Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Order/Hom/Basic.lean

Statistics

MetricCount
DefinitionsAddGroupNormClass, AddGroupSeminormClass, GroupNormClass, GroupSeminormClass, Β«out-param_inheritanceΒ», MulLEAddHomClass, MulRingNormClass, MulRingSeminormClass, NonarchimedeanHomClass, NonnegHomClass, RingNormClass, RingSeminormClass, SubadditiveHomClass, SubmultiplicativeHomClass
14
Theoremseq_zero_of_map_eq_zero, toAddGroupSeminormClass, map_neg_eq_map, map_zero, toNonnegHomClass, toSubadditiveHomClass, toZeroHomClass, eq_one_of_map_eq_zero, toGroupSeminormClass, map_inv_eq_map, map_one_eq_zero, toMulLEAddHomClass, toNonnegHomClass, map_mul_le_add, eq_zero_of_map_eq_zero, toAddGroupNormClass, toMulRingSeminormClass, toRingNormClass, toAddGroupSeminormClass, toMonoidHomClass, toMonoidWithZeroHomClass, toRingSeminormClass, map_add_le_max, apply_nonneg, eq_zero_of_map_eq_zero, toAddGroupNormClass, toRingSeminormClass, toAddGroupSeminormClass, toNonnegHomClass, toSubmultiplicativeHomClass, map_add_le_add, map_mul_le_mul, abs_sub_map_le_div, abs_sub_map_le_sub, le_map_add_map_div, le_map_add_map_div', le_map_add_map_sub, le_map_add_map_sub', le_map_div_add_map_div, le_map_div_mul_map_div, le_map_mul_map_div, le_map_sub_add_map_sub, map_div_le_add, map_div_rev, map_eq_zero_iff_eq_one, map_eq_zero_iff_eq_zero, map_ne_zero_iff_ne_one, map_ne_zero_iff_ne_zero, map_pos_of_ne_one, map_pos_of_ne_zero, map_sub_le_add, map_sub_rev
52
Total66

AddGroupNormClass

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_map_eq_zero πŸ“–mathematicalDFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”
toAddGroupSeminormClass πŸ“–mathematicalβ€”AddGroupSeminormClassβ€”β€”

AddGroupSeminormClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_neg_eq_map πŸ“–mathematicalβ€”DFunLike.coe
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”
map_zero πŸ“–mathematicalβ€”DFunLike.coe
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
toNonnegHomClass πŸ“–mathematicalβ€”NonnegHomClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”nsmul_nonneg_iff
IsOrderedAddMonoid.toAddLeftMono
two_ne_zero
two_nsmul
map_zero
sub_self
map_sub_le_add
toSubadditiveHomClass πŸ“–mathematicalβ€”SubadditiveHomClass
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Preorder.toLE
PartialOrder.toPreorder
β€”β€”
toZeroHomClass πŸ“–mathematicalβ€”ZeroHomClass
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”map_zero

GroupNormClass

Theorems

NameKindAssumesProvesValidatesDepends On
eq_one_of_map_eq_zero πŸ“–mathematicalDFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
toGroupSeminormClass πŸ“–mathematicalβ€”GroupSeminormClassβ€”β€”

GroupSeminormClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_inv_eq_map πŸ“–mathematicalβ€”DFunLike.coe
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
map_one_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
toMulLEAddHomClass πŸ“–mathematicalβ€”MulLEAddHomClass
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Preorder.toLE
PartialOrder.toPreorder
β€”β€”
toNonnegHomClass πŸ“–mathematicalβ€”NonnegHomClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”nsmul_nonneg_iff
IsOrderedAddMonoid.toAddLeftMono
two_ne_zero
two_nsmul
map_one_eq_zero
div_self'
map_div_le_add

LibraryNote

Definitions

NameCategoryTheorems
Β«out-param_inheritanceΒ» πŸ“–CompOpβ€”

MulLEAddHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_mul_le_add πŸ“–mathematicalβ€”DFunLike.coeβ€”β€”

MulRingNormClass

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_map_eq_zero πŸ“–mathematicalDFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”β€”
toAddGroupNormClass πŸ“–mathematicalβ€”AddGroupNormClass
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”MulRingSeminormClass.toAddGroupSeminormClass
toMulRingSeminormClass
eq_zero_of_map_eq_zero
toMulRingSeminormClass πŸ“–mathematicalβ€”MulRingSeminormClassβ€”β€”
toRingNormClass πŸ“–mathematicalβ€”RingNormClass
NonAssocRing.toNonUnitalNonAssocRing
β€”MulRingSeminormClass.toRingSeminormClass
toMulRingSeminormClass
MulRingSeminormClass.toAddGroupSeminormClass
RingSeminormClass.toSubmultiplicativeHomClass
eq_zero_of_map_eq_zero

MulRingSeminormClass

Theorems

NameKindAssumesProvesValidatesDepends On
toAddGroupSeminormClass πŸ“–mathematicalβ€”AddGroupSeminormClass
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
toMonoidHomClass πŸ“–mathematicalβ€”MonoidHomClass
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
NonAssocRing.toNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
toMonoidWithZeroHomClass πŸ“–mathematicalβ€”MonoidWithZeroHomClass
NonAssocSemiring.toMulZeroOneClass
NonAssocRing.toNonAssocSemiring
Semiring.toNonAssocSemiring
β€”toMonoidHomClass
AddGroupSeminormClass.map_zero
toAddGroupSeminormClass
toRingSeminormClass πŸ“–mathematicalβ€”RingSeminormClass
NonAssocRing.toNonUnitalNonAssocRing
β€”toAddGroupSeminormClass
Eq.le
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
toMonoidWithZeroHomClass

NonarchimedeanHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_add_le_max πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”β€”

NonnegHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
apply_nonneg πŸ“–mathematicalβ€”DFunLike.coeβ€”β€”

RingNormClass

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_map_eq_zero πŸ“–mathematicalDFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
β€”β€”
toAddGroupNormClass πŸ“–mathematicalβ€”AddGroupNormClass
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”RingSeminormClass.toAddGroupSeminormClass
toRingSeminormClass
eq_zero_of_map_eq_zero
toRingSeminormClass πŸ“–mathematicalβ€”RingSeminormClassβ€”β€”

RingSeminormClass

Theorems

NameKindAssumesProvesValidatesDepends On
toAddGroupSeminormClass πŸ“–mathematicalβ€”AddGroupSeminormClass
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
toNonnegHomClass πŸ“–mathematicalβ€”NonnegHomClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”AddGroupSeminormClass.toNonnegHomClass
toAddGroupSeminormClass
toSubmultiplicativeHomClass πŸ“–mathematicalβ€”SubmultiplicativeHomClass
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
β€”β€”

SubadditiveHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_add_le_add πŸ“–mathematicalβ€”DFunLike.coeβ€”β€”

SubmultiplicativeHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_mul_le_mul πŸ“–mathematicalβ€”DFunLike.coeβ€”β€”

(root)

Definitions

NameCategoryTheorems
AddGroupNormClass πŸ“–CompData
4 mathmath: RingNormClass.toAddGroupNormClass, MulRingNormClass.toAddGroupNormClass, AddGroupNorm.addGroupNormClass, NonarchAddGroupNormClass.toAddGroupNormClass
AddGroupSeminormClass πŸ“–CompData
6 mathmath: AddGroupNormClass.toAddGroupSeminormClass, NonarchAddGroupSeminormClass.toAddGroupSeminormClass, AddGroupSeminorm.addGroupSeminormClass, SeminormClass.toAddGroupSeminormClass, RingSeminormClass.toAddGroupSeminormClass, MulRingSeminormClass.toAddGroupSeminormClass
GroupNormClass πŸ“–CompData
1 mathmath: GroupNorm.groupNormClass
GroupSeminormClass πŸ“–CompData
2 mathmath: GroupNormClass.toGroupSeminormClass, GroupSeminorm.groupSeminormClass
MulLEAddHomClass πŸ“–CompData
1 mathmath: GroupSeminormClass.toMulLEAddHomClass
MulRingNormClass πŸ“–CompData
3 mathmath: MulAlgebraNormClass.toMulRingNormClass, MulRingNorm.mulRingNormClass, AbsoluteValue.instMulRingNormClassOfNontrivialOfIsDomain
MulRingSeminormClass πŸ“–CompData
2 mathmath: MulRingNormClass.toMulRingSeminormClass, MulRingSeminorm.mulRingSeminormClass
NonarchimedeanHomClass πŸ“–CompData
2 mathmath: NonarchAddGroupSeminormClass.toNonarchimedeanHomClass, NumberField.FinitePlace.instNonarchimedeanHomClassReal
NonnegHomClass πŸ“–CompData
6 mathmath: AddGroupSeminormClass.toNonnegHomClass, GroupSeminormClass.toNonnegHomClass, NumberField.FinitePlace.instNonnegHomClassReal, RingSeminormClass.toNonnegHomClass, AbsoluteValue.nonnegHomClass, NumberField.InfinitePlace.instNonnegHomClassReal
RingNormClass πŸ“–CompData
3 mathmath: MulRingNormClass.toRingNormClass, AlgebraNormClass.toRingNormClass, RingNorm.ringNormClass
RingSeminormClass πŸ“–CompData
3 mathmath: RingSeminorm.ringSeminormClass, MulRingSeminormClass.toRingSeminormClass, RingNormClass.toRingSeminormClass
SubadditiveHomClass πŸ“–CompData
2 mathmath: AddGroupSeminormClass.toSubadditiveHomClass, AbsoluteValue.subadditiveHomClass
SubmultiplicativeHomClass πŸ“–CompData
1 mathmath: RingSeminormClass.toSubmultiplicativeHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
abs_sub_map_le_div πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
DFunLike.coe
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”abs_sub_le_iff
sub_le_iff_le_add'
IsOrderedAddMonoid.toAddLeftMono
le_map_add_map_div
GroupSeminormClass.toMulLEAddHomClass
le_map_add_map_div'
abs_sub_map_le_sub πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
DFunLike.coe
β€”abs_sub_le_iff
sub_le_iff_le_add'
IsOrderedAddMonoid.toAddLeftMono
le_map_add_map_sub
AddGroupSeminormClass.toSubadditiveHomClass
le_map_add_map_sub'
le_map_add_map_div πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div_mul_cancel
add_comm
MulLEAddHomClass.map_mul_le_add
le_map_add_map_div' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”map_div_rev
div_mul_cancel
add_comm
MulLEAddHomClass.map_mul_le_add
GroupSeminormClass.toMulLEAddHomClass
le_map_add_map_sub πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub_add_cancel
add_comm
SubadditiveHomClass.map_add_le_add
le_map_add_map_sub' πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”map_sub_rev
sub_add_cancel
add_comm
SubadditiveHomClass.map_add_le_add
AddGroupSeminormClass.toSubadditiveHomClass
le_map_div_add_map_div πŸ“–mathematicalβ€”DFunLike.coe
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div_mul_div_cancel
MulLEAddHomClass.map_mul_le_add
le_map_div_mul_map_div πŸ“–mathematicalβ€”DFunLike.coe
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div_mul_div_cancel
SubmultiplicativeHomClass.map_mul_le_mul
le_map_mul_map_div πŸ“–mathematicalβ€”DFunLike.coe
CommMagma.toMul
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”div_mul_cancel
mul_comm
SubmultiplicativeHomClass.map_mul_le_mul
le_map_sub_add_map_sub πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub_add_sub_cancel
SubadditiveHomClass.map_add_le_add
map_div_le_add πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
DivInvMonoid.toDiv
Group.toDivInvMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”div_eq_mul_inv
GroupSeminormClass.map_inv_eq_map
MulLEAddHomClass.map_mul_le_add
GroupSeminormClass.toMulLEAddHomClass
map_div_rev πŸ“–mathematicalβ€”DFunLike.coe
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”inv_div
GroupSeminormClass.map_inv_eq_map
map_eq_zero_iff_eq_one πŸ“–mathematicalβ€”DFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”GroupNormClass.eq_one_of_map_eq_zero
GroupSeminormClass.map_one_eq_zero
GroupNormClass.toGroupSeminormClass
map_eq_zero_iff_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”AddGroupNormClass.eq_zero_of_map_eq_zero
AddGroupSeminormClass.map_zero
AddGroupNormClass.toAddGroupSeminormClass
map_ne_zero_iff_ne_one πŸ“–β€”β€”β€”β€”Iff.not
map_eq_zero_iff_eq_one
map_ne_zero_iff_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
map_eq_zero_iff_eq_zero
map_pos_of_ne_one πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
β€”LE.le.lt_of_ne
NonnegHomClass.apply_nonneg
GroupSeminormClass.toNonnegHomClass
GroupNormClass.toGroupSeminormClass
map_ne_zero_iff_ne_one
map_pos_of_ne_zero πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
β€”LE.le.lt_of_ne
NonnegHomClass.apply_nonneg
AddGroupSeminormClass.toNonnegHomClass
AddGroupNormClass.toAddGroupSeminormClass
map_ne_zero_iff_ne_zero
map_sub_le_add πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”sub_eq_add_neg
AddGroupSeminormClass.map_neg_eq_map
SubadditiveHomClass.map_add_le_add
AddGroupSeminormClass.toSubadditiveHomClass
map_sub_rev πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”neg_sub
AddGroupSeminormClass.map_neg_eq_map

---

← Back to Index