Documentation Verification Report

Ring

πŸ“ Source: Mathlib/Algebra/Order/Hom/Ring.lean

Statistics

MetricCount
DefinitionsRing, Ring, OrderRingHom, comp, copy, id, instFunLike, instInhabited, instPartialOrder, instPreorder, toOrderAddMonoidHom, toOrderMonoidWithZeroHom, toRingHom, toOrderRingHom, OrderRingIso, symm_apply, instEquivLike, instInhabited, refl, toOrderIso, toOrderRingHom, toRingEquiv, trans, toOrderRingIso, instCoeTCOrderRingHomOfOrderHomClassOfRingHomClass, instCoeTCOrderRingIsoOfOrderIsoClassOfRingEquivClass, Β«term_β†’+*o_Β», Β«term_≃+*o_Β»
28
Theoremscancel_left, cancel_right, coe_coe_orderAddMonoidHom, coe_coe_orderMonoidWithZeroHom, coe_coe_ringHom, coe_comp, coe_copy, coe_id, coe_orderAddMonoidHom_apply, coe_orderAddMonoidHom_id, coe_orderMonoidWithZeroHom_apply, coe_orderMonoidWithZeroHom_id, coe_ringHom_apply, coe_ringHom_id, comp_apply, comp_assoc, comp_id, copy_eq, ext, ext_iff, id_apply, id_comp, instOrderHomClass, instRingHomClass, monotone', toFun_eq_coe, toOrderAddMonoidHom_eq_coe, toOrderMonoidWithZeroHom_eq_coe, toRingHom_eq_coe, apply_symm_apply, coe_mk, coe_orderIso_refl, coe_ringEquiv_refl, coe_toOrderIso, coe_toOrderRingHom, coe_toOrderRingHom_refl, coe_toRingEquiv, ext, ext_iff, instOrderIsoClass, instRingEquivClass, lt_symm_apply, map_le_map_iff', mk_coe, refl_apply, self_trans_symm, symm_apply_apply, symm_apply_lt, symm_bijective, symm_symm, symm_trans_self, toFun_eq_coe, toOrderIso_eq_coe, toOrderRingHom_eq_coe, toOrderRingHom_injective, toRingEquiv_eq_coe, trans_apply, trans_toRingEquiv, trans_toRingEquiv_aux
59
Total87

Algebra.Extension

Definitions

NameCategoryTheorems
Ring πŸ“–CompOp
98 mathmath: Algebra.Presentation.differentials.comm₁₂_single, Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, ofSurjective_Ring, H1Cotangent.equiv_apply, Algebra.Generators.cotangentSpaceBasis_apply, Algebra.Presentation.differentials.comm₂₃, Cotangent.val_sub, formallySmooth_iff_split_injection, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, CotangentSpace.map_id, Algebra.Presentation.differentials.hom₁_single, Algebra.Generators.exists_presentation_of_basis_cotangent, lTensor_cotangentComplex_eq_cotangentComplexBaseChange, Algebra.Generators.cotangentSpaceBasis_repr_one_tmul, Cotangent.val_mk, Algebra.Generators.Hom.toExtensionHom_toAlgHom_apply, subsingleton_h1Cotangent, Algebra.Generators.exists_presentation_of_free_cotangent, CotangentSpace.map_tmul, H1Cotangent.val_zero, Cotangent.val_smul''', Cotangent.val_add, instIsScalarTowerRing, algebraMap_surjective, Algebra.Generators.CotangentSpace.compEquiv_symm_zero, Algebra.Generators.cotangentSpaceBasis_repr_tmul, isScalarTower, Hom.sub_one_tmul, Algebra.Generators.H1Cotangent.Ξ΄Aux_toAlgHom, Hom.id_toRingHom, CotangentSpace.map_toInfinitesimal_bijective, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, Cotangent.mk_eq_zero_iff, CotangentSpace.map_sub_map, Hom.toRingHom_algebraMap, CotangentSpace.map_cotangentComplex, cotangentComplexBaseChange_eq_lTensor_cotangentComplex, Algebra.Generators.H1Cotangent.Ξ΄Aux_ofComp, Algebra.Presentation.differentials.comm₂₃', Cotangent.val_smul', contangentEquiv_tmul, ker_infinitesimal, Algebra.Generators.cMulXSubOneCotangent_eq, h1CotangentΞΉ_ext_iff, Algebra.Generators.toKaehler_tmul_D, H1Cotangent.val_add, H1Cotangent.val_smul, Algebra.Presentation.differentials.comm₁₂, Cotangent.mk_eq_mk_iff_sub_mem, instIsScalarTowerRing_1, toKaehler_surjective, Algebra.Generators.disjoint_ker_toKaehler_of_linearIndependent, Cotangent.mk_surjective, Algebra.Generators.CotangentSpace.exact, Hom.subToKer_apply_coe, Algebra.Generators.repr_CotangentSpaceMap, H1Cotangent.map_apply_coe, Algebra.Generators.toKaehler_cotangentSpaceBasis, Cotangent.val_smul, Hom.algebraMap_toRingHom, Algebra.Generators.CotangentSpace.compEquiv_symm_inr, algebraMap_Οƒ, Hom.sub_aux, h1CotangentΞΉ_apply, cotangentComplex_injective_iff, Οƒ_injective, Algebra.Generators.cotangentRestrict_mk, Algebra.Generators.CotangentSpace.map_toComp_injective, Cotangent.val_zero, Algebra.Generators.toExtension_Ring, Hom.sub_tmul, Cotangent.of_add, Algebra.SubmersivePresentation.sectionCotangent_comp, Οƒ_smul, Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range, Algebra.Generators.instFreeCotangentSpaceToExtension, Algebra.Generators.CotangentSpace.fst_compEquiv_apply, instIsScalarTowerRing_2, self_Ring, Algebra.SubmersivePresentation.cotangentComplex_injective, Algebra.SubmersivePresentation.basisCotangent_apply, Cotangent.map_mk, CotangentSpace.map_comp, exact_cotangentComplex_toKaehler, Algebra.Generators.CotangentSpace.map_ofComp_surjective, Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange, Algebra.Generators.CotangentSpace.fst_compEquiv, CotangentSpace.map_comp_apply, Algebra.Generators.H1Cotangent.equiv_apply, CotangentSpace.map_comp_cotangentComplex, Cotangent.ker_mk, Hom.comp_toRingHom, Hom.toAlgHom_id, Hom.toAlgHom_apply, Cotangent.map_sub_map, Cotangent.of_zero, cotangentComplex_mk, Cotangent.val_smul''

Algebra.Generators

Definitions

NameCategoryTheorems
Ring πŸ“–CompOp
70 mathmath: Algebra.PreSubmersivePresentation.cotangentComplexAux_apply, H1Cotangent.Ξ΄Aux_mul, cotangentSpaceBasis_apply, toAlgHom_ofComp_localizationAway, Algebra.Presentation.localizationAway_relation, Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff, Algebra.PreSubmersivePresentation.jacobiMatrix_reindex, defaultHom_val, compLocalizationAwayAlgHom_toAlgHom_toComp, Algebra.SubmersivePresentation.map_jacobianOfHasCoeffs, algebraMap_surjective, Algebra.Presentation.quotientEquiv_symm, H1Cotangent.Ξ΄Aux_C, map_toComp_ker, Hom.toExtensionHom_toAlgHom_apply, ofComp_val, algebraMap_apply, compLocalizationAwayAlgHom_X_inl, map_ofComp_ker, Algebra.SubmersivePresentation.ofSubsingleton_relation, Algebra.SubmersivePresentation.jacobianRelations_spec, H1Cotangent.Ξ΄Aux_monomial, toAlgHom_ofComp_surjective, Hom.algebraMap_toAlgHom', cotangentSpaceBasis_repr_tmul, H1Cotangent.Ξ΄Aux_toAlgHom, sq_ker_comp_le_ker_compLocalizationAwayAlgHom, Algebra.Presentation.span_range_relation_eq_ker, Hom.toAlgHom_X, Algebra.Presentation.comp_relation, instIsScalarTowerRing, H1Cotangent.Ξ΄Aux_ofComp, toAlgHom_ofComp_rename, ker_localizationAway, Algebra.Presentation.fg_ker, Οƒ_smul, Algebra.Presentation.relation_mem_ker, Hom.toExtensionHom_toRingHom, MvPolynomial.universalFactorizationMapPresentation_relation, Οƒ_injective, toKaehler_tmul_D, Hom.toAlgHom_C, Hom.toAlgHom_comp_apply, toComp_toAlgHom_monomial, H1Cotangent.Ξ΄Aux_X, ofComp_kerCompPreimage, Hom.equivAlgHom_symm_apply_val, Algebra.SubmersivePresentation.exists_sum_eq_Οƒ_jacobian_mul_Οƒ_jacobian_inv_sub_one, ker_comp_eq_sup, ofComp_toAlgHom_monomial_sumElim, cotangentRestrict_mk, H1Cotangent.Ξ΄_eq_Ξ΄Aux, Hom.toAlgHom_id, Hom.comp_val, compLocalizationAwayAlgHom_relation_eq_zero, toExtension_Ring, Algebra.Presentation.HasCoeffs.relation_mem_range_map, fg_ker_of_finitePresentation, Hom.toAlgHom_monomial, Algebra.Presentation.quotientEquiv_mk, StandardEtalePresentation.toPresentation_relation, Algebra.PreSubmersivePresentation.localizationAway_jacobiMatrix, Hom.algebraMap_toAlgHom, Algebra.Presentation.instFinitePresentationQuotientOfFinite, H1Cotangent.equiv_apply, Algebra.PreSubmersivePresentation.jacobian_eq_jacobiMatrix_det, Algebra.PreSubmersivePresentation.baseChange_ring, Algebra.Presentation.mem_ker_naive, Hom.equivAlgHom_apply_coe, C_mul_X_sub_one_mem_ker

OrderRingHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
7 mathmath: comp_id, cancel_right, coe_comp, cancel_left, comp_assoc, comp_apply, id_comp
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
id πŸ“–CompOp
9 mathmath: eq_id, comp_id, coe_orderAddMonoidHom_id, coe_orderMonoidWithZeroHom_id, coe_id, coe_ringHom_id, OrderRingIso.coe_toOrderRingHom_refl, id_apply, id_comp
instFunLike πŸ“–CompOp
93 mathmath: coe_orderAddMonoidHom_apply, Cardinal.natCast_lt_toENat_iff, ArchimedeanClass.FiniteResidueField.mk_ratCast, Subring.orderedSubtype_coe, Set.toENat_cardinalMk_subtype, Cardinal.toENat_eq_natCast_iff, Cardinal.toENat_ofENat, Module.length_of_free, ArchimedeanClass.FiniteResidueField.ofArchimedean_apply, ArchimedeanClass.FiniteResidueField.mk_eq_zero, OrderRingIso.coe_toOrderRingHom, Submodule.spanRank_toENat_eq_iInf_encard, Cardinal.toENat_eq_zero, apply_eq_self, Cardinal.toENat_eq_ofNat, coe_coe_ringHom, coe_orderAddMonoidHom_id, Cardinal.toENat_lt_natCast_iff, Cardinal.toENat_lift, Cardinal.toENat_le_ofNat, ArchimedeanClass.stdPart_eq_sInf, ArchimedeanClass.mk_map_nonneg_of_archimedean, ArchimedeanClass.FiniteResidueField.ofArchimedean_inj, coe_comp, Ideal.height_le_spanRank_toENat_of_mem_minimal_primes, ArchimedeanClass.stdPart_map_real, ArchimedeanClass.lt_of_pos_of_archimedean, ArchimedeanClass.mk_sub_stdPart_pos, instOrderHomClass, ArchimedeanClass.FiniteResidueField.ofArchimedean_injective, LinearOrderedField.inducedOrderRingHom_toFun, ext_iff, coe_orderMonoidWithZeroHom_id, ArchimedeanClass.lt_of_lt_stdPart, coe_coe_orderMonoidWithZeroHom, toOrderMonoidWithZeroHom_eq_coe, toFun_eq_coe, coe_id, Cardinal.toNat_toENat, ArchimedeanClass.FiniteResidueField.mk_eq_mk, ArchimedeanClass.lt_of_stdPart_lt, toOrderAddMonoidHom_eq_coe, toENat_rank_span_set, instRingHomClass, Cardinal.toENat_strictMonoOn, coe_ringHom_id, Submodule.spanRank_toENat_eq_iInf_finset_card, coe_coe_orderAddMonoidHom, Cardinal.continuum_toENat, ArchimedeanClass.FiniteResidueField.mk_le_mk, coe_ringHom_apply, toRingHom_eq_coe, Cardinal.toENat_le_iff_of_le_aleph0, Cardinal.toENat_eq_top, ArchimedeanClass.ofArchimedean_stdPart, Cardinal.toENat_le_natCast_iff, Set.toENat_cardinalMk, Cardinal.enat_gc, ArchimedeanClass.lt_of_neg_of_archimedean, ArchimedeanClass.mk_le_mk_add_of_archimedean, Cardinal.toENat_le_nat, ArchimedeanClass.mk_sub_pos_iff, coe_orderMonoidWithZeroHom_apply, ArchimedeanClass.mk_le_add_mk_of_archimedean, ArchimedeanClass.FiniteResidueField.mk_lt_mk, Cardinal.toENat_comp_ofENat, Cardinal.toENat_le_iff_of_lt_aleph0, ArchimedeanClass.FiniteResidueField.ordConnected_preimage_mk, Cardinal.ofENat_toENat_le, Cardinal.toENat_le_one, Cardinal.toENat_injOn, LinearIndepOn.encard_le_toENat_rank, Cardinal.toENat_eq_nat, Cardinal.ofENat_toENat_eq_self, Cardinal.ofENat_toENat, id_apply, Cardinal.aleph_toENat, comp_apply, Cardinal.toENat_eq_iff_of_le_aleph0, ArchimedeanClass.stdPart_of_mk_nonneg, Ideal.height_le_spanRank_toENat, Cardinal.natCast_eq_toENat_iff, Cardinal.toENat_nat, Matroid.toENat_cRank_eq, ArchimedeanClass.mk_map_of_archimedean', Cardinal.natCast_le_toENat_iff, Module.length_eq_rank, Cardinal.toENat_lt_top, Cardinal.toENat_congr, Matroid.toENat_cRk_eq, Cardinal.toENat_eq_one, ArchimedeanClass.stdPart_eq_sSup, Hyperreal.coeRingHom_toFun
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
instPreorder πŸ“–CompOpβ€”
toOrderAddMonoidHom πŸ“–CompOp
1 mathmath: toOrderAddMonoidHom_eq_coe
toOrderMonoidWithZeroHom πŸ“–CompOp
1 mathmath: toOrderMonoidWithZeroHom_eq_coe
toRingHom πŸ“–CompOp
3 mathmath: toFun_eq_coe, monotone', toRingHom_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
OrderRingHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
OrderRingHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_coe_orderAddMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
OrderAddMonoidHom.instFunLike
OrderMonoidHomClass.toOrderAddMonoidHom
OrderRingHom
instFunLike
instOrderHomClass
RingHomClass.toAddMonoidHomClass
instRingHomClass
β€”instOrderHomClass
RingHomClass.toAddMonoidHomClass
instRingHomClass
coe_coe_orderMonoidWithZeroHom πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
OrderMonoidWithZeroHom.instFunLike
OrderMonoidWithZeroHomClass.toOrderMonoidWithZeroHom
OrderRingHom
instFunLike
instOrderHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
β€”instOrderHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
coe_coe_ringHom πŸ“–mathematicalβ€”DFunLike.coe
RingHom
RingHom.instFunLike
RingHomClass.toRingHom
OrderRingHom
instFunLike
instRingHomClass
β€”instRingHomClass
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
OrderRingHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
instFunLike
id
β€”β€”
coe_orderAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
OrderAddMonoidHom.instFunLike
OrderMonoidHomClass.toOrderAddMonoidHom
OrderRingHom
instFunLike
instOrderHomClass
RingHomClass.toAddMonoidHomClass
instRingHomClass
β€”instOrderHomClass
RingHomClass.toAddMonoidHomClass
instRingHomClass
coe_orderAddMonoidHom_id πŸ“–mathematicalβ€”OrderMonoidHomClass.toOrderAddMonoidHom
OrderRingHom
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instFunLike
instOrderHomClass
RingHomClass.toAddMonoidHomClass
instRingHomClass
id
OrderAddMonoidHom.id
β€”instOrderHomClass
RingHomClass.toAddMonoidHomClass
instRingHomClass
coe_orderMonoidWithZeroHom_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderMonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
OrderMonoidWithZeroHom.instFunLike
OrderMonoidWithZeroHomClass.toOrderMonoidWithZeroHom
OrderRingHom
instFunLike
instOrderHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
β€”instOrderHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
coe_orderMonoidWithZeroHom_id πŸ“–mathematicalβ€”OrderMonoidWithZeroHomClass.toOrderMonoidWithZeroHom
OrderRingHom
NonAssocSemiring.toMulZeroOneClass
instFunLike
instOrderHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
id
OrderMonoidWithZeroHom.id
β€”instOrderHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
coe_ringHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
RingHom.instFunLike
RingHomClass.toRingHom
OrderRingHom
instFunLike
instRingHomClass
β€”instRingHomClass
coe_ringHom_id πŸ“–mathematicalβ€”RingHomClass.toRingHom
OrderRingHom
instFunLike
instRingHomClass
id
RingHom.id
β€”instRingHomClass
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
copy_eq πŸ“–mathematicalDFunLike.coe
OrderRingHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
OrderRingHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
instOrderHomClass πŸ“–mathematicalβ€”OrderHomClass
OrderRingHom
Preorder.toLE
instFunLike
β€”monotone'
instRingHomClass πŸ“–mathematicalβ€”RingHomClass
OrderRingHom
instFunLike
β€”MonoidHom.map_mul'
OneHom.map_one'
RingHom.map_add'
RingHom.map_zero'
monotone' πŸ“–mathematicalβ€”Monotone
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.toOneHom
RingHom.toMonoidHom
toRingHom
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.toOneHom
RingHom.toMonoidHom
toRingHom
DFunLike.coe
OrderRingHom
instFunLike
β€”β€”
toOrderAddMonoidHom_eq_coe πŸ“–mathematicalβ€”toOrderAddMonoidHom
OrderMonoidHomClass.toOrderAddMonoidHom
OrderRingHom
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instFunLike
instOrderHomClass
RingHomClass.toAddMonoidHomClass
instRingHomClass
β€”β€”
toOrderMonoidWithZeroHom_eq_coe πŸ“–mathematicalβ€”toOrderMonoidWithZeroHom
OrderMonoidWithZeroHomClass.toOrderMonoidWithZeroHom
OrderRingHom
NonAssocSemiring.toMulZeroOneClass
instFunLike
instOrderHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
β€”β€”
toRingHom_eq_coe πŸ“–mathematicalβ€”toRingHom
RingHomClass.toRingHom
OrderRingHom
instFunLike
instRingHomClass
β€”RingHom.ext
instRingHomClass

OrderRingHomClass

Definitions

NameCategoryTheorems
toOrderRingHom πŸ“–CompOp
3 mathmath: OrderRingIso.coe_toOrderRingHom, OrderRingIso.coe_toOrderRingHom_refl, OrderRingIso.toOrderRingHom_eq_coe

OrderRingIso

Definitions

NameCategoryTheorems
instEquivLike πŸ“–CompOp
27 mathmath: ext_iff, trans_toRingEquiv_aux, apply_symm_apply, Valuation.IsEquiv.orderRingIso_apply, coe_toOrderRingHom, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_apply, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_symm_apply, toRingEquiv_eq_coe, coe_ringEquiv_refl, trans_apply, coe_mk, symm_apply_apply, toOrderIso_eq_coe, lt_symm_apply, apply_eq_self, coe_toOrderRingHom_refl, LinearOrderedField.coe_inducedOrderRingIso, toOrderRingHom_eq_coe, refl_apply, instRingEquivClass, symm_apply_lt, instOrderIsoClass, coe_toOrderIso, coe_toRingEquiv, toFun_eq_coe, coe_orderIso_refl, Valuation.IsEquiv.orderRingIso_symm_apply
instInhabited πŸ“–CompOpβ€”
refl πŸ“–CompOp
8 mathmath: LinearOrderedField.inducedOrderRingIso_self, eq_refl, coe_ringEquiv_refl, coe_toOrderRingHom_refl, self_trans_symm, symm_trans_self, refl_apply, coe_orderIso_refl
toOrderIso πŸ“–CompOp
1 mathmath: toOrderIso_eq_coe
toOrderRingHom πŸ“–CompOp
2 mathmath: toOrderRingHom_injective, toOrderRingHom_eq_coe
toRingEquiv πŸ“–CompOp
5 mathmath: trans_toRingEquiv_aux, toRingEquiv_eq_coe, trans_toRingEquiv, map_le_map_iff', toFun_eq_coe
trans πŸ“–CompOp
5 mathmath: trans_toRingEquiv_aux, trans_apply, trans_toRingEquiv, self_trans_symm, symm_trans_self

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderRingIso
EquivLike.toFunLike
instEquivLike
symm
β€”RingEquiv.apply_symm_apply
coe_mk πŸ“–mathematicalEquiv.toFun
RingEquiv.toEquiv
DFunLike.coe
OrderRingIso
EquivLike.toFunLike
instEquivLike
RingEquiv
RingEquiv.instEquivLike
β€”β€”
coe_orderIso_refl πŸ“–mathematicalβ€”OrderIsoClass.toOrderIso
OrderRingIso
instEquivLike
instOrderIsoClass
refl
OrderIso.refl
β€”instOrderIsoClass
coe_ringEquiv_refl πŸ“–mathematicalβ€”RingEquivClass.toRingEquiv
OrderRingIso
instEquivLike
instRingEquivClass
refl
RingEquiv.refl
β€”instRingEquivClass
coe_toOrderIso πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
instFunLikeOrderIso
OrderIsoClass.toOrderIso
OrderRingIso
instEquivLike
instOrderIsoClass
EquivLike.toFunLike
β€”instOrderIsoClass
coe_toOrderRingHom πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
OrderRingHom.instFunLike
OrderRingHomClass.toOrderRingHom
OrderRingIso
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
Preorder.toLE
EquivLike.toFunLike
instEquivLike
OrderIsoClass.toOrderHomClass
instOrderIsoClass
RingEquivClass.toRingHomClass
instRingEquivClass
β€”OrderIsoClass.toOrderHomClass
instOrderIsoClass
RingEquivClass.toRingHomClass
instRingEquivClass
coe_toOrderRingHom_refl πŸ“–mathematicalβ€”OrderRingHomClass.toOrderRingHom
OrderRingIso
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
Preorder.toLE
EquivLike.toFunLike
instEquivLike
OrderIsoClass.toOrderHomClass
instOrderIsoClass
RingEquivClass.toRingHomClass
instRingEquivClass
refl
OrderRingHom.id
β€”OrderIsoClass.toOrderHomClass
instOrderIsoClass
RingEquivClass.toRingHomClass
instRingEquivClass
coe_toRingEquiv πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingEquiv
OrderRingIso
instEquivLike
instRingEquivClass
β€”instRingEquivClass
ext πŸ“–β€”DFunLike.coe
OrderRingIso
EquivLike.toFunLike
instEquivLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
OrderRingIso
EquivLike.toFunLike
instEquivLike
β€”ext
instOrderIsoClass πŸ“–mathematicalβ€”OrderIsoClass
OrderRingIso
instEquivLike
β€”map_le_map_iff'
instRingEquivClass πŸ“–mathematicalβ€”RingEquivClass
OrderRingIso
instEquivLike
β€”RingEquiv.map_mul'
RingEquiv.map_add'
lt_symm_apply πŸ“–mathematicalβ€”Preorder.toLT
DFunLike.coe
OrderRingIso
Preorder.toLE
EquivLike.toFunLike
instEquivLike
symm
β€”instOrderIsoClass
toOrderIso_eq_coe
OrderIso.lt_symm_apply
map_le_map_iff' πŸ“–mathematicalβ€”Equiv.toFun
RingEquiv.toEquiv
toRingEquiv
β€”β€”
mk_coe πŸ“–β€”Equiv.toFun
RingEquiv.toEquiv
RingEquivClass.toRingEquiv
OrderRingIso
instEquivLike
instRingEquivClass
β€”β€”instRingEquivClass
ext
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderRingIso
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
self_trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
Equiv.left_inv
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderRingIso
EquivLike.toFunLike
instEquivLike
symm
β€”RingEquiv.symm_apply_apply
symm_apply_lt πŸ“–mathematicalβ€”Preorder.toLT
DFunLike.coe
OrderRingIso
Preorder.toLE
EquivLike.toFunLike
instEquivLike
symm
β€”instOrderIsoClass
toOrderIso_eq_coe
OrderIso.symm_apply_lt
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
OrderRingIso
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
Equiv.right_inv
toFun_eq_coe πŸ“–mathematicalβ€”Equiv.toFun
RingEquiv.toEquiv
toRingEquiv
DFunLike.coe
OrderRingIso
EquivLike.toFunLike
instEquivLike
β€”β€”
toOrderIso_eq_coe πŸ“–mathematicalβ€”toOrderIso
OrderIsoClass.toOrderIso
OrderRingIso
instEquivLike
instOrderIsoClass
β€”OrderIso.ext
instOrderIsoClass
toOrderRingHom_eq_coe πŸ“–mathematicalβ€”toOrderRingHom
OrderRingHomClass.toOrderRingHom
OrderRingIso
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
Preorder.toLE
EquivLike.toFunLike
instEquivLike
OrderIsoClass.toOrderHomClass
instOrderIsoClass
RingEquivClass.toRingHomClass
instRingEquivClass
β€”β€”
toOrderRingHom_injective πŸ“–mathematicalβ€”OrderRingIso
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
Preorder.toLE
OrderRingHom
toOrderRingHom
β€”DFunLike.coe_injective
DFunLike.ext'_iff
toRingEquiv_eq_coe πŸ“–mathematicalβ€”toRingEquiv
RingEquivClass.toRingEquiv
OrderRingIso
instEquivLike
instRingEquivClass
β€”RingEquiv.ext
instRingEquivClass
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderRingIso
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
trans_toRingEquiv πŸ“–mathematicalβ€”toRingEquiv
trans
RingEquiv.trans
β€”β€”
trans_toRingEquiv_aux πŸ“–mathematicalβ€”RingEquivClass.toRingEquiv
OrderRingIso
instEquivLike
instRingEquivClass
trans
RingEquiv.trans
toRingEquiv
β€”instRingEquivClass

OrderRingIso.Simps

Definitions

NameCategoryTheorems
symm_apply πŸ“–CompOpβ€”

OrderRingIsoClass

Definitions

NameCategoryTheorems
toOrderRingIso πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
OrderRingHom πŸ“–CompData
95 mathmath: OrderRingHom.coe_orderAddMonoidHom_apply, Cardinal.natCast_lt_toENat_iff, ArchimedeanClass.FiniteResidueField.mk_ratCast, Subring.orderedSubtype_coe, Set.toENat_cardinalMk_subtype, Cardinal.toENat_eq_natCast_iff, Cardinal.toENat_ofENat, Module.length_of_free, ArchimedeanClass.FiniteResidueField.ofArchimedean_apply, ArchimedeanClass.FiniteResidueField.mk_eq_zero, OrderRingIso.coe_toOrderRingHom, Submodule.spanRank_toENat_eq_iInf_encard, Cardinal.toENat_eq_zero, OrderRingHom.apply_eq_self, Cardinal.toENat_eq_ofNat, OrderRingHom.coe_coe_ringHom, OrderRingHom.coe_orderAddMonoidHom_id, Cardinal.toENat_lt_natCast_iff, Cardinal.toENat_lift, Cardinal.toENat_le_ofNat, ArchimedeanClass.stdPart_eq_sInf, ArchimedeanClass.mk_map_nonneg_of_archimedean, ArchimedeanClass.FiniteResidueField.ofArchimedean_inj, OrderRingHom.coe_comp, Ideal.height_le_spanRank_toENat_of_mem_minimal_primes, ArchimedeanClass.stdPart_map_real, ArchimedeanClass.lt_of_pos_of_archimedean, ArchimedeanClass.mk_sub_stdPart_pos, OrderRingHom.instOrderHomClass, ArchimedeanClass.FiniteResidueField.ofArchimedean_injective, LinearOrderedField.inducedOrderRingHom_toFun, OrderRingHom.ext_iff, OrderRingHom.coe_orderMonoidWithZeroHom_id, ArchimedeanClass.lt_of_lt_stdPart, OrderRingHom.coe_coe_orderMonoidWithZeroHom, OrderRingHom.toOrderMonoidWithZeroHom_eq_coe, OrderRingHom.toFun_eq_coe, OrderRingHom.coe_id, Cardinal.toNat_toENat, ArchimedeanClass.FiniteResidueField.mk_eq_mk, ArchimedeanClass.lt_of_stdPart_lt, OrderRingHom.toOrderAddMonoidHom_eq_coe, toENat_rank_span_set, OrderRingHom.instRingHomClass, Cardinal.toENat_strictMonoOn, OrderRingHom.coe_ringHom_id, Submodule.spanRank_toENat_eq_iInf_finset_card, OrderRingHom.coe_coe_orderAddMonoidHom, Cardinal.continuum_toENat, ArchimedeanClass.FiniteResidueField.mk_le_mk, OrderRingHom.coe_ringHom_apply, OrderRingHom.toRingHom_eq_coe, Cardinal.toENat_le_iff_of_le_aleph0, Cardinal.toENat_eq_top, OrderRingIso.toOrderRingHom_injective, ArchimedeanClass.ofArchimedean_stdPart, Cardinal.toENat_le_natCast_iff, Set.toENat_cardinalMk, Cardinal.enat_gc, ArchimedeanClass.lt_of_neg_of_archimedean, ArchimedeanClass.mk_le_mk_add_of_archimedean, Cardinal.toENat_le_nat, ArchimedeanClass.mk_sub_pos_iff, OrderRingHom.coe_orderMonoidWithZeroHom_apply, OrderRingHom.subsingleton, ArchimedeanClass.mk_le_add_mk_of_archimedean, ArchimedeanClass.FiniteResidueField.mk_lt_mk, Cardinal.toENat_comp_ofENat, Cardinal.toENat_le_iff_of_lt_aleph0, ArchimedeanClass.FiniteResidueField.ordConnected_preimage_mk, Cardinal.ofENat_toENat_le, Cardinal.toENat_le_one, Cardinal.toENat_injOn, LinearIndepOn.encard_le_toENat_rank, Cardinal.toENat_eq_nat, Cardinal.ofENat_toENat_eq_self, Cardinal.ofENat_toENat, OrderRingHom.id_apply, Cardinal.aleph_toENat, OrderRingHom.comp_apply, Cardinal.toENat_eq_iff_of_le_aleph0, ArchimedeanClass.stdPart_of_mk_nonneg, Ideal.height_le_spanRank_toENat, Cardinal.natCast_eq_toENat_iff, Cardinal.toENat_nat, Matroid.toENat_cRank_eq, ArchimedeanClass.mk_map_of_archimedean', Cardinal.natCast_le_toENat_iff, Module.length_eq_rank, Cardinal.toENat_lt_top, Cardinal.toENat_congr, Matroid.toENat_cRk_eq, Cardinal.toENat_eq_one, ArchimedeanClass.stdPart_eq_sSup, Hyperreal.coeRingHom_toFun
OrderRingIso πŸ“–CompData
31 mathmath: OrderRingIso.ext_iff, OrderRingIso.trans_toRingEquiv_aux, OrderRingIso.symm_bijective, OrderRingIso.apply_symm_apply, Valuation.IsEquiv.orderRingIso_apply, OrderRingIso.coe_toOrderRingHom, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_apply, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_symm_apply, OrderRingIso.toRingEquiv_eq_coe, OrderRingIso.subsingleton_right, OrderRingIso.coe_ringEquiv_refl, OrderRingIso.trans_apply, OrderRingIso.subsingleton_left, OrderRingIso.coe_mk, OrderRingIso.symm_apply_apply, OrderRingIso.toOrderIso_eq_coe, OrderRingIso.lt_symm_apply, OrderRingIso.apply_eq_self, OrderRingIso.coe_toOrderRingHom_refl, OrderRingIso.toOrderRingHom_injective, LinearOrderedField.coe_inducedOrderRingIso, OrderRingIso.toOrderRingHom_eq_coe, OrderRingIso.refl_apply, OrderRingIso.instRingEquivClass, OrderRingIso.symm_apply_lt, OrderRingIso.instOrderIsoClass, OrderRingIso.coe_toOrderIso, OrderRingIso.coe_toRingEquiv, OrderRingIso.toFun_eq_coe, OrderRingIso.coe_orderIso_refl, Valuation.IsEquiv.orderRingIso_symm_apply
instCoeTCOrderRingHomOfOrderHomClassOfRingHomClass πŸ“–CompOpβ€”
instCoeTCOrderRingIsoOfOrderIsoClassOfRingEquivClass πŸ“–CompOpβ€”
Β«term_β†’+*o_Β» πŸ“–CompOpβ€”
Β«term_≃+*o_Β» πŸ“–CompOpβ€”

---

← Back to Index