Documentation Verification Report

HahnEmbedding

πŸ“ Source: Mathlib/Algebra/Order/Module/HahnEmbedding.lean

Statistics

MetricCount
DefinitionsArchimedeanStrata, baseDomain, instDecompositionFiniteArchimedeanClassSubtypeMemSubmoduleBaseDomainStratum', stratum, stratum', IsPartial, eval, evalCoeff, extend, extendFun, instInhabitedOfIsOrderedAddMonoid, sSup, sSupFun, toOrderAddMonoidHom, Seed, baseEmbedding, coeff, coeff', hahnCoeff, toArchimedeanStrata
20
TheoremsarchimedeanClassMk_of_mem_stratum, archimedean_stratum, ball_sup_stratum_eq, disjoint_ball_stratum, iSupIndep_stratum, iSupIndep_stratum', instNonempty, isInternal_stratum', nontrivial_stratum, stratum_ne_bot, baseEmbedding_le, strictMono, truncLT_mem_range, apply_of_mem_stratum, archimedeanClassMk_eq_iff, archimedeanClassMk_le_of_eval_eq, baseEmbedding_le_extendFun, baseEmbedding_le_sSupFun, coeff_eq_of_mem, coeff_eq_zero_of_mem, coeff_ne_zero, evalCoeff_eq, evalCoeff_eq_zero, eval_eq_truncLT, eval_lt, eval_ne, eval_smul, eval_zero, exists_domain_eq_top, exists_isMax, exists_sub_mem_ball, extendFun_strictMono, isPartial_extendFun, isPartial_sSupFun, isWF_support_evalCoeff, le_sSupFun, lt_extend, mem_domain, orderTop_eq_archimedeanClassMk, orderTop_eq_finiteArchimedeanClassMk, orderTop_eq_iff, sSupFun_strictMono, toOrderAddMonoidHom_apply, toOrderAddMonoidHom_injective, truncLT_eval_mem_range_extendFun, truncLT_mem_range_extendFun, truncLT_mem_range_sSupFun, val_sub_ne_zero, baseEmbedding_pos, baseEmbedding_strictMono, coeff_baseEmbedding, domain_baseEmbedding, hahnCoeff_apply, isPartial_baseEmbedding, mem_domain_baseEmbedding, strictMono_coeff, truncLT_mem_range_baseEmbedding, hahnEmbedding_isOrderedModule
58
Total78

HahnEmbedding

Definitions

NameCategoryTheorems
ArchimedeanStrata πŸ“–CompData
1 mathmath: ArchimedeanStrata.instNonempty
IsPartial πŸ“–CompData
10 mathmath: Partial.orderTop_eq_archimedeanClassMk, Partial.archimedeanClassMk_eq_iff, Partial.toOrderAddMonoidHom_apply, Seed.isPartial_baseEmbedding, Partial.orderTop_eq_iff, Partial.orderTop_eq_finiteArchimedeanClassMk, Partial.mem_domain, Partial.exists_domain_eq_top, Partial.exists_isMax, Partial.toOrderAddMonoidHom_injective
Seed πŸ“–CompData
1 mathmath: instNonemptySeedRatReal

HahnEmbedding.ArchimedeanStrata

Definitions

NameCategoryTheorems
baseDomain πŸ“–CompOp
3 mathmath: isInternal_stratum', iSupIndep_stratum', HahnEmbedding.Seed.domain_baseEmbedding
instDecompositionFiniteArchimedeanClassSubtypeMemSubmoduleBaseDomainStratum' πŸ“–CompOpβ€”
stratum πŸ“–CompOp
6 mathmath: HahnEmbedding.Seed.strictMono_coeff, ball_sup_stratum_eq, disjoint_ball_stratum, nontrivial_stratum, archimedean_stratum, iSupIndep_stratum
stratum' πŸ“–CompOp
2 mathmath: isInternal_stratum', iSupIndep_stratum'

Theorems

NameKindAssumesProvesValidatesDepends On
archimedeanClassMk_of_mem_stratum πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
stratum
ArchimedeanClass
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instOrderTop
β€”le_antisymm
Mathlib.Tactic.Contrapose.contraposeβ‚‚
IsOrderedModule.toPosSMulMono
FiniteArchimedeanClass.mem_ball_iff
Submodule.disjoint_def
disjoint_ball_stratum
FiniteArchimedeanClass.mem_closedBall_iff
ball_sup_stratum_eq
Submodule.mem_sup_right
archimedean_stratum πŸ“–mathematicalβ€”Archimedean
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
stratum
Submodule.addCommMonoid
Subtype.partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Submodule.toIsOrderedAddMonoid
archimedeanClassMk_of_mem_stratum
Subtype.prop
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
ball_sup_stratum_eq πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
FiniteArchimedeanClass.ball
IsOrderedModule.toPosSMulMono
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
stratum
FiniteArchimedeanClass.closedBall
β€”β€”
disjoint_ball_stratum πŸ“–mathematicalβ€”Disjoint
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
FiniteArchimedeanClass.ball
IsOrderedModule.toPosSMulMono
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
stratum
β€”β€”
iSupIndep_stratum πŸ“–mathematicalβ€”iSupIndep
FiniteArchimedeanClass
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
stratum
β€”Submodule.disjoint_def'
Submodule.mem_iSup_iff_exists_dfinsupp'
Mathlib.Tactic.Contrapose.contrapose₁
DFinsupp.sum.eq_1
Set.mem_of_mem_of_subset
Subtype.prop
instIsConcreteLE
archimedeanClassMk_of_mem_stratum
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
ArchimedeanClass.mk_sum
Finset.min'_mem
Subtype.coe_ne_coe
iSup_congr_Prop
iSup_neg
Finset.sum_congr
iSupIndep_stratum' πŸ“–mathematicalβ€”iSupIndep
FiniteArchimedeanClass
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
baseDomain
Submodule.addCommMonoid
Submodule.module
Submodule.completeLattice
stratum'
β€”iSupIndep_map_orderIso_iff
iSupIndep.of_coe_Iic_comp
Submodule.map_comap_subtype
le_iSup
iSupIndep_stratum
instNonempty πŸ“–mathematicalβ€”HahnEmbedding.ArchimedeanStrataβ€”IsOrderedModule.toPosSMulMono
IsModularLattice.exists_disjoint_and_sup_eq
Submodule.instIsModularLattice
Submodule.complementedLattice
LT.lt.le
FiniteArchimedeanClass.ball_lt_closedBall
isInternal_stratum' πŸ“–mathematicalβ€”DirectSum.IsInternal
FiniteArchimedeanClass
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
baseDomain
Submodule.addCommMonoid
Submodule.module
ArchimedeanClass
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instOrderTop
LinearOrder.toDecidableEq
Submodule.addSubmonoidClass
stratum'
β€”DirectSum.isInternal_submodule_of_iSupIndep_of_iSup_eq_top
iSupIndep_stratum'
Submodule.map_injective_of_injective
RingHomSurjective.ids
Submodule.subtype_injective
iSup_congr
le_iSup
Submodule.map_iSup
Submodule.map_comap_subtype
Submodule.map_top
Submodule.range_subtype
nontrivial_stratum πŸ“–mathematicalβ€”Nontrivial
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
stratum
β€”Submodule.nontrivial_iff_ne_bot
stratum_ne_bot
stratum_ne_bot πŸ“–β€”β€”β€”β€”Eq.not_lt
IsOrderedModule.toPosSMulMono
ball_sup_stratum_eq
sup_of_le_left
FiniteArchimedeanClass.ball_lt_closedBall

HahnEmbedding.IsPartial

Theorems

NameKindAssumesProvesValidatesDepends On
baseEmbedding_le πŸ“–mathematicalHahnEmbedding.IsPartialLinearPMap
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap.le
HahnEmbedding.Seed.baseEmbedding
β€”AddCommGroup.add_comm
strictMono πŸ“–mathematicalHahnEmbedding.IsPartialStrictMono
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
Subtype.preorder
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
LinearPMap.toFun'
β€”AddCommGroup.add_comm
truncLT_mem_range πŸ“–mathematicalHahnEmbedding.IsPartialLex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Submodule
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toSemiring
DivisionRing.toRing
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
SetLike.instMembership
Submodule.setLike
LinearMap.range
LinearPMap.domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearPMap.toFun
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
HahnSeries.instAddCommMonoid
LinearMap.instFunLike
HahnSeries.truncLTLinearMap
Subtype.decidableLT
LinearOrder.toDecidableLT
ofLex
LinearPMap.toFun'
β€”AddCommGroup.add_comm

HahnEmbedding.Partial

Definitions

NameCategoryTheorems
eval πŸ“–CompOp
5 mathmath: eval_smul, eval_lt, eval_zero, eval_eq_truncLT, truncLT_eval_mem_range_extendFun
evalCoeff πŸ“–CompOp
3 mathmath: isWF_support_evalCoeff, evalCoeff_eq_zero, evalCoeff_eq
extend πŸ“–CompOp
1 mathmath: lt_extend
extendFun πŸ“–CompOp
5 mathmath: truncLT_mem_range_extendFun, extendFun_strictMono, isPartial_extendFun, baseEmbedding_le_extendFun, truncLT_eval_mem_range_extendFun
instInhabitedOfIsOrderedAddMonoid πŸ“–CompOpβ€”
sSup πŸ“–CompOpβ€”
sSupFun πŸ“–CompOp
5 mathmath: baseEmbedding_le_sSupFun, isPartial_sSupFun, truncLT_mem_range_sSupFun, le_sSupFun, sSupFun_strictMono
toOrderAddMonoidHom πŸ“–CompOp
2 mathmath: toOrderAddMonoidHom_apply, toOrderAddMonoidHom_injective

Theorems

NameKindAssumesProvesValidatesDepends On
apply_of_mem_stratum πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
HahnEmbedding.ArchimedeanStrata.stratum
HahnEmbedding.Seed.toArchimedeanStrata
Ring.toSemiring
DivisionRing.toRing
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
LinearPMap.toFun'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
ZeroHom
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
HahnEmbedding.Seed.coeff
β€”AddCommGroup.add_comm
HahnEmbedding.Seed.mem_domain_baseEmbedding
HahnEmbedding.IsPartial.baseEmbedding_le
Subtype.prop
DFinsupp.sum_single_index
Equiv.injective
ofLex_toLex
HahnSeries.ext
HahnEmbedding.Seed.coeff_baseEmbedding
eq_or_ne
DFinsupp.single_apply
HahnSeries.coeff_single_same
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
HahnSeries.coeff_single_of_ne
archimedeanClassMk_eq_iff πŸ“–mathematicalβ€”Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
HahnSeries.instLinearOrderLex
Subtype.instLinearOrder
HahnSeries.instIsOrderedAddMonoidLex
AddCommGroup.toAddCommMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
AddCommGroup.toAddCancelCommMonoid
IsOrderedAddMonoid.toAddLeftMono
LinearPMap.toFun'
DivisionRing.toRing
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
Submodule
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
β€”HahnSeries.instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Submodule.toIsOrderedAddMonoid
ArchimedeanClass.orderHom_injective
toOrderAddMonoidHom_injective
archimedeanClassMk_le_of_eval_eq πŸ“–mathematicaleval
LinearPMap.toFun'
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap
HahnEmbedding.IsPartial
SubNegMonoid.toSub
Submodule
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
β€”Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.zero_termg
ArchimedeanClass.mk_left_le_mk_add
evalCoeff_eq
IsOrderedModule.toPosSMulMono
ArchimedeanClass.mk_sub_comm
Submodule.addSubgroupClass
LinearPMap.map_sub
ofLex_sub
HahnSeries.coeff_sub
sub_eq_zero
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
coeff_ne_zero
baseEmbedding_le_extendFun πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
AddCommGroup.add_comm
LinearPMap.le
HahnEmbedding.Seed.baseEmbedding
extendFun
β€”AddCommGroup.add_comm
extendFun.eq_1
le_trans
HahnEmbedding.IsPartial.baseEmbedding_le
Subtype.prop
LinearPMap.left_le_sup
baseEmbedding_le_sSupFun πŸ“–mathematicalSet.Nonempty
HahnEmbedding.Partial
DirectedOn
LinearPMap
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap.le
HahnEmbedding.IsPartial
AddCommGroup.add_comm
HahnEmbedding.Seed.baseEmbedding
sSupFun
β€”AddCommGroup.add_comm
le_trans
HahnEmbedding.IsPartial.baseEmbedding_le
Subtype.prop
le_sSupFun
coeff_eq_of_mem πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
FiniteArchimedeanClass.ball
IsOrderedModule.toPosSMulMono
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SubNegMonoid.toSub
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
ArchimedeanClass.instOrderTop
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
HahnSeries.coeff
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
LinearPMap.toFun'
β€”IsOrderedModule.toPosSMulMono
eq_of_sub_eq_zero
HahnSeries.coeff_sub
ofLex_sub
Submodule.addSubgroupClass
LinearPMap.map_sub
coeff_eq_zero_of_mem
sub_sub_sub_cancel_right
Submodule.sub_mem
coeff_eq_zero_of_mem πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
FiniteArchimedeanClass.ball
IsOrderedModule.toPosSMulMono
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
ArchimedeanClass.instOrderTop
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
HahnSeries.coeff
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
LinearPMap.toFun'
β€”IsOrderedModule.toPosSMulMono
eq_or_ne
LinearPMap.map_zero
HahnSeries.coeff_eq_zero_of_lt_orderTop
Mathlib.Tactic.ApplyFun.lt_of_lt
orderTop_eq_archimedeanClassMk
FiniteArchimedeanClass.withTopOrderIso_apply_coe
lt_of_le_of_lt
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
coeff_ne_zero πŸ“–β€”β€”β€”β€”HahnSeries.coeff_orderTop_ne
orderTop_eq_finiteArchimedeanClassMk
evalCoeff_eq πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
FiniteArchimedeanClass.ball
IsOrderedModule.toPosSMulMono
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SubNegMonoid.toSub
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
ArchimedeanClass.instOrderTop
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
evalCoeff
HahnSeries.coeff
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
LinearPMap.toFun'
β€”IsOrderedModule.toPosSMulMono
coeff_eq_of_mem
le_rfl
evalCoeff_eq_zero πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
FiniteArchimedeanClass.ball
IsOrderedModule.toPosSMulMono
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SubNegMonoid.toSub
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
ArchimedeanClass.instOrderTop
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
evalCoeffβ€”IsOrderedModule.toPosSMulMono
evalCoeff.eq_1
eval_eq_truncLT πŸ“–mathematicalSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
FiniteArchimedeanClass.ball
IsOrderedModule.toPosSMulMono
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
eval
DFunLike.coe
Equiv
AddCommMonoid.toAddMonoid
EquivLike.toFunLike
Equiv.instEquivLike
toLex
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
HahnSeries.instAddCommMonoid
LinearMap.instFunLike
HahnSeries.truncLTLinearMap
Subtype.decidableLT
LinearOrder.toDecidableLT
ofLex
LinearPMap.toFun'
β€”IsOrderedModule.toPosSMulMono
Equiv.injective
HahnSeries.ext
lt_or_ge
HahnSeries.coe_truncLTLinearMap
HahnSeries.coeff_truncLT_of_lt
evalCoeff_eq
Subtype.coe_eta
HahnSeries.coeff_truncLT_of_le
evalCoeff_eq_zero
Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_forall_eq
StrictAnti.antitone
FiniteArchimedeanClass.ball_strictAnti
eval_lt πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
Preorder.toLT
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
eval
LinearPMap.toFun'
β€”HahnSeries.lt_iff
sub_ne_zero_of_ne
LT.lt.ne
evalCoeff_eq
IsOrderedModule.toPosSMulMono
val_sub_ne_zero
exists_sub_mem_ball
sub_lt_sub_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ArchimedeanClass.lt_of_mk_lt_mk_of_nonneg
sub_nonneg_of_le
LT.lt.le
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.zero_termg
ArchimedeanClass.mk_sub_comm
ArchimedeanClass.mk_add_eq_mk_left
AddCommGroup.add_comm
StrictMono.lt_iff_lt
HahnEmbedding.IsPartial.strictMono
Subtype.prop
le_antisymm
Mathlib.Tactic.Contrapose.contrapose₁
HahnSeries.coeff_sub
ofLex_sub
Submodule.addSubgroupClass
LinearPMap.map_sub
coeff_ne_zero
sub_eq_zero_of_eq
Eq.le
coeff_eq_of_mem
sub_self
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
eval_ne πŸ“–β€”Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
β€”β€”val_sub_ne_zero
sub_ne_zero
IsOrderedModule.toPosSMulMono
le_refl
Submodule.mem_sup
HahnEmbedding.ArchimedeanStrata.ball_sup_stratum_eq
add_sub_cancel_right
Submodule.add_mem
mem_domain
Mathlib.Tactic.Contrapose.contrapose₁
eq_or_ne
Ne.lt_top
FiniteArchimedeanClass.mem_ball_iff
archimedeanClassMk_le_of_eval_eq
eval_smul πŸ“–mathematicalβ€”eval
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Lex.instSMul
HahnSeries.instSMul
β€”eval.congr_simp
zero_smul
eval_zero
toLex_smul
Equiv.injective
HahnSeries.ext
IsOrderedModule.toPosSMulMono
IsScalarTower.left
smul_sub
Submodule.smul_mem
evalCoeff_eq
LinearPMap.map_smul
Mathlib.Tactic.Contrapose.contraposeβ‚„
smul_smul
inv_mul_cancelβ‚€
one_smul
evalCoeff_eq_zero
smul_zero
eval_zero πŸ“–mathematicalβ€”eval
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
instZeroLex
HahnSeries.instZero
β€”evalCoeff_eq
IsOrderedModule.toPosSMulMono
sub_self
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
LinearPMap.map_zero
HahnSeries.isPWO_support'
toLex_zero
exists_domain_eq_top πŸ“–mathematicalβ€”LinearPMap.domain
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap
HahnEmbedding.IsPartial
Submodule
Submodule.instTop
β€”exists_isMax
Submodule.eq_top_iff'
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
lt_extend
isMax_iff_forall_not_lt
exists_isMax πŸ“–mathematicalβ€”IsMax
HahnEmbedding.Partial
LinearPMap
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap.le
HahnEmbedding.IsPartial
β€”zorn_le_nonempty
IsChain.directedOn
instReflLe
mem_upperBounds
le_sSupFun
exists_sub_mem_ball πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
FiniteArchimedeanClass.ball
IsOrderedModule.toPosSMulMono
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SubNegMonoid.toSub
val_sub_ne_zero
β€”val_sub_ne_zero
IsOrderedModule.toPosSMulMono
eval_eq_truncLT
AddCommGroup.add_comm
RingHomSurjective.ids
LinearMap.mem_range
HahnEmbedding.IsPartial.truncLT_mem_range
Subtype.prop
Mathlib.Tactic.Contrapose.contrapose₁
eval_ne
extendFun_strictMono πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
StrictMono
AddCommGroup.add_comm
extendFun
Subtype.preorder
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
LinearPMap.toFun'
β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
Submodule.smul_mem_iff
IsScalarTower.left
neg_mem_iff
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
neg_smul
AddCommGroup.add_comm
lt_of_sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
instIsRightCancelAddLex
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
HahnSeries.instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
LinearPMap.map_sub
Submodule.mem_sup
LinearPMap.domain_supSpanSingleton
extendFun.eq_1
Subtype.prop
sub_pos
AddMemClass.isRightCancelAdd
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
Submodule.toIsOrderedAddMonoid
Submodule.mem_span_singleton
neg_lt_iff_pos_add
HahnEmbedding.IsPartial.strictMono
neg_zero
zero_smul
eval.congr_simp
eval_zero
LinearPMap.map_zero
eval_lt
eval_smul
isPartial_extendFun πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
extendFunβ€”extendFun_strictMono
baseEmbedding_le_extendFun
truncLT_mem_range_extendFun
isPartial_sSupFun πŸ“–mathematicalSet.Nonempty
HahnEmbedding.Partial
DirectedOn
LinearPMap
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap.le
HahnEmbedding.IsPartial
sSupFunβ€”sSupFun_strictMono
baseEmbedding_le_sSupFun
truncLT_mem_range_sSupFun
isWF_support_evalCoeff πŸ“–mathematicalβ€”Set.IsWF
FiniteArchimedeanClass
ArchimedeanClass
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
ArchimedeanClass.instOrderTop
Function.support
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
evalCoeff
β€”Set.isWF_iff_no_descending_seq
Mathlib.Tactic.Push.not_forall_eq
IsOrderedModule.toPosSMulMono
Mathlib.Tactic.Contrapose.contrapose₁
Function.mem_support
evalCoeff_eq
StrictAnti.antitone
FiniteArchimedeanClass.ball_strictAnti
Nat.instCanonicallyOrderedAdd
HahnSeries.isWF_support
le_sSupFun πŸ“–mathematicalDirectedOn
HahnEmbedding.Partial
LinearPMap
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap.le
HahnEmbedding.IsPartial
Set
Set.instMembership
sSupFunβ€”LinearPMap.le_sSup
Set.mem_image
lt_extend πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
HahnEmbedding.Partial
Preorder.toLT
LinearPMap.semilatticeInf
extend
β€”lt_of_le_of_ne
LinearPMap.left_le_sup
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Submodule.mem_sup_right
mem_domain πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
HahnEmbedding.ArchimedeanStrata.stratum
HahnEmbedding.Seed.toArchimedeanStrata
Ring.toSemiring
DivisionRing.toRing
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
β€”Set.mem_of_subset_of_mem
AddCommGroup.add_comm
HahnEmbedding.IsPartial.baseEmbedding_le
Subtype.prop
HahnEmbedding.Seed.mem_domain_baseEmbedding
orderTop_eq_archimedeanClassMk πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
WithTop
FiniteArchimedeanClass
ArchimedeanClass
Preorder.toLE
WithTop.instPreorder
Subtype.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
ArchimedeanClass.instOrderTop
instFunLikeOrderIso
FiniteArchimedeanClass.withTopOrderIso
HahnSeries.orderTop
Subtype.partialOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
LinearPMap.toFun'
DivisionRing.toRing
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap
HahnEmbedding.IsPartial
Submodule
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
β€”LinearPMap.map_zero
HahnSeries.orderTop_zero
TopHomClass.map_top
InfTopHomClass.toTopHomClass
OrderIsoClass.toInfTopHomClass
OrderIso.instOrderIsoClass
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
exists_ne
HahnEmbedding.ArchimedeanStrata.nontrivial_stratum
HahnEmbedding.ArchimedeanStrata.archimedeanClassMk_of_mem_stratum
mem_domain
Iff.ne
LinearMap.map_eq_zero_iff
StrictMono.injective
HahnEmbedding.Seed.strictMono_coeff
HahnSeries.orderTop_single
ofLex_toLex
apply_of_mem_stratum
orderTop_eq_iff
FiniteArchimedeanClass.withTopOrderIso_apply_coe
orderTop_eq_finiteArchimedeanClassMk πŸ“–mathematicalβ€”HahnSeries.orderTop
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
LinearPMap.toFun'
DivisionRing.toRing
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap
HahnEmbedding.IsPartial
WithTop.some
Submodule
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
β€”Equiv.injective
orderTop_eq_archimedeanClassMk
FiniteArchimedeanClass.withTopOrderIso_apply_coe
orderTop_eq_iff πŸ“–mathematicalβ€”HahnSeries.orderTop
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Equiv
Lex
HahnSeries
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
LinearPMap.toFun'
DivisionRing.toRing
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap
HahnEmbedding.IsPartial
Submodule
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
β€”subsingleton_or_nontrivial
FiniteArchimedeanClass.instNonemptyOfNontrivial
Function.Injective.nontrivial
HahnEmbedding.ArchimedeanStrata.nontrivial_stratum
StrictMono.injective
HahnEmbedding.Seed.strictMono_coeff
HahnSeries.instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
archimedeanClassMk_eq_iff
OrderIso.injective
sSupFun_strictMono πŸ“–mathematicalSet.Nonempty
HahnEmbedding.Partial
DirectedOn
LinearPMap
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap.le
HahnEmbedding.IsPartial
StrictMono
Submodule
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
AddCommGroup.add_comm
sSupFun
Subtype.preorder
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
LinearPMap.toFun'
β€”AddCommGroup.add_comm
lt_of_sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
instIsRightCancelAddLex
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
HahnSeries.instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Submodule.addSubgroupClass
LinearPMap.map_sub
DirectedOn.mono_comp
LinearPMap.mem_domain_sSup_iff
Set.Nonempty.image
Subtype.prop
LinearPMap.sSup_apply
Set.mem_image
HahnEmbedding.IsPartial.strictMono
LinearPMap.map_zero
Subtype.coe_lt_coe
toOrderAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
Subtype.preorder
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
AddMonoid.toAddZeroClass
Submodule.addCommGroup
instAddZeroClassLex
HahnSeries.instAddMonoid
SubNegZeroMonoid.toSubNegMonoid
OrderAddMonoidHom.instFunLike
toOrderAddMonoidHom
LinearPMap.toFun'
β€”β€”
toOrderAddMonoidHom_injective πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
DFunLike.coe
OrderAddMonoidHom
Subtype.preorder
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
AddMonoid.toAddZeroClass
Submodule.addCommGroup
instAddZeroClassLex
HahnSeries.instAddMonoid
SubNegZeroMonoid.toSubNegMonoid
OrderAddMonoidHom.instFunLike
toOrderAddMonoidHom
β€”StrictMono.injective
AddCommGroup.add_comm
HahnEmbedding.IsPartial.strictMono
Subtype.prop
truncLT_eval_mem_range_extendFun πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.add_comm
LinearMap.range
extendFun
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearPMap.toFun
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
HahnSeries.instAddCommMonoid
LinearMap.instFunLike
HahnSeries.truncLTLinearMap
Subtype.decidableLT
LinearOrder.toDecidableLT
ofLex
eval
β€”AddCommGroup.add_comm
RingHomSurjective.ids
extendFun.eq_1
LinearMap.mem_range
IsOrderedModule.toPosSMulMono
HahnEmbedding.IsPartial.truncLT_mem_range
Subtype.prop
Submodule.mem_sup_left
LinearPMap.toFun_eq_coe
LinearPMap.supSpanSingleton_apply_mk_of_mem
HahnSeries.ext
lt_or_ge
HahnSeries.coe_truncLTLinearMap
HahnSeries.coeff_truncLT_of_lt
evalCoeff_eq
Set.mem_of_mem_of_subset
instIsConcreteLE
LT.lt.le
FiniteArchimedeanClass.ball_strictAnti
HahnSeries.coeff_truncLT_of_le
Submodule.mem_sup_right
Submodule.mem_span_singleton_self
Equiv.injective
ofLex_toLex
LinearPMap.supSpanSingleton_apply_self
eval.eq_1
evalCoeff_eq_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
StrictAnti.antitone
truncLT_mem_range_extendFun πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.add_comm
LinearMap.range
extendFun
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearPMap.toFun
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
HahnSeries.instAddCommMonoid
LinearMap.instFunLike
HahnSeries.truncLTLinearMap
Subtype.decidableLT
LinearOrder.toDecidableLT
ofLex
LinearPMap.toFun'
β€”AddCommGroup.add_comm
RingHomSurjective.ids
Submodule.mem_sup
LinearPMap.domain_supSpanSingleton
extendFun.eq_1
Submodule.mem_span_singleton
ofLex_add
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
toLex_add
ofLex_smul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
toLex_smul
Submodule.add_mem
LinearMap.mem_range
HahnEmbedding.IsPartial.truncLT_mem_range
Subtype.prop
Submodule.mem_sup_left
LinearPMap.supSpanSingleton_apply_mk_of_mem
Submodule.smul_mem
truncLT_eval_mem_range_extendFun
truncLT_mem_range_sSupFun πŸ“–mathematicalSet.Nonempty
HahnEmbedding.Partial
DirectedOn
LinearPMap
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
LinearPMap.le
HahnEmbedding.IsPartial
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
AddCommGroup.add_comm
SetLike.instMembership
Submodule.setLike
LinearMap.range
LinearPMap.domain
sSupFun
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearPMap.toFun
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
HahnSeries.instAddCommMonoid
LinearMap.instFunLike
HahnSeries.truncLTLinearMap
Subtype.decidableLT
LinearOrder.toDecidableLT
ofLex
LinearPMap.toFun'
β€”AddCommGroup.add_comm
RingHomSurjective.ids
DirectedOn.mono_comp
LinearPMap.mem_domain_sSup_iff
Set.Nonempty.image
Subtype.prop
Set.mem_image
HahnEmbedding.IsPartial.truncLT_mem_range
Set.mem_of_mem_of_subset
le_sSupFun
LinearPMap.sSup_apply
HahnSeries.coe_truncLTLinearMap
val_sub_ne_zero πŸ“–β€”Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HahnSeries.instModule
LinearPMap
HahnEmbedding.IsPartial
β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
sub_eq_zero

HahnEmbedding.Seed

Definitions

NameCategoryTheorems
baseEmbedding πŸ“–CompOp
8 mathmath: HahnEmbedding.IsPartial.baseEmbedding_le, HahnEmbedding.Partial.baseEmbedding_le_sSupFun, baseEmbedding_strictMono, isPartial_baseEmbedding, truncLT_mem_range_baseEmbedding, mem_domain_baseEmbedding, HahnEmbedding.Partial.baseEmbedding_le_extendFun, domain_baseEmbedding
coeff πŸ“–CompOp
4 mathmath: strictMono_coeff, coeff_baseEmbedding, hahnCoeff_apply, HahnEmbedding.Partial.apply_of_mem_stratum
coeff' πŸ“–CompOpβ€”
hahnCoeff πŸ“–CompOp
1 mathmath: hahnCoeff_apply
toArchimedeanStrata πŸ“–CompOp
2 mathmath: strictMono_coeff, domain_baseEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
baseEmbedding_pos πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
baseEmbedding
Preorder.toLT
Submodule.zero
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
instZeroLex
HahnSeries.instZero
LinearPMap.toFun'
β€”AddCommGroup.add_comm
Subtype.prop
Submodule.mem_iSup_iff_exists_dfinsupp'
Mathlib.Tactic.Contrapose.contraposeβ‚‚
DFinsupp.sum_eq_zero
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
DFinsupp.notMem_support_iff
Finset.eq_empty_iff_forall_notMem
LT.lt.ne
HahnSeries.lt_iff
coeff_baseEmbedding
Mathlib.Tactic.Contrapose.contrapose₃
Subtype.coe_le_coe
Finset.min'_le
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
ArchimedeanClass.pos_of_pos_of_mk_lt
ArchimedeanClass.mk_sub_comm
sub_eq_of_eq_add
Finset.sum_erase_add
Finset.min'_mem
HahnEmbedding.ArchimedeanStrata.archimedeanClassMk_of_mem_stratum
DFinsupp.sum.eq_1
ArchimedeanClass.mk_sum
StrictMonoOn.mono
Finset.coe_erase
Finset.mem_erase
Finset.min'_lt_of_mem_erase_min'
Finset.sum_congr
Ne.lt_top
strictMono_coeff
baseEmbedding_strictMono πŸ“–mathematicalβ€”StrictMono
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
baseEmbedding
Subtype.preorder
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
LinearPMap.toFun'
β€”AddCommGroup.add_comm
lt_of_sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
instIsRightCancelAddLex
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
HahnSeries.instIsOrderedAddMonoidLex
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Submodule.addSubgroupClass
LinearPMap.map_sub
baseEmbedding_pos
AddMemClass.isRightCancelAdd
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
Submodule.toIsOrderedAddMonoid
coeff_baseEmbedding πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
baseEmbedding
DFinsupp.sum
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
HahnEmbedding.ArchimedeanStrata.stratum
toArchimedeanStrata
LinearOrder.toDecidableEq
Submodule.zero
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
Submodule.subtype
HahnSeries.coeff
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
LinearPMap.toFun'
coeff
DFinsupp
DFinsupp.instDFunLike
β€”AddCommGroup.add_comm
hahnCoeff_apply
domain_baseEmbedding πŸ“–mathematicalβ€”LinearPMap.domain
DivisionRing.toRing
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
Ring.toSemiring
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
AddCommGroup.toAddCommMonoid
baseEmbedding
HahnEmbedding.ArchimedeanStrata.baseDomain
toArchimedeanStrata
β€”AddCommGroup.add_comm
hahnCoeff_apply πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
HahnEmbedding.ArchimedeanStrata.baseDomain
toArchimedeanStrata
DFinsupp.sum
FiniteArchimedeanClass
HahnEmbedding.ArchimedeanStrata.stratum
ArchimedeanClass
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instOrderTop
LinearOrder.toDecidableEq
Submodule.zero
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
Submodule.subtype
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFinsupp.instDFunLike
DirectSum
instAddCommMonoidDirectSum
DirectSum.instModule
hahnCoeff
coeff
β€”Submodule.addSubmonoidClass
Set.mem_of_mem_of_subset
Subtype.prop
instIsConcreteLE
le_iSup
Submodule.subtype_injective
DirectSum.coeAddMonoidHom_eq_dfinsuppSum
DFinsupp.sum_mapRange_index
map_dfinsuppSum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Equiv.apply_symm_apply
isPartial_baseEmbedding πŸ“–mathematicalβ€”HahnEmbedding.IsPartial
baseEmbedding
β€”baseEmbedding_strictMono
le_refl
AddCommGroup.add_comm
truncLT_mem_range_baseEmbedding
mem_domain_baseEmbedding πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
HahnEmbedding.ArchimedeanStrata.stratum
toArchimedeanStrata
Ring.toSemiring
DivisionRing.toRing
LinearPMap.domain
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
baseEmbedding
β€”Set.mem_of_mem_of_subset
AddCommGroup.add_comm
domain_baseEmbedding
instIsConcreteLE
le_iSup_iff
strictMono_coeff πŸ“–mathematicalβ€”StrictMono
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
HahnEmbedding.ArchimedeanStrata.stratum
toArchimedeanStrata
Subtype.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
coeff
β€”β€”
truncLT_mem_range_baseEmbedding πŸ“–mathematicalβ€”Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Submodule
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toSemiring
DivisionRing.toRing
instAddCommGroupLex
HahnSeries.instAddCommGroup
Lex.instModule'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGroup.add_comm
HahnSeries.instModule
SetLike.instMembership
Submodule.setLike
LinearMap.range
LinearPMap.domain
baseEmbedding
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearPMap.toFun
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
HahnSeries.instAddCommMonoid
LinearMap.instFunLike
HahnSeries.truncLTLinearMap
Subtype.decidableLT
LinearOrder.toDecidableLT
ofLex
LinearPMap.toFun'
β€”AddCommGroup.add_comm
Subtype.prop
RingHomSurjective.ids
Submodule.mem_iSup_iff_exists_dfinsupp'
domain_baseEmbedding
HahnEmbedding.ArchimedeanStrata.baseDomain.eq_1
Equiv.injective
ofLex_toLex
LinearPMap.toFun_eq_coe
HahnSeries.ext
coeff_baseEmbedding
lt_or_ge
HahnSeries.coe_truncLTLinearMap
HahnSeries.coeff_truncLT_of_lt
not_le_of_gt
HahnSeries.coeff_truncLT_of_le
LinearMap.map_zero

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
hahnEmbedding_isOrderedModule πŸ“–mathematicalβ€”StrictMono
Lex
HahnSeries
FiniteArchimedeanClass
Subtype.partialOrder
ArchimedeanClass
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.instLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instOrderTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnSeries.instPartialOrderLex
Subtype.instLinearOrder
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommMonoidLex
HahnSeries.instAddCommMonoid
Lex.instModule'
HahnSeries.instModule
LinearMap.instFunLike
OrderIso
WithTop
WithTop.instPreorder
Subtype.preorder
instFunLikeOrderIso
FiniteArchimedeanClass.withTopOrderIso
HahnSeries.orderTop
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”HahnEmbedding.Partial.exists_domain_eq_top
RingHomCompTriple.ids
StrictMono.comp
AddCommGroup.add_comm
HahnEmbedding.IsPartial.strictMono
HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk

---

← Back to Index