWellFoundedGT
4
Total4

AddSemigroupIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
fg_of_wellQuasiOrderedLE 📖mathematicalFG
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set.isPWO_of_wellQuasiOrderedLE
IsAntichain.finite_of_partiallyWellOrderedOn
setOf_minimal_antichain
Set.IsPWO.mono
setOf_minimal_subset
SubAddAction.ext
SetLike.mem_coe
mem_closure''
Set.IsPWO.exists_le_minimal
le_iff_exists_add'
SubAddAction.vadd_mem
instWellFoundedGT 📖mathematicalWellFoundedGT
AddSemigroupIdeal
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
PartialOrder.toPreorder
SubAddAction.instPartialOrder
Add.toVAdd
wellFoundedGT_iff_monotone_chain_condition
fg_iff
fg_of_wellQuasiOrderedLE
SetLike.mem_coe
SubAddAction.mem_iSup
subset_closure
LE.le.antisymm
OrderHom.mono
LE.le.trans
le_iSup
mem_closure''
add_mem
Finset.le_sup
Function.sometimes_spec

SemigroupIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
fg_of_wellQuasiOrderedLE 📖mathematicalFG
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Set.isPWO_of_wellQuasiOrderedLE
IsAntichain.finite_of_partiallyWellOrderedOn
setOf_minimal_antichain
Set.IsPWO.mono
setOf_minimal_subset
SubMulAction.ext
Set.IsPWO.exists_le_minimal
le_iff_exists_mul'
SubMulAction.smul_mem
instWellFoundedGT 📖mathematicalWellFoundedGT
SemigroupIdeal
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
PartialOrder.toPreorder
SubMulAction.instPartialOrder
wellFoundedGT_iff_monotone_chain_condition
fg_iff
fg_of_wellQuasiOrderedLE
subset_closure
LE.le.antisymm
OrderHom.mono
LE.le.trans
le_iSup
mem_closure''
mul_mem
Finset.le_sup
Function.sometimes_spec

---

← Back to Index