instAddCancelCommMonoid 📖 | CompOp | 132 mathmath: Polynomial.rightInverse_ofMultiset_roots, Finsupp.sum_toMultiset, DFinsupp.toMultiset_sup, Polynomial.roots_expand, MvPolynomial.degrees_monomial, disjoint_finset_sum_left, Finsupp.toMultiset_strictMono, equivDFinsupp_symm_apply, toDFinsupp_support, filter_nsmul, Polynomial.roots_monomial, Finsupp.prod_toMultiset, mapAddMonoidHom_apply, Finsupp.toMultiset_zero, Polynomial.roots_C_mul_X_pow, prod_sum, instIsAddTorsionFree, Icc_eq, Finset.mem_sum, coe_sumAddMonoidHom, Finsupp.toMultiset_toFinsupp, MvPolynomial.totalDegree_eq, instIsOrderedCancelAddMonoid, toDFinsupp_apply, MvPolynomial.degrees_def, Finsupp.card_toMultiset, Sym.coe_equivNatSum_symm_apply, addHom_ext_iff, UniqueFactorizationMonoid.factors_pow, Associates.pow_factors, equivDFinsupp_apply, DFinsupp.toMultiset_single, Sym.coe_equivNatSumOfFintype_symm_apply, Finsupp.toMultiset_apply, Polynomial.roots_X_pow_char_pow_sub_C_pow, MvPolynomial.degreesLE_nsmul, nsmul_cons, finset_sum_eq_sup_iff_disjoint, toFinset_nsmul, count_sum, dedup_nsmul, Polynomial.roots_pow, Polynomial.roots_expand_map_frobenius, cardHom_apply, card_nsmul, sum_nsmul, DFinsupp.toMultiset_le_toMultiset, MvPolynomial.degrees_pow_le, exists_smul_of_dvd_count, Finsupp.mem_toMultiset, coe_countPAddMonoidHom, toDFinsupp_replicate, disjoint_finset_sum_right, sum_sum, uIcc_eq, Finsupp.count_toMultiset, disjoint_sum_left, MvPolynomial.degrees_indicator, DFinsupp.toMultiset_toDFinsupp, prod_nsmul, Polynomial.roots_X_pow_char_sub_C_pow, count_sum', Finsupp.toMultiset_add, Polynomial.roots_ofMultiset, mem_nsmul, Polynomial.roots_expand_pow_map_iterateFrobenius_le, toFinsupp_symm_apply, DFinsupp.toMultiset_inf, replicateAddMonoidHom_apply, count_nsmul, Equiv.Perm.OnCycleFactors.cycleType_kerParam_apply_apply, card_sum, PrimeMultiset.coe_coePNatMonoidHom, nsmul_replicate, MvPolynomial.degrees_prod_le, Polynomial.ofMultiset_apply, Polynomial.roots_expand_pow_map_iterateFrobenius, DFinsupp.toMultiset_injective, toFinsupp_toMultiset, toFinset_card_eq_one_iff, Polynomial.aroots_C_mul_X_pow, Finsupp.toFinset_toMultiset, Nodup.le_nsmul_iff_le, toFinsupp_eq_iff, Finsupp.multiset_sum_sum, Finsupp.toMultiset_sum, toDFinsupp_injective, Polynomial.aroots_monomial, Finset.sum_multiset_singleton, Polynomial.aroots_X_pow, PrimeMultiset.coe_coeNatMonoidHom, toDFinsupp_le_toDFinsupp, toDFinsupp_toMultiset, sum_map_singleton, toDFinsupp_singleton, Finsupp.multiset_map_sum, mem_nsmul_of_ne_zero, UniqueFactorizationMonoid.normalizedFactors_pow, nsmul_singleton, Polynomial.roots_X_pow_char_sub_C, coe_countAddMonoidHom, MvPolynomial.degrees_monomial_eq, mem_sum, Polynomial.roots_expand_pow, toDFinsupp_inter, Finsupp.toMultiset_single, toDFinsupp_lt_toDFinsupp, toDFinsupp_union, card_finsuppSum, Polynomial.roots_X_pow, Finsupp.toMultiset_sup, DFinsupp.toMultiset_inj, Equiv.Perm.Disjoint.cycleType_noncommProd, le_smul_dedup, DFinsupp.toMultiset_lt_toMultiset, toFinset_sum_count_nsmul_eq, Polynomial.ofMultiset_injective, Finsupp.toMultiset_sum_single, map_nsmul, Finsupp.toMultiset_map, disjoint_sum_right, Finsupp.toMultiset_inf, Polynomial.roots_expand_map_frobenius_le, Finsupp.coe_orderIsoMultiset, UniqueFactorizationMonoid.normalizedFactors_multiset_prod, countP_nsmul, toDFinsupp_inj, Polynomial.roots_X_pow_char_pow_sub_C, Finsupp.toMultiset_eq_iff, coe_mapAddMonoidHom, Polynomial.aroots_pow, toFinset_eq_singleton_iff
|