📁 Source: Mathlib/Algebra/Order/Group/Ideal.lean
fg_of_wellQuasiOrderedLE
instWellFoundedGT
FG
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set.isPWO_of_wellQuasiOrderedLE
IsAntichain.finite_of_partiallyWellOrderedOn
setOf_minimal_antichain
Set.IsPWO.mono
setOf_minimal_subset
SubAddAction.ext
SetLike.mem_coe
mem_closure''
Set.IsPWO.exists_le_minimal
le_iff_exists_add'
SubAddAction.vadd_mem
WellFoundedGT
AddSemigroupIdeal
Preorder.toLT
PartialOrder.toPreorder
SubAddAction.instPartialOrder
Add.toVAdd
wellFoundedGT_iff_monotone_chain_condition
fg_iff
SubAddAction.mem_iSup
subset_closure
LE.le.antisymm
OrderHom.mono
LE.le.trans
le_iSup
add_mem
Finset.le_sup
Function.sometimes_spec
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SubMulAction.ext
le_iff_exists_mul'
SubMulAction.smul_mem
SemigroupIdeal
SubMulAction.instPartialOrder
mul_mem
---
← Back to Index