Documentation Verification Report

Monoid

πŸ“ Source: Mathlib/Algebra/Order/Hom/Monoid.lean

Statistics

MetricCount
DefinitionsOrderAddMonoidHom, comp, copy, id, instAddOfIsOrderedAddMonoid, instFunLike, instInhabited, instZero, mk', toAddMonoidHom, toOrderHom, OrderAddMonoidIso, apply, symm_apply, instEquivLike, instInhabited, mk', refl, toAddEquiv, toOrderIso, trans, OrderMonoidHom, comp, copy, id, instFunLike, instInhabited, instMulOfIsOrderedMonoid, instOne, mk', toMonoidHom, toOrderHom, toOrderAddMonoidHom, toOrderMonoidHom, OrderMonoidIso, apply, symm_apply, instEquivLike, instInhabited, mk', refl, toMulEquiv, toOrderIso, trans, toOrderAddMonoidIso, toOrderMonoidIso, instCoeTCOrderAddMonoidHomOfOrderHomClassOfAddMonoidHomClass, instCoeTCOrderAddMonoidIsoOfOrderIsoClassOfAddEquivClass, instCoeTCOrderMonoidHomOfOrderHomClassOfMonoidHomClass, instCoeTCOrderMonoidIsoOfOrderIsoClassOfMulEquivClass, Β«term_β†’*o_Β», Β«term_β†’+o_Β», Β«term_≃*o_Β», Β«term_≃+o_Β»
54
Theoremsadd_apply, add_comp, cancel_left, cancel_right, coe_add, coe_addMonoidHom, coe_comp, coe_comp_addMonoidHom, coe_comp_orderHom, coe_copy, coe_id, coe_mk, coe_orderHom, coe_zero, comp_add, comp_apply, comp_assoc, comp_id, comp_zero, copy_eq, ext, ext_iff, id_comp, instAddMonoidHomClass, instOrderHomClass, mk_coe, monotone', toAddMonoidHom_eq_coe, toAddMonoidHom_injective, toFun_eq_coe, toOrderHom_eq_coe, toOrderHom_injective, zero_apply, zero_comp, apply_eq_iff_symm_apply, apply_symm_apply, cancel_left, cancel_right, coe_addEquiv, coe_mk, coe_orderIso, coe_refl, coe_toEquiv_symm, coe_trans, coe_trans_addEquiv, coe_trans_orderIso, comp_symm_eq, eq_comp_symm, eq_symm_apply, eq_symm_comp, equivLike_neg_eq_symm, ext, ext_iff, instAddEquivClass, instOrderIsoClass, invFun_eq_symm, map_le_map_iff', mk_coe, refl_symm, refl_trans, self_comp_symm, strictMono, strictMono_symm, symm_apply_apply, symm_apply_eq, symm_bijective, symm_comp_eq, symm_comp_self, symm_symm, toAddEquiv_eq_coe, toAddEquiv_injective, toEquiv_symm, toFun_eq_coe, toOrderIso_eq_coe, toOrderIso_injective, trans_apply, trans_assoc, trans_refl, cancel_left, cancel_right, coe_comp, coe_comp_monoidHom, coe_comp_orderHom, coe_copy, coe_id, coe_mk, coe_monoidHom, coe_mul, coe_one, coe_orderHom, comp_apply, comp_assoc, comp_id, comp_mul, comp_one, copy_eq, ext, ext_iff, id_comp, instMonoidHomClass, instOrderHomClass, mk_coe, monotone', mul_apply, mul_comp, one_apply, one_comp, toFun_eq_coe, toMonoidHom_eq_coe, toMonoidHom_injective, toOrderHom_eq_coe, toOrderHom_injective, apply_eq_iff_symm_apply, apply_symm_apply, cancel_left, cancel_right, coe_mk, coe_mulEquiv, coe_orderIso, coe_refl, coe_toEquiv_symm, coe_trans, coe_trans_mulEquiv, coe_trans_orderIso, comp_symm_eq, eq_comp_symm, eq_symm_apply, eq_symm_comp, equivLike_inv_eq_symm, ext, ext_iff, instMulEquivClass, instOrderIsoClass, invFun_eq_symm, map_le_map_iff', mk_coe, refl_symm, refl_trans, self_comp_symm, strictMono, strictMono_symm, symm_apply_apply, symm_apply_eq, symm_bijective, symm_comp_eq, symm_comp_self, symm_symm, toEquiv_symm, toFun_eq_coe, toMulEquiv_eq_coe, toMulEquiv_injective, toOrderIso_eq_coe, toOrderIso_injective, trans_apply, trans_assoc, trans_refl, antitone_iff_map_nonneg, antitone_iff_map_nonpos, map_nonneg, map_nonpos, monotone_iff_map_nonneg, monotone_iff_map_nonpos, strictAnti_iff_map_neg, strictAnti_iff_map_pos, strictMono_iff_map_neg, strictMono_iff_map_pos
166
Total220

OrderAddMonoidHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
18 mathmath: comp_zero, coe_comp_orderHom, fst_comp_inl, fstβ‚—_comp_inlβ‚—, coe_comp_addMonoidHom, snd_comp_inr, comp_add, add_comp, cancel_left, coe_comp, fst_comp_inr, cancel_right, id_comp, snd_comp_inl, comp_apply, comp_assoc, comp_id, zero_comp
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
id πŸ“–CompOp
7 mathmath: fst_comp_inl, OrderRingHom.coe_orderAddMonoidHom_id, fstβ‚—_comp_inlβ‚—, snd_comp_inr, id_comp, coe_id, comp_id
instAddOfIsOrderedAddMonoid πŸ“–CompOp
4 mathmath: add_apply, coe_add, comp_add, add_comp
instFunLike πŸ“–CompOp
53 mathmath: OrderRingHom.coe_orderAddMonoidHom_apply, inl_apply, coe_comp_orderHom, coe_orderHom, add_apply, Archimedean.embedReal_apply, addCommute_inlβ‚—_inrβ‚—, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, LocallyFiniteOrder.orderAddMonoidHom_bijective, coe_addMonoidHom, addCommute_inl_inr, ext_iff, coe_zero, ArchimedeanClass.orderHom_zero, ArchimedeanClass.map_mk_le, zero_apply, LocallyFiniteOrder.orderAddMonoidHom_strictMono, Archimedean.embedReal_injective, ArchimedeanClass.map_mk_eq, coe_add, HahnSeries.embDomainOrderAddMonoidHom_injective, OrderRingHom.coe_coe_orderAddMonoidHom, coe_comp_addMonoidHom, inlβ‚—_apply, DivisibleHull.coeOrderAddMonoidHom_apply, Surreal.nat_toGame, LocallyFiniteOrder.orderAddMonoidHom_apply, inlβ‚—_add_inrβ‚—_eq_toLex, ArchimedeanClass.mk_map_of_archimedean, Archimedean.exists_orderAddMonoidHom_real_injective, HahnSeries.embDomainOrderAddMonoidHom_apply, coe_comp, inr_apply, Surreal.zero_toGame, LocallyFiniteOrder.orderAddMonoidHom_toAddMonoidHom, fstβ‚—_apply, inl_add_inr_eq_mk, snd_apply, instOrderHomClass, coe_id, ArchimedeanClass.orderHom_mk, Archimedean.embedReal_one, fst_apply, comp_apply, toFun_eq_coe, toOrderHom_eq_coe, coe_mk, inrβ‚—_apply, instAddMonoidHomClass, Surreal.one_toGame, toAddMonoidHom_eq_coe, hahnEmbedding_isOrderedAddMonoid, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
instInhabited πŸ“–CompOpβ€”
instZero πŸ“–CompOp
6 mathmath: comp_zero, coe_zero, zero_apply, fst_comp_inr, snd_comp_inl, zero_comp
mk' πŸ“–CompOpβ€”
toAddMonoidHom πŸ“–CompOp
4 mathmath: toAddMonoidHom_injective, monotone', toFun_eq_coe, toAddMonoidHom_eq_coe
toOrderHom πŸ“–CompOp
2 mathmath: toOrderHom_injective, toOrderHom_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
PartialOrder.toPreorder
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
instAddOfIsOrderedAddMonoid
AddZero.toAdd
AddZeroClass.toAddZero
β€”β€”
add_comp πŸ“–mathematicalβ€”comp
PartialOrder.toPreorder
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
OrderAddMonoidHom
instAddOfIsOrderedAddMonoid
β€”β€”
cancel_left πŸ“–mathematicalDFunLike.coe
OrderAddMonoidHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
OrderAddMonoidHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_add πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
PartialOrder.toPreorder
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
instAddOfIsOrderedAddMonoid
Pi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
β€”β€”
coe_addMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoidHom.instFunLike
AddMonoidHomClass.toAddMonoidHom
OrderAddMonoidHom
instFunLike
instAddMonoidHomClass
β€”instAddMonoidHomClass
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
instFunLike
comp
β€”β€”
coe_comp_addMonoidHom πŸ“–mathematicalβ€”AddMonoidHomClass.toAddMonoidHom
OrderAddMonoidHom
AddZeroClass.toAddZero
instFunLike
instAddMonoidHomClass
comp
AddMonoidHom.comp
β€”instAddMonoidHomClass
coe_comp_orderHom πŸ“–mathematicalβ€”OrderHomClass.toOrderHom
OrderAddMonoidHom
instFunLike
instOrderHomClass
comp
OrderHom.comp
β€”instOrderHomClass
coe_copy πŸ“–mathematicalDFunLike.coe
OrderAddMonoidHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalMonotone
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidHom.toZeroHom
DFunLike.coe
OrderAddMonoidHom
instFunLike
AddMonoidHom
AddMonoidHom.instFunLike
β€”β€”
coe_orderHom πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHomClass.toOrderHom
OrderAddMonoidHom
instFunLike
instOrderHomClass
β€”instOrderHomClass
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
instFunLike
instZero
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
β€”β€”
comp_add πŸ“–mathematicalβ€”comp
PartialOrder.toPreorder
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
OrderAddMonoidHom
instAddOfIsOrderedAddMonoid
β€”ext
map_add
AddMonoidHomClass.toAddHomClass
instAddMonoidHomClass
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
comp_zero πŸ“–mathematicalβ€”comp
OrderAddMonoidHom
instZero
β€”ext
map_zero
AddMonoidHomClass.toZeroHomClass
instAddMonoidHomClass
copy_eq πŸ“–mathematicalDFunLike.coe
OrderAddMonoidHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
OrderAddMonoidHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
instFunLike
β€”ext
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
instAddMonoidHomClass πŸ“–mathematicalβ€”AddMonoidHomClass
OrderAddMonoidHom
AddZeroClass.toAddZero
instFunLike
β€”AddMonoidHom.map_add'
ZeroHom.map_zero'
instOrderHomClass πŸ“–mathematicalβ€”OrderHomClass
OrderAddMonoidHom
Preorder.toLE
instFunLike
β€”monotone'
mk_coe πŸ“–β€”Monotone
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidHom.toZeroHom
AddMonoidHomClass.toAddMonoidHom
OrderAddMonoidHom
instFunLike
instAddMonoidHomClass
β€”β€”instAddMonoidHomClass
ext
monotone' πŸ“–mathematicalβ€”Monotone
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidHom.toZeroHom
toAddMonoidHom
β€”β€”
toAddMonoidHom_eq_coe πŸ“–mathematicalβ€”toAddMonoidHom
AddMonoidHomClass.toAddMonoidHom
OrderAddMonoidHom
AddZeroClass.toAddZero
instFunLike
instAddMonoidHomClass
β€”β€”
toAddMonoidHom_injective πŸ“–mathematicalβ€”OrderAddMonoidHom
AddMonoidHom
AddZeroClass.toAddZero
toAddMonoidHom
β€”ext
DFunLike.ext_iff
toFun_eq_coe πŸ“–mathematicalβ€”ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidHom.toZeroHom
toAddMonoidHom
DFunLike.coe
OrderAddMonoidHom
instFunLike
β€”β€”
toOrderHom_eq_coe πŸ“–mathematicalβ€”toOrderHom
OrderHomClass.toOrderHom
OrderAddMonoidHom
instFunLike
instOrderHomClass
β€”β€”
toOrderHom_injective πŸ“–mathematicalβ€”OrderAddMonoidHom
OrderHom
toOrderHom
β€”ext
DFunLike.ext_iff
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
instFunLike
instZero
AddZero.toZero
AddZeroClass.toAddZero
β€”β€”
zero_comp πŸ“–mathematicalβ€”comp
OrderAddMonoidHom
instZero
β€”β€”

OrderAddMonoidIso

Definitions

NameCategoryTheorems
instEquivLike πŸ“–CompOp
32 mathmath: symm_comp_self, toEquiv_symm, symm_comp_eq, strictMono_symm, eq_symm_comp, equivLike_neg_eq_symm, coe_trans_orderIso, coe_toEquiv_symm, symm_apply_eq, coe_trans_addEquiv, eq_comp_symm, coe_addEquiv, coe_mk, self_comp_symm, toAddEquiv_eq_coe, apply_symm_apply, instAddEquivClass, comp_symm_eq, instOrderIsoClass, coe_trans, apply_eq_iff_symm_apply, coe_refl, toFun_eq_coe, ext_iff, strictMono, invFun_eq_symm, toOrderIso_eq_coe, symm_apply_apply, trans_apply, coe_orderIso, LocallyFiniteOrder.orderAddMonoidEquiv_apply, eq_symm_apply
instInhabited πŸ“–CompOpβ€”
mk' πŸ“–CompOpβ€”
refl πŸ“–CompOp
4 mathmath: refl_symm, refl_trans, coe_refl, trans_refl
toAddEquiv πŸ“–CompOp
5 mathmath: toAddEquiv_injective, map_le_map_iff', toAddEquiv_eq_coe, toFun_eq_coe, invFun_eq_symm
toOrderIso πŸ“–CompOp
2 mathmath: toOrderIso_eq_coe, toOrderIso_injective
trans πŸ“–CompOp
9 mathmath: cancel_right, coe_trans_orderIso, trans_assoc, coe_trans_addEquiv, refl_trans, coe_trans, trans_refl, trans_apply, cancel_left

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_iff_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.apply_eq_iff_eq_symm_apply
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.apply_symm_apply
cancel_left πŸ“–mathematicalDFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
transβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
cancel_right πŸ“–mathematicalDFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
transβ€”ext
trans_apply
coe_addEquiv πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquivClass.toAddEquiv
OrderAddMonoidIso
instEquivLike
instAddEquivClass
β€”instAddEquivClass
coe_mk πŸ“–mathematicalPreorder.toLE
Equiv.toFun
AddEquiv.toEquiv
DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
AddEquiv
AddEquiv.instEquivLike
β€”β€”
coe_orderIso πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHomClass.toOrderHom
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
OrderIsoClass.toOrderHomClass
Preorder.toLE
instOrderIsoClass
β€”OrderIsoClass.toOrderHomClass
instOrderIsoClass
coe_refl πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
coe_toEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
EquivLike.toEquiv
OrderAddMonoidIso
instEquivLike
symm
β€”β€”
coe_trans πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
coe_trans_addEquiv πŸ“–mathematicalβ€”AddEquivClass.toAddEquiv
OrderAddMonoidIso
instEquivLike
instAddEquivClass
trans
AddEquiv.trans
β€”instAddEquivClass
coe_trans_orderIso πŸ“–mathematicalβ€”OrderIsoClass.toOrderIso
OrderAddMonoidIso
Preorder.toLE
instEquivLike
instOrderIsoClass
trans
OrderIso.trans
β€”instOrderIsoClass
comp_symm_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.comp_symm_eq
eq_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.eq_comp_symm
eq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.eq_symm_apply
eq_symm_comp πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.eq_symm_comp
equivLike_neg_eq_symm πŸ“–mathematicalβ€”EquivLike.inv
OrderAddMonoidIso
instEquivLike
DFunLike.coe
EquivLike.toFunLike
symm
β€”β€”
ext πŸ“–β€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
β€”ext
instAddEquivClass πŸ“–mathematicalβ€”AddEquivClass
OrderAddMonoidIso
instEquivLike
β€”map_add
AddEquivClass.instAddHomClass
AddEquiv.instAddEquivClass
instOrderIsoClass πŸ“–mathematicalβ€”OrderIsoClass
OrderAddMonoidIso
Preorder.toLE
instEquivLike
β€”map_le_map_iff'
invFun_eq_symm πŸ“–mathematicalβ€”Equiv.invFun
AddEquiv.toEquiv
toAddEquiv
DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”β€”
map_le_map_iff' πŸ“–mathematicalβ€”Preorder.toLE
Equiv.toFun
AddEquiv.toEquiv
toAddEquiv
β€”β€”
mk_coe πŸ“–β€”Preorder.toLE
Equiv.toFun
AddEquiv.toEquiv
AddEquivClass.toAddEquiv
OrderAddMonoidIso
instEquivLike
instAddEquivClass
β€”β€”instAddEquivClass
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
refl_trans πŸ“–mathematicalβ€”trans
refl
β€”β€”
self_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”apply_symm_apply
strictMono πŸ“–mathematicalβ€”StrictMono
DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
β€”strictMono_of_le_iff_le
OrderIsoClass.map_le_map_iff
instOrderIsoClass
strictMono_symm πŸ“–mathematicalβ€”StrictMono
DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”strictMono_of_le_iff_le
OrderIsoClass.map_le_map_iff
instOrderIsoClass
Equiv.apply_symm_apply
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_apply
symm_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_eq
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
OrderAddMonoidIso
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_comp_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_comp_eq
symm_comp_self πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”symm_apply_apply
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
toAddEquiv_eq_coe πŸ“–mathematicalβ€”toAddEquiv
AddEquivClass.toAddEquiv
OrderAddMonoidIso
instEquivLike
instAddEquivClass
β€”β€”
toAddEquiv_injective πŸ“–mathematicalβ€”OrderAddMonoidIso
AddEquiv
toAddEquiv
β€”ext
DFunLike.ext_iff
toEquiv_symm πŸ“–mathematicalβ€”EquivLike.toEquiv
OrderAddMonoidIso
instEquivLike
symm
Equiv.symm
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”Equiv.toFun
AddEquiv.toEquiv
toAddEquiv
DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
β€”β€”
toOrderIso_eq_coe πŸ“–mathematicalβ€”toOrderIso
OrderIsoClass.toOrderIso
OrderAddMonoidIso
Preorder.toLE
instEquivLike
instOrderIsoClass
β€”β€”
toOrderIso_injective πŸ“–mathematicalβ€”OrderAddMonoidIso
OrderIso
Preorder.toLE
toOrderIso
β€”ext
DFunLike.ext_iff
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidIso
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
trans_assoc πŸ“–mathematicalβ€”transβ€”β€”
trans_refl πŸ“–mathematicalβ€”trans
refl
β€”β€”

OrderAddMonoidIso.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

OrderMonoidHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
20 mathmath: OrderMonoidWithZeroHom.coe_comp_orderMonoidHom, comp_id, cancel_left, mul_comp, cancel_right, comp_assoc, comp_apply, id_comp, comp_one, coe_comp_monoidHom, coe_comp, OrderMonoidWithZeroHom.toOrderMonoidHom_comp, snd_comp_inl, snd_comp_inr, fstβ‚—_comp_inlβ‚—, coe_comp_orderHom, fst_comp_inr, fst_comp_inl, comp_mul, one_comp
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
id πŸ“–CompOp
6 mathmath: comp_id, id_comp, coe_id, snd_comp_inr, fstβ‚—_comp_inlβ‚—, fst_comp_inl
instFunLike πŸ“–CompOp
37 mathmath: inl_mul_inr_eq_mk, OrderMonoidWithZeroHom.coe_orderMonoidHom, one_apply, mul_apply, instOrderHomClass, commute_inl_inr, toMonoidHom_eq_coe, MulArchimedeanClass.map_mk_le, toFun_eq_coe, inrβ‚—_apply, instMonoidHomClass, inlβ‚—_mul_inrβ‚—_eq_toLex, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, ext_iff, comp_apply, MulArchimedeanClass.map_mk_eq, inlβ‚—_apply, toOrderHom_eq_coe, coe_comp_monoidHom, coe_mul, fstβ‚—_apply, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, coe_comp, commute_inlβ‚—_inrβ‚—, snd_apply, inl_apply, coe_id, fst_apply, coe_one, LocallyFiniteOrder.orderMonoidHom_strictMono, coe_monoidHom, coe_comp_orderHom, OrderMonoidWithZeroHom.coe_copy, inr_apply, coe_mk, MulArchimedeanClass.orderHom_mk, coe_orderHom
instInhabited πŸ“–CompOpβ€”
instMulOfIsOrderedMonoid πŸ“–CompOp
4 mathmath: mul_apply, mul_comp, coe_mul, comp_mul
instOne πŸ“–CompOp
6 mathmath: one_apply, comp_one, snd_comp_inl, coe_one, fst_comp_inr, one_comp
mk' πŸ“–CompOpβ€”
toMonoidHom πŸ“–CompOp
4 mathmath: toMonoidHom_eq_coe, toMonoidHom_injective, toFun_eq_coe, monotone'
toOrderHom πŸ“–CompOp
2 mathmath: toOrderHom_eq_coe, toOrderHom_injective

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
OrderMonoidHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
OrderMonoidHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidHom
instFunLike
comp
β€”β€”
coe_comp_monoidHom πŸ“–mathematicalβ€”MonoidHomClass.toMonoidHom
OrderMonoidHom
MulOneClass.toMulOne
instFunLike
instMonoidHomClass
comp
MonoidHom.comp
β€”instMonoidHomClass
coe_comp_orderHom πŸ“–mathematicalβ€”OrderHomClass.toOrderHom
OrderMonoidHom
instFunLike
instOrderHomClass
comp
OrderHom.comp
β€”instOrderHomClass
coe_copy πŸ“–mathematicalDFunLike.coe
OrderMonoidHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalMonotone
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MonoidHom.toOneHom
DFunLike.coe
OrderMonoidHom
instFunLike
MonoidHom
MonoidHom.instFunLike
β€”β€”
coe_monoidHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
MonoidHomClass.toMonoidHom
OrderMonoidHom
instFunLike
instMonoidHomClass
β€”instMonoidHomClass
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidHom
PartialOrder.toPreorder
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
instMulOfIsOrderedMonoid
Pi.instMul
MulOne.toMul
MulOneClass.toMulOne
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidHom
instFunLike
instOne
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
β€”β€”
coe_orderHom πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHomClass.toOrderHom
OrderMonoidHom
instFunLike
instOrderHomClass
β€”instOrderHomClass
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
comp_mul πŸ“–mathematicalβ€”comp
PartialOrder.toPreorder
Monoid.toMulOneClass
CommMonoid.toMonoid
OrderMonoidHom
instMulOfIsOrderedMonoid
β€”ext
map_mul
MonoidHomClass.toMulHomClass
instMonoidHomClass
comp_one πŸ“–mathematicalβ€”comp
OrderMonoidHom
instOne
β€”ext
map_one
MonoidHomClass.toOneHomClass
instMonoidHomClass
copy_eq πŸ“–mathematicalDFunLike.coe
OrderMonoidHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
OrderMonoidHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidHom
instFunLike
β€”ext
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
instMonoidHomClass πŸ“–mathematicalβ€”MonoidHomClass
OrderMonoidHom
MulOneClass.toMulOne
instFunLike
β€”MonoidHom.map_mul'
OneHom.map_one'
instOrderHomClass πŸ“–mathematicalβ€”OrderHomClass
OrderMonoidHom
Preorder.toLE
instFunLike
β€”monotone'
mk_coe πŸ“–β€”Monotone
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MonoidHom.toOneHom
MonoidHomClass.toMonoidHom
OrderMonoidHom
instFunLike
instMonoidHomClass
β€”β€”instMonoidHomClass
ext
monotone' πŸ“–mathematicalβ€”Monotone
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MonoidHom.toOneHom
toMonoidHom
β€”β€”
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidHom
PartialOrder.toPreorder
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
instMulOfIsOrderedMonoid
MulOne.toMul
MulOneClass.toMulOne
β€”β€”
mul_comp πŸ“–mathematicalβ€”comp
PartialOrder.toPreorder
Monoid.toMulOneClass
CommMonoid.toMonoid
OrderMonoidHom
instMulOfIsOrderedMonoid
β€”β€”
one_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidHom
instFunLike
instOne
MulOne.toOne
MulOneClass.toMulOne
β€”β€”
one_comp πŸ“–mathematicalβ€”comp
OrderMonoidHom
instOne
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MonoidHom.toOneHom
toMonoidHom
DFunLike.coe
OrderMonoidHom
instFunLike
β€”β€”
toMonoidHom_eq_coe πŸ“–mathematicalβ€”toMonoidHom
MonoidHomClass.toMonoidHom
OrderMonoidHom
MulOneClass.toMulOne
instFunLike
instMonoidHomClass
β€”β€”
toMonoidHom_injective πŸ“–mathematicalβ€”OrderMonoidHom
MonoidHom
MulOneClass.toMulOne
toMonoidHom
β€”ext
DFunLike.ext_iff
toOrderHom_eq_coe πŸ“–mathematicalβ€”toOrderHom
OrderHomClass.toOrderHom
OrderMonoidHom
instFunLike
instOrderHomClass
β€”β€”
toOrderHom_injective πŸ“–mathematicalβ€”OrderMonoidHom
OrderHom
toOrderHom
β€”ext
DFunLike.ext_iff

OrderMonoidHomClass

Definitions

NameCategoryTheorems
toOrderAddMonoidHom πŸ“–CompOp
4 mathmath: OrderRingHom.coe_orderAddMonoidHom_apply, OrderRingHom.coe_orderAddMonoidHom_id, OrderRingHom.toOrderAddMonoidHom_eq_coe, OrderRingHom.coe_coe_orderAddMonoidHom
toOrderMonoidHom πŸ“–CompOp
5 mathmath: OrderMonoidWithZeroHom.coe_orderMonoidHom, OrderMonoidWithZeroHom.coe_comp_orderMonoidHom, OrderMonoidWithZeroHom.toOrderMonoidHom_comp, OrderMonoidWithZeroHom.copy_eq, OrderMonoidWithZeroHom.toOrderMonoidHom_eq_coe

OrderMonoidIso

Definitions

NameCategoryTheorems
instEquivLike πŸ“–CompOp
48 mathmath: apply_symm_apply, val_inv_unitsWithZero_symm_apply, withZero_symm_apply_symm_apply, withZero_symm_apply_apply, val_unitsCongr_symm_apply, trans_apply, Submonoid.topOrderMonoidIso_symm_apply_coe, invFun_eq_symm, instMulEquivClass, val_unitsCongr_apply, coe_mulEquiv, symm_apply_apply, symm_comp_self, val_inv_unitsCongr_symm_apply, withZeroUnits_symm_apply, withZeroUnits_apply, equivLike_inv_eq_symm, val_unitsWithZero_symm_apply, coe_mk, eq_symm_apply, withZero_apply_symm_apply, symm_comp_eq, coe_orderIso, PNat.equivNonZeroDivisorsNat_symm_apply_coe, unitsWithZero_apply, toMulEquiv_eq_coe, strictMono_symm, val_inv_unitsCongr_apply, withZero_apply_apply, toOrderIso_eq_coe, self_comp_symm, apply_eq_iff_symm_apply, coe_trans_orderIso, comp_symm_eq, symm_apply_eq, toFun_eq_coe, instOrderIsoClass, PNat.equivNonZeroDivisorsNat_apply_coe, strictMono, coe_toEquiv_symm, coe_trans, coe_refl, eq_symm_comp, Submonoid.topOrderMonoidIso_apply, eq_comp_symm, toEquiv_symm, ext_iff, coe_trans_mulEquiv
instInhabited πŸ“–CompOpβ€”
mk' πŸ“–CompOpβ€”
refl πŸ“–CompOp
4 mathmath: refl_symm, trans_refl, refl_trans, coe_refl
toMulEquiv πŸ“–CompOp
5 mathmath: invFun_eq_symm, map_le_map_iff', toMulEquiv_eq_coe, toFun_eq_coe, toMulEquiv_injective
toOrderIso πŸ“–CompOp
2 mathmath: toOrderIso_injective, toOrderIso_eq_coe
trans πŸ“–CompOp
9 mathmath: cancel_left, trans_apply, trans_assoc, cancel_right, coe_trans_orderIso, trans_refl, refl_trans, coe_trans, coe_trans_mulEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_iff_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.apply_eq_iff_eq_symm_apply
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.apply_symm_apply
cancel_left πŸ“–mathematicalDFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
transβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
cancel_right πŸ“–mathematicalDFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
transβ€”ext
trans_apply
coe_mk πŸ“–mathematicalPreorder.toLE
Equiv.toFun
MulEquiv.toEquiv
DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
MulEquiv
MulEquiv.instEquivLike
β€”β€”
coe_mulEquiv πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.toMulEquiv
OrderMonoidIso
instEquivLike
instMulEquivClass
β€”instMulEquivClass
coe_orderIso πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHomClass.toOrderHom
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
OrderIsoClass.toOrderHomClass
Preorder.toLE
instOrderIsoClass
β€”OrderIsoClass.toOrderHomClass
instOrderIsoClass
coe_refl πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
coe_toEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
EquivLike.toEquiv
OrderMonoidIso
instEquivLike
symm
β€”β€”
coe_trans πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
coe_trans_mulEquiv πŸ“–mathematicalβ€”MulEquivClass.toMulEquiv
OrderMonoidIso
instEquivLike
instMulEquivClass
trans
MulEquiv.trans
β€”instMulEquivClass
coe_trans_orderIso πŸ“–mathematicalβ€”OrderIsoClass.toOrderIso
OrderMonoidIso
Preorder.toLE
instEquivLike
instOrderIsoClass
trans
OrderIso.trans
β€”instOrderIsoClass
comp_symm_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.comp_symm_eq
eq_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.eq_comp_symm
eq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.eq_symm_apply
eq_symm_comp πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.eq_symm_comp
equivLike_inv_eq_symm πŸ“–mathematicalβ€”EquivLike.inv
OrderMonoidIso
instEquivLike
DFunLike.coe
EquivLike.toFunLike
symm
β€”β€”
ext πŸ“–β€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
β€”ext
instMulEquivClass πŸ“–mathematicalβ€”MulEquivClass
OrderMonoidIso
instEquivLike
β€”map_mul
MulEquivClass.instMulHomClass
MulEquiv.instMulEquivClass
instOrderIsoClass πŸ“–mathematicalβ€”OrderIsoClass
OrderMonoidIso
Preorder.toLE
instEquivLike
β€”map_le_map_iff'
invFun_eq_symm πŸ“–mathematicalβ€”Equiv.invFun
MulEquiv.toEquiv
toMulEquiv
DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”β€”
map_le_map_iff' πŸ“–mathematicalβ€”Preorder.toLE
Equiv.toFun
MulEquiv.toEquiv
toMulEquiv
β€”β€”
mk_coe πŸ“–β€”Preorder.toLE
Equiv.toFun
MulEquiv.toEquiv
MulEquivClass.toMulEquiv
OrderMonoidIso
instEquivLike
instMulEquivClass
β€”β€”instMulEquivClass
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
refl_trans πŸ“–mathematicalβ€”trans
refl
β€”β€”
self_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”apply_symm_apply
strictMono πŸ“–mathematicalβ€”StrictMono
DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
β€”strictMono_of_le_iff_le
OrderIsoClass.map_le_map_iff
instOrderIsoClass
strictMono_symm πŸ“–mathematicalβ€”StrictMono
DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”strictMono_of_le_iff_le
OrderIsoClass.map_le_map_iff
instOrderIsoClass
Equiv.apply_symm_apply
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_apply
symm_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_eq
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
OrderMonoidIso
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_comp_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_comp_eq
symm_comp_self πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
symm
β€”symm_apply_apply
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
toEquiv_symm πŸ“–mathematicalβ€”EquivLike.toEquiv
OrderMonoidIso
instEquivLike
symm
Equiv.symm
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”Equiv.toFun
MulEquiv.toEquiv
toMulEquiv
DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
β€”β€”
toMulEquiv_eq_coe πŸ“–mathematicalβ€”toMulEquiv
MulEquivClass.toMulEquiv
OrderMonoidIso
instEquivLike
instMulEquivClass
β€”β€”
toMulEquiv_injective πŸ“–mathematicalβ€”OrderMonoidIso
MulEquiv
toMulEquiv
β€”ext
DFunLike.ext_iff
toOrderIso_eq_coe πŸ“–mathematicalβ€”toOrderIso
OrderIsoClass.toOrderIso
OrderMonoidIso
Preorder.toLE
instEquivLike
instOrderIsoClass
β€”β€”
toOrderIso_injective πŸ“–mathematicalβ€”OrderMonoidIso
OrderIso
Preorder.toLE
toOrderIso
β€”ext
DFunLike.ext_iff
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidIso
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
trans_assoc πŸ“–mathematicalβ€”transβ€”β€”
trans_refl πŸ“–mathematicalβ€”trans
refl
β€”β€”

OrderMonoidIso.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

OrderMonoidIsoClass

Definitions

NameCategoryTheorems
toOrderAddMonoidIso πŸ“–CompOpβ€”
toOrderMonoidIso πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
OrderAddMonoidHom πŸ“–CompData
61 mathmath: OrderRingHom.coe_orderAddMonoidHom_apply, OrderAddMonoidHom.comp_zero, OrderAddMonoidHom.inl_apply, OrderAddMonoidHom.coe_comp_orderHom, OrderAddMonoidHom.toAddMonoidHom_injective, OrderAddMonoidHom.coe_orderHom, OrderAddMonoidHom.add_apply, Archimedean.embedReal_apply, OrderAddMonoidHom.addCommute_inlβ‚—_inrβ‚—, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, LocallyFiniteOrder.orderAddMonoidHom_bijective, OrderAddMonoidHom.coe_addMonoidHom, OrderAddMonoidHom.addCommute_inl_inr, OrderAddMonoidHom.ext_iff, OrderAddMonoidHom.coe_zero, ArchimedeanClass.orderHom_zero, ArchimedeanClass.map_mk_le, OrderAddMonoidHom.zero_apply, LocallyFiniteOrder.orderAddMonoidHom_strictMono, Archimedean.embedReal_injective, ArchimedeanClass.map_mk_eq, OrderAddMonoidHom.coe_add, HahnSeries.embDomainOrderAddMonoidHom_injective, OrderRingHom.coe_coe_orderAddMonoidHom, OrderAddMonoidHom.coe_comp_addMonoidHom, OrderAddMonoidHom.inlβ‚—_apply, DivisibleHull.coeOrderAddMonoidHom_apply, OrderAddMonoidHom.comp_add, Surreal.nat_toGame, LocallyFiniteOrder.orderAddMonoidHom_apply, OrderAddMonoidHom.toOrderHom_injective, OrderAddMonoidHom.inlβ‚—_add_inrβ‚—_eq_toLex, OrderAddMonoidHom.add_comp, ArchimedeanClass.mk_map_of_archimedean, Archimedean.exists_orderAddMonoidHom_real_injective, HahnSeries.embDomainOrderAddMonoidHom_apply, OrderAddMonoidHom.coe_comp, OrderAddMonoidHom.inr_apply, Surreal.zero_toGame, OrderAddMonoidHom.fst_comp_inr, LocallyFiniteOrder.orderAddMonoidHom_toAddMonoidHom, OrderAddMonoidHom.fstβ‚—_apply, OrderAddMonoidHom.inl_add_inr_eq_mk, OrderAddMonoidHom.snd_apply, OrderAddMonoidHom.instOrderHomClass, OrderAddMonoidHom.snd_comp_inl, OrderAddMonoidHom.coe_id, ArchimedeanClass.orderHom_mk, Archimedean.embedReal_one, OrderAddMonoidHom.fst_apply, OrderAddMonoidHom.comp_apply, OrderAddMonoidHom.toFun_eq_coe, OrderAddMonoidHom.toOrderHom_eq_coe, OrderAddMonoidHom.coe_mk, OrderAddMonoidHom.inrβ‚—_apply, OrderAddMonoidHom.instAddMonoidHomClass, Surreal.one_toGame, OrderAddMonoidHom.toAddMonoidHom_eq_coe, hahnEmbedding_isOrderedAddMonoid, OrderAddMonoidHom.zero_comp, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
OrderAddMonoidIso πŸ“–CompData
40 mathmath: OrderAddMonoidIso.toAddEquiv_injective, LinearOrderedAddCommGroup.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete, OrderAddMonoidIso.symm_comp_self, OrderAddMonoidIso.toEquiv_symm, OrderAddMonoidIso.symm_comp_eq, OrderAddMonoidIso.strictMono_symm, OrderAddMonoidIso.eq_symm_comp, OrderAddMonoidIso.equivLike_neg_eq_symm, OrderAddMonoidIso.coe_trans_orderIso, OrderAddMonoidIso.coe_toEquiv_symm, OrderAddMonoidIso.symm_apply_eq, OrderAddMonoidIso.coe_trans_addEquiv, OrderAddMonoidIso.eq_comp_symm, OrderAddMonoidIso.coe_addEquiv, OrderAddMonoidIso.coe_mk, OrderAddMonoidIso.self_comp_symm, LinearOrderedAddCommGroup.discrete_iff_not_denselyOrdered, OrderAddMonoidIso.toAddEquiv_eq_coe, OrderAddMonoidIso.symm_bijective, OrderAddMonoidIso.apply_symm_apply, OrderAddMonoidIso.instAddEquivClass, LinearOrderedAddCommGroup.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete, OrderAddMonoidIso.comp_symm_eq, OrderAddMonoidIso.instOrderIsoClass, OrderAddMonoidIso.coe_trans, OrderAddMonoidIso.apply_eq_iff_symm_apply, OrderAddMonoidIso.coe_refl, OrderAddMonoidIso.toFun_eq_coe, OrderAddMonoidIso.ext_iff, LinearOrderedAddCommGroup.discrete_or_denselyOrdered, OrderAddMonoidIso.strictMono, OrderAddMonoidIso.invFun_eq_symm, OrderAddMonoidIso.toOrderIso_eq_coe, OrderAddMonoidIso.symm_apply_apply, OrderAddMonoidIso.trans_apply, OrderAddMonoidIso.coe_orderIso, LocallyFiniteOrder.orderAddMonoidEquiv_apply, LinearOrderedAddCommGroup.isAddCyclic_iff_nonempty_equiv_int, OrderAddMonoidIso.toOrderIso_injective, OrderAddMonoidIso.eq_symm_apply
OrderMonoidHom πŸ“–CompData
46 mathmath: OrderMonoidHom.inl_mul_inr_eq_mk, OrderMonoidWithZeroHom.coe_orderMonoidHom, OrderMonoidHom.one_apply, OrderMonoidHom.mul_apply, OrderMonoidHom.instOrderHomClass, OrderMonoidHom.mul_comp, OrderMonoidHom.commute_inl_inr, OrderMonoidHom.toMonoidHom_eq_coe, OrderMonoidHom.toMonoidHom_injective, MulArchimedeanClass.map_mk_le, OrderMonoidHom.toFun_eq_coe, OrderMonoidHom.inrβ‚—_apply, OrderMonoidHom.instMonoidHomClass, OrderMonoidHom.inlβ‚—_mul_inrβ‚—_eq_toLex, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, OrderMonoidHom.ext_iff, OrderMonoidHom.comp_apply, MulArchimedeanClass.map_mk_eq, OrderMonoidHom.comp_one, OrderMonoidHom.inlβ‚—_apply, OrderMonoidHom.toOrderHom_eq_coe, OrderMonoidHom.coe_comp_monoidHom, OrderMonoidHom.coe_mul, OrderMonoidHom.fstβ‚—_apply, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, OrderMonoidHom.coe_comp, OrderMonoidHom.commute_inlβ‚—_inrβ‚—, OrderMonoidWithZeroHom.toOrderMonoidHom_injective, OrderMonoidHom.snd_comp_inl, OrderMonoidHom.snd_apply, OrderMonoidHom.inl_apply, OrderMonoidHom.coe_id, OrderMonoidHom.fst_apply, OrderMonoidHom.coe_one, LocallyFiniteOrder.orderMonoidHom_strictMono, OrderMonoidHom.coe_monoidHom, OrderMonoidHom.coe_comp_orderHom, OrderMonoidWithZeroHom.coe_copy, OrderMonoidHom.fst_comp_inr, OrderMonoidHom.inr_apply, OrderMonoidHom.coe_mk, MulArchimedeanClass.orderHom_mk, OrderMonoidHom.coe_orderHom, OrderMonoidHom.comp_mul, OrderMonoidHom.toOrderHom_injective, OrderMonoidHom.one_comp
OrderMonoidIso πŸ“–CompData
62 mathmath: OrderMonoidIso.apply_symm_apply, OrderMonoidIso.val_inv_unitsWithZero_symm_apply, OrderMonoidIso.withZero_symm_apply_symm_apply, OrderMonoidIso.withZero_symm_apply_apply, OrderMonoidIso.val_unitsCongr_symm_apply, OrderMonoidIso.trans_apply, Submonoid.topOrderMonoidIso_symm_apply_coe, OrderMonoidIso.invFun_eq_symm, ValuativeRel.nonempty_orderIso_withZeroMul_int_iff, OrderMonoidIso.instMulEquivClass, OrderMonoidIso.val_unitsCongr_apply, OrderMonoidIso.coe_mulEquiv, OrderMonoidIso.symm_apply_apply, OrderMonoidIso.symm_comp_self, OrderMonoidIso.val_inv_unitsCongr_symm_apply, OrderMonoidIso.withZeroUnits_symm_apply, OrderMonoidIso.withZeroUnits_apply, OrderMonoidIso.equivLike_inv_eq_symm, OrderMonoidIso.val_unitsWithZero_symm_apply, OrderMonoidIso.coe_mk, OrderMonoidIso.eq_symm_apply, OrderMonoidIso.withZero_apply_symm_apply, OrderMonoidIso.symm_comp_eq, OrderMonoidIso.coe_orderIso, LinearOrderedCommGroup.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete, PNat.equivNonZeroDivisorsNat_symm_apply_coe, OrderMonoidIso.unitsWithZero_apply, OrderMonoidIso.toMulEquiv_eq_coe, OrderMonoidIso.strictMono_symm, OrderMonoidIso.toOrderIso_injective, OrderMonoidIso.val_inv_unitsCongr_apply, OrderMonoidIso.withZero_apply_apply, OrderMonoidIso.toOrderIso_eq_coe, LinearOrderedCommGroup.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete, OrderMonoidIso.self_comp_symm, OrderMonoidIso.apply_eq_iff_symm_apply, OrderMonoidIso.coe_trans_orderIso, OrderMonoidIso.comp_symm_eq, OrderMonoidIso.symm_apply_eq, OrderMonoidIso.toFun_eq_coe, OrderMonoidIso.instOrderIsoClass, PNat.equivNonZeroDivisorsNat_apply_coe, OrderMonoidIso.strictMono, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero, OrderMonoidIso.coe_toEquiv_symm, Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange, OrderMonoidIso.coe_trans, OrderMonoidIso.coe_refl, OrderMonoidIso.toMulEquiv_injective, OrderMonoidIso.symm_bijective, OrderMonoidIso.eq_symm_comp, Submonoid.topOrderMonoidIso_apply, LinearOrderedCommGroupWithZero.discrete_iff_not_denselyOrdered, LinearOrderedCommGroup.discrete_or_denselyOrdered, LinearOrderedCommGroup.discrete_iff_not_denselyOrdered, LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero, OrderMonoidIso.eq_comp_symm, OrderMonoidIso.toEquiv_symm, LinearOrderedCommGroupWithZero.discrete_or_denselyOrdered, OrderMonoidIso.ext_iff, LinearOrderedCommGroup.isCyclic_iff_nonempty_equiv_int, OrderMonoidIso.coe_trans_mulEquiv
instCoeTCOrderAddMonoidHomOfOrderHomClassOfAddMonoidHomClass πŸ“–CompOpβ€”
instCoeTCOrderAddMonoidIsoOfOrderIsoClassOfAddEquivClass πŸ“–CompOpβ€”
instCoeTCOrderMonoidHomOfOrderHomClassOfMonoidHomClass πŸ“–CompOpβ€”
instCoeTCOrderMonoidIsoOfOrderIsoClassOfMulEquivClass πŸ“–CompOpβ€”
Β«term_β†’*o_Β» πŸ“–CompOpβ€”
Β«term_β†’+o_Β» πŸ“–CompOpβ€”
Β«term_≃*o_Β» πŸ“–CompOpβ€”
Β«term_≃+o_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_iff_map_nonneg πŸ“–mathematicalβ€”Antitone
PartialOrder.toPreorder
DFunLike.coe
Preorder.toLE
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”monotone_comp_ofDual_iff
monotone_iff_map_nonneg
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
antitone_iff_map_nonpos πŸ“–mathematicalβ€”Antitone
PartialOrder.toPreorder
DFunLike.coe
Preorder.toLE
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”monotone_toDual_comp_iff
monotone_iff_map_nonneg
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
map_nonneg πŸ“–mathematicalPreorder.toLEDFunLike.coeβ€”map_zero
OrderHomClass.mono
map_nonpos πŸ“–mathematicalPreorder.toLEDFunLike.coeβ€”map_zero
OrderHomClass.mono
monotone_iff_map_nonneg πŸ“–mathematicalβ€”Monotone
PartialOrder.toPreorder
DFunLike.coe
Preorder.toLE
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”map_zero
AddMonoidHomClass.toZeroHomClass
sub_add_cancel
map_add
AddMonoidHomClass.toAddHomClass
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_nonneg
monotone_iff_map_nonpos πŸ“–mathematicalβ€”Monotone
PartialOrder.toPreorder
DFunLike.coe
Preorder.toLE
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”antitone_comp_ofDual_iff
antitone_iff_map_nonpos
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
strictAnti_iff_map_neg πŸ“–mathematicalβ€”StrictAnti
PartialOrder.toPreorder
DFunLike.coe
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”strictMono_toDual_comp_iff
strictMono_iff_map_pos
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
strictAnti_iff_map_pos πŸ“–mathematicalβ€”StrictAnti
PartialOrder.toPreorder
DFunLike.coe
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”strictMono_comp_ofDual_iff
strictMono_iff_map_pos
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
strictMono_iff_map_neg πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
DFunLike.coe
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”strictAnti_comp_ofDual_iff
strictAnti_iff_map_neg
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
strictMono_iff_map_pos πŸ“–mathematicalβ€”StrictMono
PartialOrder.toPreorder
DFunLike.coe
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”map_zero
AddMonoidHomClass.toZeroHomClass
sub_add_cancel
map_add
AddMonoidHomClass.toAddHomClass
lt_add_of_pos_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_pos

---

← Back to Index