Documentation Verification Report

Synonym

πŸ“ Source: Mathlib/Algebra/Order/Group/Synonym.lean

Statistics

MetricCount
DefinitionsinstPow, instPow', instSMul, instSMul', instVAdd, instVAdd', instPow, instPow', instSMul, instSMul', instVAdd, instVAdd', instAddCancelCommMonoid, instAddCommMonoid, instAddGroup, instCancelCommMonoid, instCommMonoid, instGroup, instPow, instPow', instSMul, instSMul', instVAdd, instVAdd', instAddCancelCommMonoidColex, instAddCancelCommMonoidLex, instAddCancelMonoidColex, instAddCancelMonoidLex, instAddCancelMonoidOrderDual, instAddColex, instAddCommGroupColex, instAddCommGroupLex, instAddCommGroupOrderDual, instAddCommMonoidColex, instAddCommMonoidLex, instAddCommSemigroupColex, instAddCommSemigroupLex, instAddCommSemigroupOrderDual, instAddGroupColex, instAddGroupLex, instAddLeftCancelMonoidColex, instAddLeftCancelMonoidLex, instAddLeftCancelMonoidOrderDual, instAddLeftCancelSemigroupColex, instAddLeftCancelSemigroupLex, instAddLeftCancelSemigroupOrderDual, instAddLex, instAddMonoidColex, instAddMonoidLex, instAddMonoidOrderDual, instAddOrderDual, instAddRightCancelMonoidColex, instAddRightCancelMonoidLex, instAddRightCancelMonoidOrderDual, instAddRightCancelSemigroupColex, instAddRightCancelSemigroupLex, instAddRightCancelSemigroupOrderDual, instAddSemigroupColex, instAddSemigroupLex, instAddSemigroupOrderDual, instAddZeroClassColex, instAddZeroClassLex, instAddZeroClassOrderDual, instCancelCommMonoidColex, instCancelCommMonoidLex, instCancelMonoidColex, instCancelMonoidLex, instCancelMonoidOrderDual, instCommGroupColex, instCommGroupLex, instCommGroupOrderDual, instCommMonoidColex, instCommMonoidLex, instCommSemigroupColex, instCommSemigroupLex, instCommSemigroupOrderDual, instDivColex, instDivInvMonoidColex, instDivInvMonoidLex, instDivInvMonoidOrderDual, instDivLex, instDivOrderDual, instDivisionAddCommMonoidColex, instDivisionAddCommMonoidLex, instDivisionAddCommMonoidOrderDual, instDivisionCommMonoidColex, instDivisionCommMonoidLex, instDivisionCommMonoidOrderDual, instDivisionMonoidColex, instDivisionMonoidLex, instDivisionMonoidOrderDual, instGroupColex, instGroupLex, instInvColex, instInvLex, instInvOrderDual, instInvolutiveInvColex, instInvolutiveInvLex, instInvolutiveInvOrderDual, instInvolutiveNegColex, instInvolutiveNegLex, instInvolutiveNegOrderDual, instLeftCancelMonoidColex, instLeftCancelMonoidLex, instLeftCancelMonoidOrderDual, instLeftCancelSemigroupColex, instLeftCancelSemigroupLex, instLeftCancelSemigroupOrderDual, instMonoidColex, instMonoidLex, instMonoidOrderDual, instMulColex, instMulLex, instMulOneClassColex, instMulOneClassLex, instMulOneClassOrderDual, instMulOrderDual, instNegColex, instNegLex, instNegOrderDual, instOneColex, instOneLex, instOneOrderDual, instRightCancelMonoidColex, instRightCancelMonoidLex, instRightCancelMonoidOrderDual, instRightCancelSemigroupColex, instRightCancelSemigroupLex, instRightCancelSemigroupOrderDual, instSemigroupColex, instSemigroupLex, instSemigroupOrderDual, instSubColex, instSubLex, instSubNegAddMonoidColex, instSubNegAddMonoidLex, instSubNegAddMonoidOrderDual, instSubOrderDual, instSubtractionMonoidColex, instSubtractionMonoidLex, instSubtractionMonoidOrderDual, instZeroColex, instZeroLex, instZeroOrderDual
144
TheoremsinstIsCancelAddColex, instIsCancelAddLex, instIsCancelAddOrderDual, instIsCancelMulColex, instIsCancelMulLex, instIsCancelMulOrderDual, instIsLeftCancelAddColex, instIsLeftCancelAddLex, instIsLeftCancelAddOrderDual, instIsLeftCancelMulColex, instIsLeftCancelMulLex, instIsLeftCancelMulOrderDual, instIsRightCancelAddColex, instIsRightCancelAddLex, instIsRightCancelAddOrderDual, instIsRightCancelMulColex, instIsRightCancelMulLex, instIsRightCancelMulOrderDual, isAddLeftRegular_ofColex, isAddLeftRegular_ofDual, isAddLeftRegular_ofLex, isAddLeftRegular_toColex, isAddLeftRegular_toDual, isAddLeftRegular_toLex, isAddRegular_ofColex, isAddRegular_ofDual, isAddRegular_ofLex, isAddRegular_toColex, isAddRegular_toDual, isAddRegular_toLex, isAddRightRegular_ofColex, isAddRightRegular_ofDual, isAddRightRegular_ofLex, isAddRightRegular_toColex, isAddRightRegular_toDual, isAddRightRegular_toLex, isLeftRegular_ofColex, isLeftRegular_ofDual, isLeftRegular_ofLex, isLeftRegular_toColex, isLeftRegular_toDual, isLeftRegular_toLex, isRegular_ofColex, isRegular_ofDual, isRegular_ofLex, isRegular_toColex, isRegular_toDual, isRegular_toLex, isRightRegular_ofColex, isRightRegular_ofDual, isRightRegular_ofLex, isRightRegular_toColex, isRightRegular_toDual, isRightRegular_toLex, ofColex_add, ofColex_div, ofColex_eq_one, ofColex_eq_zero, ofColex_inv, ofColex_mul, ofColex_neg, ofColex_one, ofColex_pow, ofColex_smul, ofColex_smul', ofColex_sub, ofColex_vadd, ofColex_vadd', ofColex_zero, ofDual_add, ofDual_div, ofDual_eq_one, ofDual_eq_zero, ofDual_inv, ofDual_mul, ofDual_neg, ofDual_one, ofDual_pow, ofDual_smul, ofDual_smul', ofDual_sub, ofDual_vadd, ofDual_vadd', ofDual_zero, ofLex_add, ofLex_div, ofLex_eq_one, ofLex_eq_zero, ofLex_inv, ofLex_mul, ofLex_neg, ofLex_one, ofLex_pow, ofLex_smul, ofLex_smul', ofLex_sub, ofLex_vadd, ofLex_vadd', ofLex_zero, pow_ofColex, pow_ofDual, pow_ofLex, pow_toColex, pow_toDual, pow_toLex, toColex_add, toColex_div, toColex_eq_one, toColex_eq_zero, toColex_inv, toColex_mul, toColex_neg, toColex_one, toColex_pow, toColex_smul, toColex_smul', toColex_sub, toColex_vadd, toColex_vadd', toColex_zero, toDual_add, toDual_div, toDual_eq_one, toDual_eq_zero, toDual_inv, toDual_mul, toDual_neg, toDual_one, toDual_pow, toDual_smul, toDual_smul', toDual_sub, toDual_vadd, toDual_vadd', toDual_zero, toLex_add, toLex_div, toLex_eq_one, toLex_eq_zero, toLex_inv, toLex_mul, toLex_neg, toLex_one, toLex_pow, toLex_smul, toLex_smul', toLex_sub, toLex_vadd, toLex_vadd', toLex_zero
150
Total294

Colex

Definitions

NameCategoryTheorems
instPow πŸ“–CompOp
2 mathmath: ofColex_pow, toColex_pow
instPow' πŸ“–CompOp
2 mathmath: pow_toColex, pow_ofColex
instSMul πŸ“–CompOp
2 mathmath: toColex_smul, ofColex_smul
instSMul' πŸ“–CompOp
2 mathmath: ofColex_smul', toColex_smul'
instVAdd πŸ“–CompOp
2 mathmath: toColex_vadd, ofColex_vadd
instVAdd' πŸ“–CompOp
2 mathmath: ofColex_vadd', toColex_vadd'

Lex

Definitions

NameCategoryTheorems
instPow πŸ“–CompOp
2 mathmath: ofLex_pow, toLex_pow
instPow' πŸ“–CompOp
2 mathmath: pow_toLex, pow_ofLex
instSMul πŸ“–CompOp
6 mathmath: instIsScalarTower'', HahnEmbedding.Partial.eval_smul, instIsScalarTower', ofLex_smul, instSMulCommClass'', toLex_smul
instSMul' πŸ“–CompOp
6 mathmath: instIsScalarTower, instSMulCommClass', instIsScalarTower', toLex_smul', ofLex_smul', instSMulCommClass
instVAdd πŸ“–CompOp
5 mathmath: instVAddAssocClass', instVAddCommClass'', ofLex_vadd, instVAddAssocClass'', toLex_vadd
instVAdd' πŸ“–CompOp
6 mathmath: instVAddAssocClass', toLex_vadd', instVAddCommClass', instVAddCommClass, instVAddAssocClass, ofLex_vadd'

OrderDual

Definitions

NameCategoryTheorems
instAddCancelCommMonoid πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOp
8 mathmath: instOrderedSMul, instAddArchimedean, ConvexOn.dual, isOrderedAddCancelMonoid, StrictConvexOn.dual, StrictConcaveOn.dual, isOrderedAddMonoid, ConcaveOn.dual
instAddGroup πŸ“–CompOp
1 mathmath: instIsTopologicalAddGroup
instCancelCommMonoid πŸ“–CompOpβ€”
instCommMonoid πŸ“–CompOp
3 mathmath: instMulArchimedean, isOrderedCancelMonoid, isOrderedMonoid
instGroup πŸ“–CompOp
1 mathmath: instIsTopologicalGroup
instPow πŸ“–CompOp
2 mathmath: toDual_pow, ofDual_pow
instPow' πŸ“–CompOp
2 mathmath: pow_ofDual, pow_toDual
instSMul πŸ“–CompOp
21 mathmath: instSMulCommClass'', instPosSMulMono, instIsScalarTower', instIsStrictOrderedModule, ofDual_smul, OrderIso.smulRightDual_apply, instPosSMulReflectLE, instSMulPosStrictMono, instPosSMulReflectLT, instSMulPosReflectLE, instIsScalarTower'', ConvexOn.dual, instPosSMulStrictMono, instSMulPosMono, instSMulPosReflectLT, instIsOrderedModule, StrictConvexOn.dual, StrictConcaveOn.dual, toDual_smul, instContinuousConstSMulOrderDual, ConcaveOn.dual
instSMul' πŸ“–CompOp
7 mathmath: continuousConstSMul', instIsScalarTower', toDual_smul', instSMulCommClass', instSMulCommClass, instIsScalarTower, ofDual_smul'
instVAdd πŸ“–CompOp
6 mathmath: toDual_vadd, instVAddCommClass'', instContinuousConstVAddOrderDual, instVAddAssocClass'', ofDual_vadd, instVAddAssocClass'
instVAdd' πŸ“–CompOp
7 mathmath: toDual_vadd', continuousConstVAdd', instVAddCommClass', instVAddAssocClass, instVAddCommClass, ofDual_vadd', instVAddAssocClass'

(root)

Definitions

NameCategoryTheorems
instAddCancelCommMonoidColex πŸ“–CompOpβ€”
instAddCancelCommMonoidLex πŸ“–CompOpβ€”
instAddCancelMonoidColex πŸ“–CompOpβ€”
instAddCancelMonoidLex πŸ“–CompOpβ€”
instAddCancelMonoidOrderDual πŸ“–CompOpβ€”
instAddColex πŸ“–CompOp
19 mathmath: Finsupp.Colex.addLeftStrictMono, instIsRightCancelAddColex, toColex_add, ofColex_add, DFinsupp.Colex.addRightMono, isAddRightRegular_toColex, isAddLeftRegular_ofColex, Finsupp.Colex.addRightMono, Finsupp.Colex.addRightStrictMono, isAddRegular_ofColex, isAddRightRegular_ofColex, instIsCancelAddColex, Finsupp.Colex.addLeftMono, isAddRegular_toColex, DFinsupp.Colex.addLeftStrictMono, DFinsupp.Colex.addRightStrictMono, isAddLeftRegular_toColex, DFinsupp.Colex.addLeftMono, instIsLeftCancelAddColex
instAddCommGroupColex πŸ“–CompOpβ€”
instAddCommGroupLex πŸ“–CompOp
23 mathmath: HahnEmbedding.IsPartial.baseEmbedding_le, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, HahnEmbedding.Seed.baseEmbedding_strictMono, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, HahnEmbedding.Partial.orderTop_eq_iff, HahnEmbedding.IsPartial.strictMono, HahnEmbedding.IsPartial.truncLT_mem_range, HahnSeries.archimedeanClassMk_eq_archimedeanClassMk_iff, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_snd, HahnSeries.archimedeanClassOrderIsoWithTop_apply, HahnSeries.archimedeanClassMk_le_archimedeanClassMk_iff_of_orderTop_ofLex, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, HahnEmbedding.Partial.mem_domain, HahnEmbedding.Seed.mem_domain_baseEmbedding, HahnSeries.archimedeanClassMk_le_archimedeanClassMk_iff, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_fst, HahnSeries.finiteArchimedeanClassOrderIso_apply, HahnEmbedding.Partial.exists_domain_eq_top, HahnEmbedding.Partial.exists_isMax, HahnEmbedding.Seed.domain_baseEmbedding, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
instAddCommGroupOrderDual πŸ“–CompOpβ€”
instAddCommMonoidColex πŸ“–CompOp
3 mathmath: DFinsupp.Colex.isOrderedCancelAddMonoid, Finsupp.Colex.isOrderedCancelAddMonoid, DFinsupp.Colex.isOrderedAddMonoid
instAddCommMonoidLex πŸ“–CompOp
14 mathmath: instIsOrderedCancelAddMonoidLexFinsupp, DFinsupp.Lex.isOrderedCancelAddMonoid, Prod.Lex.isOrderedAddMonoid, DFinsupp.Lex.isOrderedAddMonoid, symm_toLexLinearEquiv, coe_toLexLinearEquiv, Pi.Lex.isOrderedAddCancelMonoid, hahnEmbedding_isOrderedModule_rat, Finsupp.Lex.isOrderedCancelAddMonoid, HahnSeries.instIsOrderedAddMonoidLex, coe_ofLexLinearEquiv, hahnEmbedding_isOrderedModule, symm_ofLexLinearEquiv, Prod.Lex.isOrderedAddCancelMonoid
instAddCommSemigroupColex πŸ“–CompOpβ€”
instAddCommSemigroupLex πŸ“–CompOpβ€”
instAddCommSemigroupOrderDual πŸ“–CompOpβ€”
instAddGroupColex πŸ“–CompOpβ€”
instAddGroupLex πŸ“–CompOp
5 mathmath: HahnSeries.support_abs, HahnSeries.abs_lt_abs_of_orderTop_ofLex, HahnSeries.order_abs, HahnSeries.orderTop_abs, HahnSeries.leadingCoeff_abs
instAddLeftCancelMonoidColex πŸ“–CompOpβ€”
instAddLeftCancelMonoidLex πŸ“–CompOpβ€”
instAddLeftCancelMonoidOrderDual πŸ“–CompOpβ€”
instAddLeftCancelSemigroupColex πŸ“–CompOpβ€”
instAddLeftCancelSemigroupLex πŸ“–CompOpβ€”
instAddLeftCancelSemigroupOrderDual πŸ“–CompOpβ€”
instAddLex πŸ“–CompOp
32 mathmath: instIsCancelAddLex, ofLex_add, Finsupp.Lex.addLeftMono, OrderAddMonoidHom.addCommute_inlβ‚—_inrβ‚—, symm_ofLexAddEquiv, MvPowerSeries.lexOrder_mul, toLex_add, isAddLeftRegular_toLex, symm_toLexAddEquiv, isAddRightRegular_toLex, DFinsupp.Lex.addLeftStrictMono, DFinsupp.Lex.addRightStrictMono, isAddRegular_toLex, DFinsupp.Lex.addRightMono, isAddRightRegular_ofLex, Finsupp.Lex.addRightStrictMono, coe_ofLexAddEquiv, OrderAddMonoidHom.inlβ‚—_add_inrβ‚—_eq_toLex, Finsupp.Lex.addLeftStrictMono, instIsLeftCancelAddLex, DFinsupp.Lex.addLeftMono, isAddRegular_ofLex, toEquiv_toLexAddEquiv, isAddLeftRegular_ofLex, Finsupp.Lex.addRightMono, instIsRightCancelAddLex, MvPowerSeries.le_lexOrder_mul, instRightDistribClassLex, coe_toLexAddEquiv, instLeftDistribClassLex, toEquiv_ofLexAddEquiv, MvPowerSeries.lexOrder_mul_ge
instAddMonoidColex πŸ“–CompOpβ€”
instAddMonoidLex πŸ“–CompOpβ€”
instAddMonoidOrderDual πŸ“–CompOp
1 mathmath: instLipschitzAddOrderDual
instAddOrderDual πŸ“–CompOp
22 mathmath: instIsRightCancelAddOrderDual, OrderDual.addRightMono, isAddLeftRegular_ofDual, instContinuousAddOrderDual, isAddRightRegular_ofDual, OrderDual.addLeftMono, instLeftDistribClassOrderDual, isAddRightRegular_toDual, OrderDual.addRightReflectLT, isAddLeftRegular_toDual, OrderDual.addRightStrictMono, isAddRegular_ofDual, instRightDistribClassOrderDual, instIsCancelAddOrderDual, OrderDual.addRightReflectLE, OrderDual.addLeftReflectLT, instIsLeftCancelAddOrderDual, OrderDual.addLeftReflectLE, ofDual_add, isAddRegular_toDual, toDual_add, OrderDual.addLeftStrictMono
instAddRightCancelMonoidColex πŸ“–CompOpβ€”
instAddRightCancelMonoidLex πŸ“–CompOpβ€”
instAddRightCancelMonoidOrderDual πŸ“–CompOpβ€”
instAddRightCancelSemigroupColex πŸ“–CompOpβ€”
instAddRightCancelSemigroupLex πŸ“–CompOpβ€”
instAddRightCancelSemigroupOrderDual πŸ“–CompOpβ€”
instAddSemigroupColex πŸ“–CompOpβ€”
instAddSemigroupLex πŸ“–CompOpβ€”
instAddSemigroupOrderDual πŸ“–CompOpβ€”
instAddZeroClassColex πŸ“–CompOpβ€”
instAddZeroClassLex πŸ“–CompOp
11 mathmath: OrderAddMonoidHom.addCommute_inlβ‚—_inrβ‚—, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, OrderAddMonoidHom.fstβ‚—_comp_inlβ‚—, HahnSeries.embDomainOrderAddMonoidHom_injective, OrderAddMonoidHom.inlβ‚—_apply, OrderAddMonoidHom.inlβ‚—_add_inrβ‚—_eq_toLex, HahnSeries.embDomainOrderAddMonoidHom_apply, OrderAddMonoidHom.fstβ‚—_apply, OrderAddMonoidHom.inrβ‚—_apply, hahnEmbedding_isOrderedAddMonoid, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
instAddZeroClassOrderDual πŸ“–CompOpβ€”
instCancelCommMonoidColex πŸ“–CompOpβ€”
instCancelCommMonoidLex πŸ“–CompOpβ€”
instCancelMonoidColex πŸ“–CompOpβ€”
instCancelMonoidLex πŸ“–CompOpβ€”
instCancelMonoidOrderDual πŸ“–CompOpβ€”
instCommGroupColex πŸ“–CompOpβ€”
instCommGroupLex πŸ“–CompOpβ€”
instCommGroupOrderDual πŸ“–CompOpβ€”
instCommMonoidColex πŸ“–CompOpβ€”
instCommMonoidLex πŸ“–CompOp
3 mathmath: Prod.Lex.isOrderedCancelMonoid, Pi.Lex.isOrderedCancelMonoid, Prod.Lex.isOrderedMonoid
instCommSemigroupColex πŸ“–CompOpβ€”
instCommSemigroupLex πŸ“–CompOpβ€”
instCommSemigroupOrderDual πŸ“–CompOpβ€”
instDivColex πŸ“–CompOp
2 mathmath: ofColex_div, toColex_div
instDivInvMonoidColex πŸ“–CompOpβ€”
instDivInvMonoidLex πŸ“–CompOpβ€”
instDivInvMonoidOrderDual πŸ“–CompOpβ€”
instDivLex πŸ“–CompOp
2 mathmath: toLex_div, ofLex_div
instDivOrderDual πŸ“–CompOp
2 mathmath: toDual_div, ofDual_div
instDivisionAddCommMonoidColex πŸ“–CompOpβ€”
instDivisionAddCommMonoidLex πŸ“–CompOpβ€”
instDivisionAddCommMonoidOrderDual πŸ“–CompOpβ€”
instDivisionCommMonoidColex πŸ“–CompOpβ€”
instDivisionCommMonoidLex πŸ“–CompOpβ€”
instDivisionCommMonoidOrderDual πŸ“–CompOpβ€”
instDivisionMonoidColex πŸ“–CompOpβ€”
instDivisionMonoidLex πŸ“–CompOpβ€”
instDivisionMonoidOrderDual πŸ“–CompOpβ€”
instGroupColex πŸ“–CompOpβ€”
instGroupLex πŸ“–CompOpβ€”
instInvColex πŸ“–CompOp
2 mathmath: toColex_inv, ofColex_inv
instInvLex πŸ“–CompOp
2 mathmath: toLex_inv, ofLex_inv
instInvOrderDual πŸ“–CompOp
4 mathmath: toDual_inv, OrderDual.instContinuousInv, OrderIso.invENNReal_apply, ofDual_inv
instInvolutiveInvColex πŸ“–CompOpβ€”
instInvolutiveInvLex πŸ“–CompOpβ€”
instInvolutiveInvOrderDual πŸ“–CompOpβ€”
instInvolutiveNegColex πŸ“–CompOpβ€”
instInvolutiveNegLex πŸ“–CompOpβ€”
instInvolutiveNegOrderDual πŸ“–CompOpβ€”
instLeftCancelMonoidColex πŸ“–CompOpβ€”
instLeftCancelMonoidLex πŸ“–CompOpβ€”
instLeftCancelMonoidOrderDual πŸ“–CompOpβ€”
instLeftCancelSemigroupColex πŸ“–CompOpβ€”
instLeftCancelSemigroupLex πŸ“–CompOpβ€”
instLeftCancelSemigroupOrderDual πŸ“–CompOpβ€”
instMonoidColex πŸ“–CompOpβ€”
instMonoidLex πŸ“–CompOpβ€”
instMonoidOrderDual πŸ“–CompOp
1 mathmath: instLipschitzMulOrderDual
instMulColex πŸ“–CompOp
11 mathmath: isLeftRegular_ofColex, ofColex_mul, isRightRegular_toColex, instIsCancelMulColex, instIsRightCancelMulColex, toColex_mul, isRightRegular_ofColex, instIsLeftCancelMulColex, isRegular_toColex, isRegular_ofColex, isLeftRegular_toColex
instMulLex πŸ“–CompOp
26 mathmath: toLex_mul, isLeftRegular_toLex, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, toEquiv_toLexMulEquiv, isRightRegular_ofLex, isRegular_toLex, instIsCancelMulLex, coe_ofLexMulEquiv, OrderMonoidHom.inlβ‚—_mul_inrβ‚—_eq_toLex, instIsCancelMulZeroLex, instIsRightCancelMulLex, instIsLeftCancelMulLex, isRightRegular_toLex, OrderMonoidHom.commute_inlβ‚—_inrβ‚—, symm_ofLexMulEquiv, instIsLeftCancelMulZeroLex, toEquiv_ofLexMulEquiv, instIsRightCancelMulZeroLex, instNoZeroDivisorsLex, coe_toLexMulEquiv, ofLex_mul, symm_toLexMulEquiv, isLeftRegular_ofLex, isRegular_ofLex, instRightDistribClassLex, instLeftDistribClassLex
instMulOneClassColex πŸ“–CompOpβ€”
instMulOneClassLex πŸ“–CompOp
13 mathmath: LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, OrderMonoidHom.inrβ‚—_apply, OrderMonoidHom.inlβ‚—_mul_inrβ‚—_eq_toLex, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, OrderMonoidHom.inlβ‚—_apply, OrderMonoidHom.fstβ‚—_apply, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, OrderMonoidHom.commute_inlβ‚—_inrβ‚—, LinearOrderedCommGroupWithZero.fst_comp_inl, LinearOrderedCommGroupWithZero.fst_apply, OrderMonoidHom.fstβ‚—_comp_inlβ‚—, LinearOrderedCommGroupWithZero.inl_apply, LinearOrderedCommGroupWithZero.inr_apply
instMulOneClassOrderDual πŸ“–CompOpβ€”
instMulOrderDual πŸ“–CompOp
26 mathmath: OrderDual.mulLeftReflectLT, instIsRightCancelMulOrderDual, instIsLeftCancelMulZeroOrderDual, instNoZeroDivisorsOrderDual, instIsCancelMulOrderDual, OrderDual.mulLeftReflectLE, instIsCancelMulZeroOrderDual, toDual_mul, OrderDual.mulLeftStrictMono, instIsRightCancelMulZeroOrderDual, isRightRegular_toDual, instIsLeftCancelMulOrderDual, instLeftDistribClassOrderDual, OrderDual.mulLeftMono, OrderDual.mulRightStrictMono, isLeftRegular_ofDual, instRightDistribClassOrderDual, isRightRegular_ofDual, isLeftRegular_toDual, isRegular_toDual, OrderDual.mulRightMono, instContinuousMulOrderDual, isRegular_ofDual, ofDual_mul, OrderDual.mulRightReflectLE, OrderDual.mulRightReflectLT
instNegColex πŸ“–CompOp
2 mathmath: toColex_neg, ofColex_neg
instNegLex πŸ“–CompOp
2 mathmath: ofLex_neg, toLex_neg
instNegOrderDual πŸ“–CompOp
3 mathmath: OrderDual.instContinuousNeg, ofDual_neg, toDual_neg
instOneColex πŸ“–CompOp
4 mathmath: ofColex_one, toColex_one, ofColex_eq_one, toColex_eq_one
instOneLex πŸ“–CompOp
4 mathmath: toLex_eq_one, ofLex_eq_one, ofLex_one, toLex_one
instOneOrderDual πŸ“–CompOp
4 mathmath: ofDual_eq_one, ofDual_one, toDual_eq_one, toDual_one
instRightCancelMonoidColex πŸ“–CompOpβ€”
instRightCancelMonoidLex πŸ“–CompOpβ€”
instRightCancelMonoidOrderDual πŸ“–CompOpβ€”
instRightCancelSemigroupColex πŸ“–CompOpβ€”
instRightCancelSemigroupLex πŸ“–CompOpβ€”
instRightCancelSemigroupOrderDual πŸ“–CompOpβ€”
instSemigroupColex πŸ“–CompOpβ€”
instSemigroupLex πŸ“–CompOpβ€”
instSemigroupOrderDual πŸ“–CompOpβ€”
instSubColex πŸ“–CompOp
2 mathmath: toColex_sub, ofColex_sub
instSubLex πŸ“–CompOp
2 mathmath: toLex_sub, ofLex_sub
instSubNegAddMonoidColex πŸ“–CompOpβ€”
instSubNegAddMonoidLex πŸ“–CompOpβ€”
instSubNegAddMonoidOrderDual πŸ“–CompOpβ€”
instSubOrderDual πŸ“–CompOp
2 mathmath: toDual_sub, ofDual_sub
instSubtractionMonoidColex πŸ“–CompOpβ€”
instSubtractionMonoidLex πŸ“–CompOpβ€”
instSubtractionMonoidOrderDual πŸ“–CompOpβ€”
instZeroColex πŸ“–CompOp
4 mathmath: toColex_eq_zero, ofColex_eq_zero, toColex_zero, ofColex_zero
instZeroLex πŸ“–CompOp
15 mathmath: HahnEmbedding.Seed.baseEmbedding_pos, instIsCancelMulZeroLex, HahnSeries.leadingCoeff_pos_iff, toLex_zero, MvPolynomial.supDegree_toLex_C, instIsLeftCancelMulZeroLex, HahnSeries.leadingCoeff_nonneg_iff, instIsRightCancelMulZeroLex, instNoZeroDivisorsLex, HahnEmbedding.Partial.eval_zero, toLex_eq_zero, HahnSeries.leadingCoeff_neg_iff, ofLex_eq_zero, HahnSeries.leadingCoeff_nonpos_iff, ofLex_zero
instZeroOrderDual πŸ“–CompOp
14 mathmath: OrderDual.instIsStrictOrderedModule, toDual_zero, toDual_eq_zero, instIsLeftCancelMulZeroOrderDual, OrderDual.instSMulPosStrictMono, instNoZeroDivisorsOrderDual, instIsCancelMulZeroOrderDual, OrderDual.instSMulPosReflectLE, instIsRightCancelMulZeroOrderDual, OrderDual.instSMulPosMono, OrderDual.instSMulPosReflectLT, OrderDual.instIsOrderedModule, ofDual_zero, ofDual_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCancelAddColex πŸ“–mathematicalβ€”IsCancelAdd
Colex
instAddColex
β€”β€”
instIsCancelAddLex πŸ“–mathematicalβ€”IsCancelAdd
Lex
instAddLex
β€”β€”
instIsCancelAddOrderDual πŸ“–mathematicalβ€”IsCancelAdd
OrderDual
instAddOrderDual
β€”β€”
instIsCancelMulColex πŸ“–mathematicalβ€”IsCancelMul
Colex
instMulColex
β€”β€”
instIsCancelMulLex πŸ“–mathematicalβ€”IsCancelMul
Lex
instMulLex
β€”β€”
instIsCancelMulOrderDual πŸ“–mathematicalβ€”IsCancelMul
OrderDual
instMulOrderDual
β€”β€”
instIsLeftCancelAddColex πŸ“–mathematicalβ€”IsLeftCancelAdd
Colex
instAddColex
β€”β€”
instIsLeftCancelAddLex πŸ“–mathematicalβ€”IsLeftCancelAdd
Lex
instAddLex
β€”β€”
instIsLeftCancelAddOrderDual πŸ“–mathematicalβ€”IsLeftCancelAdd
OrderDual
instAddOrderDual
β€”β€”
instIsLeftCancelMulColex πŸ“–mathematicalβ€”IsLeftCancelMul
Colex
instMulColex
β€”β€”
instIsLeftCancelMulLex πŸ“–mathematicalβ€”IsLeftCancelMul
Lex
instMulLex
β€”β€”
instIsLeftCancelMulOrderDual πŸ“–mathematicalβ€”IsLeftCancelMul
OrderDual
instMulOrderDual
β€”β€”
instIsRightCancelAddColex πŸ“–mathematicalβ€”IsRightCancelAdd
Colex
instAddColex
β€”β€”
instIsRightCancelAddLex πŸ“–mathematicalβ€”IsRightCancelAdd
Lex
instAddLex
β€”β€”
instIsRightCancelAddOrderDual πŸ“–mathematicalβ€”IsRightCancelAdd
OrderDual
instAddOrderDual
β€”β€”
instIsRightCancelMulColex πŸ“–mathematicalβ€”IsRightCancelMul
Colex
instMulColex
β€”β€”
instIsRightCancelMulLex πŸ“–mathematicalβ€”IsRightCancelMul
Lex
instMulLex
β€”β€”
instIsRightCancelMulOrderDual πŸ“–mathematicalβ€”IsRightCancelMul
OrderDual
instMulOrderDual
β€”β€”
isAddLeftRegular_ofColex πŸ“–mathematicalβ€”IsAddLeftRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instAddColex
β€”β€”
isAddLeftRegular_ofDual πŸ“–mathematicalβ€”IsAddLeftRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instAddOrderDual
β€”β€”
isAddLeftRegular_ofLex πŸ“–mathematicalβ€”IsAddLeftRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instAddLex
β€”β€”
isAddLeftRegular_toColex πŸ“–mathematicalβ€”IsAddLeftRegular
Colex
instAddColex
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
isAddLeftRegular_toDual πŸ“–mathematicalβ€”IsAddLeftRegular
OrderDual
instAddOrderDual
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
isAddLeftRegular_toLex πŸ“–mathematicalβ€”IsAddLeftRegular
Lex
instAddLex
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
isAddRegular_ofColex πŸ“–mathematicalβ€”IsAddRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instAddColex
β€”β€”
isAddRegular_ofDual πŸ“–mathematicalβ€”IsAddRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instAddOrderDual
β€”β€”
isAddRegular_ofLex πŸ“–mathematicalβ€”IsAddRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instAddLex
β€”β€”
isAddRegular_toColex πŸ“–mathematicalβ€”IsAddRegular
Colex
instAddColex
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
isAddRegular_toDual πŸ“–mathematicalβ€”IsAddRegular
OrderDual
instAddOrderDual
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
isAddRegular_toLex πŸ“–mathematicalβ€”IsAddRegular
Lex
instAddLex
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
isAddRightRegular_ofColex πŸ“–mathematicalβ€”IsAddRightRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instAddColex
β€”β€”
isAddRightRegular_ofDual πŸ“–mathematicalβ€”IsAddRightRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instAddOrderDual
β€”β€”
isAddRightRegular_ofLex πŸ“–mathematicalβ€”IsAddRightRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instAddLex
β€”β€”
isAddRightRegular_toColex πŸ“–mathematicalβ€”IsAddRightRegular
Colex
instAddColex
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
isAddRightRegular_toDual πŸ“–mathematicalβ€”IsAddRightRegular
OrderDual
instAddOrderDual
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
isAddRightRegular_toLex πŸ“–mathematicalβ€”IsAddRightRegular
Lex
instAddLex
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
isLeftRegular_ofColex πŸ“–mathematicalβ€”IsLeftRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instMulColex
β€”β€”
isLeftRegular_ofDual πŸ“–mathematicalβ€”IsLeftRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instMulOrderDual
β€”β€”
isLeftRegular_ofLex πŸ“–mathematicalβ€”IsLeftRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instMulLex
β€”β€”
isLeftRegular_toColex πŸ“–mathematicalβ€”IsLeftRegular
Colex
instMulColex
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
isLeftRegular_toDual πŸ“–mathematicalβ€”IsLeftRegular
OrderDual
instMulOrderDual
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
isLeftRegular_toLex πŸ“–mathematicalβ€”IsLeftRegular
Lex
instMulLex
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
isRegular_ofColex πŸ“–mathematicalβ€”IsRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instMulColex
β€”β€”
isRegular_ofDual πŸ“–mathematicalβ€”IsRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instMulOrderDual
β€”β€”
isRegular_ofLex πŸ“–mathematicalβ€”IsRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instMulLex
β€”β€”
isRegular_toColex πŸ“–mathematicalβ€”IsRegular
Colex
instMulColex
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
isRegular_toDual πŸ“–mathematicalβ€”IsRegular
OrderDual
instMulOrderDual
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
isRegular_toLex πŸ“–mathematicalβ€”IsRegular
Lex
instMulLex
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
isRightRegular_ofColex πŸ“–mathematicalβ€”IsRightRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instMulColex
β€”β€”
isRightRegular_ofDual πŸ“–mathematicalβ€”IsRightRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instMulOrderDual
β€”β€”
isRightRegular_ofLex πŸ“–mathematicalβ€”IsRightRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instMulLex
β€”β€”
isRightRegular_toColex πŸ“–mathematicalβ€”IsRightRegular
Colex
instMulColex
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
isRightRegular_toDual πŸ“–mathematicalβ€”IsRightRegular
OrderDual
instMulOrderDual
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
isRightRegular_toLex πŸ“–mathematicalβ€”IsRightRegular
Lex
instMulLex
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
ofColex_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instAddColex
β€”β€”
ofColex_div πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instDivColex
β€”β€”
ofColex_eq_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instOneColex
β€”β€”
ofColex_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instZeroColex
β€”β€”
ofColex_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instInvColex
β€”β€”
ofColex_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instMulColex
β€”β€”
ofColex_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instNegColex
β€”β€”
ofColex_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instOneColex
β€”β€”
ofColex_pow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
Colex.instPow
β€”β€”
ofColex_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
Colex.instSMul
β€”β€”
ofColex_smul' πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
Colex.instSMul'
β€”β€”
ofColex_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instSubColex
β€”β€”
ofColex_vadd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
HVAdd.hVAdd
instHVAdd
Colex.instVAdd
β€”β€”
ofColex_vadd' πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
Colex.instVAdd'
β€”β€”
ofColex_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
instZeroColex
β€”β€”
ofDual_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instAddOrderDual
β€”β€”
ofDual_div πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instDivOrderDual
β€”β€”
ofDual_eq_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instOneOrderDual
β€”β€”
ofDual_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instZeroOrderDual
β€”β€”
ofDual_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instInvOrderDual
β€”β€”
ofDual_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instMulOrderDual
β€”β€”
ofDual_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instNegOrderDual
β€”β€”
ofDual_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instOneOrderDual
β€”β€”
ofDual_pow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.instPow
β€”β€”
ofDual_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.instSMul
β€”β€”
ofDual_smul' πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.instSMul'
β€”β€”
ofDual_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instSubOrderDual
β€”β€”
ofDual_vadd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
HVAdd.hVAdd
instHVAdd
OrderDual.instVAdd
β€”β€”
ofDual_vadd' πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.instVAdd'
β€”β€”
ofDual_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instZeroOrderDual
β€”β€”
ofLex_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instAddLex
β€”β€”
ofLex_div πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instDivLex
β€”β€”
ofLex_eq_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instOneLex
β€”β€”
ofLex_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instZeroLex
β€”β€”
ofLex_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instInvLex
β€”β€”
ofLex_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instMulLex
β€”β€”
ofLex_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instNegLex
β€”β€”
ofLex_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instOneLex
β€”β€”
ofLex_pow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
Lex.instPow
β€”β€”
ofLex_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
Lex.instSMul
β€”β€”
ofLex_smul' πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
Lex.instSMul'
β€”β€”
ofLex_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instSubLex
β€”β€”
ofLex_vadd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
HVAdd.hVAdd
instHVAdd
Lex.instVAdd
β€”β€”
ofLex_vadd' πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
Lex.instVAdd'
β€”β€”
ofLex_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
instZeroLex
β€”β€”
pow_ofColex πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
ofColex
Colex.instPow'
β€”β€”
pow_ofDual πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderDual.instPow'
β€”β€”
pow_ofLex πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
Lex.instPow'
β€”β€”
pow_toColex πŸ“–mathematicalβ€”Colex
Colex.instPow'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
pow_toDual πŸ“–mathematicalβ€”OrderDual
OrderDual.instPow'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
pow_toLex πŸ“–mathematicalβ€”Lex
Lex.instPow'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toColex_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instAddColex
β€”β€”
toColex_div πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instDivColex
β€”β€”
toColex_eq_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instOneColex
β€”β€”
toColex_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instZeroColex
β€”β€”
toColex_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instInvColex
β€”β€”
toColex_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instMulColex
β€”β€”
toColex_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instNegColex
β€”β€”
toColex_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instOneColex
β€”β€”
toColex_pow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
Colex.instPow
β€”β€”
toColex_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
Colex.instSMul
β€”β€”
toColex_smul' πŸ“–mathematicalβ€”Colex
Colex.instSMul'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
toColex_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instSubColex
β€”β€”
toColex_vadd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
HVAdd.hVAdd
instHVAdd
Colex.instVAdd
β€”β€”
toColex_vadd' πŸ“–mathematicalβ€”HVAdd.hVAdd
Colex
instHVAdd
Colex.instVAdd'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toColex
β€”β€”
toColex_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Colex
EquivLike.toFunLike
Equiv.instEquivLike
toColex
instZeroColex
β€”β€”
toDual_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instAddOrderDual
β€”β€”
toDual_div πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instDivOrderDual
β€”β€”
toDual_eq_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instOneOrderDual
β€”β€”
toDual_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instZeroOrderDual
β€”β€”
toDual_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instInvOrderDual
β€”β€”
toDual_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instMulOrderDual
β€”β€”
toDual_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instNegOrderDual
β€”β€”
toDual_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instOneOrderDual
β€”β€”
toDual_pow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
OrderDual.instPow
β€”β€”
toDual_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
OrderDual.instSMul
β€”β€”
toDual_smul' πŸ“–mathematicalβ€”OrderDual
OrderDual.instSMul'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
toDual_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instSubOrderDual
β€”β€”
toDual_vadd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
HVAdd.hVAdd
instHVAdd
OrderDual.instVAdd
β€”β€”
toDual_vadd' πŸ“–mathematicalβ€”HVAdd.hVAdd
OrderDual
instHVAdd
OrderDual.instVAdd'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
toDual_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
instZeroOrderDual
β€”β€”
toLex_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instAddLex
β€”β€”
toLex_div πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instDivLex
β€”β€”
toLex_eq_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instOneLex
β€”β€”
toLex_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instZeroLex
β€”β€”
toLex_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instInvLex
β€”β€”
toLex_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instMulLex
β€”β€”
toLex_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instNegLex
β€”β€”
toLex_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instOneLex
β€”β€”
toLex_pow πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Lex.instPow
β€”β€”
toLex_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Lex.instSMul
β€”β€”
toLex_smul' πŸ“–mathematicalβ€”Lex
Lex.instSMul'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instSubLex
β€”β€”
toLex_vadd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
HVAdd.hVAdd
instHVAdd
Lex.instVAdd
β€”β€”
toLex_vadd' πŸ“–mathematicalβ€”HVAdd.hVAdd
Lex
instHVAdd
Lex.instVAdd'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
instZeroLex
β€”β€”

---

← Back to Index