Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Order/Monoid/Defs.lean

Statistics

MetricCount
DefinitionsIsOrderedAddMonoid, IsOrderedCancelAddMonoid, IsOrderedCancelMonoid, IsOrderedMonoid
4
Theoremsadd_le_add_left, add_le_add_right, toAddLeftMono, toAddRightMono, le_of_add_le_add_left, le_of_add_le_add_right, of_add_lt_add_left, toAddLeftReflectLE, toAddLeftReflectLT, toAddRightReflectLT, toIsCancelAdd, toIsOrderedAddMonoid, le_of_mul_le_mul_left, le_of_mul_le_mul_right, of_mul_lt_mul_left, toIsCancelMul, toIsOrderedMonoid, toMulLeftReflectLE, toMulLeftReflectLT, toMulRightReflectLT, mul_le_mul_left, mul_le_mul_right, toMulLeftMono, toMulRightMono, add_self_neg_iff, add_self_nonpos_iff, mul_self_le_one_iff, mul_self_lt_one_iff, nonneg_add_self_iff, one_le_mul_self_iff, one_lt_mul_self_iff, pos_add_self_iff
32
Total36

IsOrderedAddMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
add_le_add_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
add_le_add_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
toAddLeftMono πŸ“–mathematicalβ€”AddLeftMono
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
β€”add_le_add_right
toAddRightMono πŸ“–mathematicalβ€”AddRightMono
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
β€”add_le_add_left

IsOrderedCancelAddMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
le_of_add_le_add_left πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”β€”
le_of_add_le_add_right πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”β€”
of_add_lt_add_left πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsOrderedCancelAddMonoidβ€”eq_or_lt_of_le
le_refl
add_comm
LT.lt.le
Mathlib.Tactic.Contrapose.contrapose₁
not_le
toAddLeftReflectLE πŸ“–mathematicalβ€”AddLeftReflectLE
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLE
PartialOrder.toPreorder
β€”le_of_add_le_add_left
toAddLeftReflectLT πŸ“–mathematicalβ€”AddLeftReflectLT
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
PartialOrder.toPreorder
β€”contravariant_lt_of_contravariant_le
ContravariantClass.elim
toAddLeftReflectLE
toAddRightReflectLT πŸ“–mathematicalβ€”AddRightReflectLT
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
PartialOrder.toPreorder
β€”contravariant_swap_add_of_contravariant_add
toAddLeftReflectLT
toIsCancelAdd πŸ“–mathematicalβ€”IsCancelAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”LE.le.antisymm
le_of_add_le_add_left
toAddLeftReflectLE
Eq.le
Eq.ge
le_of_add_le_add_right
contravariant_swap_add_of_contravariant_add
toIsOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoidβ€”β€”

IsOrderedCancelMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
le_of_mul_le_mul_left πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”β€”β€”
le_of_mul_le_mul_right πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”β€”β€”
of_mul_lt_mul_left πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
IsOrderedCancelMonoidβ€”eq_or_lt_of_le
mul_comm
LT.lt.le
Mathlib.Tactic.Contrapose.contrapose₁
toIsCancelMul πŸ“–mathematicalβ€”IsCancelMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”LE.le.antisymm
le_of_mul_le_mul_left'
toMulLeftReflectLE
Eq.le
Eq.ge
le_of_mul_le_mul_right'
contravariant_swap_mul_of_contravariant_mul
toIsOrderedMonoid πŸ“–mathematicalβ€”IsOrderedMonoidβ€”β€”
toMulLeftReflectLE πŸ“–mathematicalβ€”MulLeftReflectLE
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLE
PartialOrder.toPreorder
β€”le_of_mul_le_mul_left
toMulLeftReflectLT πŸ“–mathematicalβ€”MulLeftReflectLT
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
PartialOrder.toPreorder
β€”contravariant_lt_of_contravariant_le
ContravariantClass.elim
toMulLeftReflectLE
toMulRightReflectLT πŸ“–mathematicalβ€”MulRightReflectLT
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
PartialOrder.toPreorder
β€”contravariant_swap_mul_of_contravariant_mul
toMulLeftReflectLT

IsOrderedMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
mul_le_mul_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”β€”
mul_le_mul_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”β€”
toMulLeftMono πŸ“–mathematicalβ€”MulLeftMono
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLE
PartialOrder.toPreorder
β€”mul_le_mul_right
toMulRightMono πŸ“–mathematicalβ€”MulRightMono
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLE
PartialOrder.toPreorder
β€”mul_le_mul_left

(root)

Definitions

NameCategoryTheorems
IsOrderedAddMonoid πŸ“–CompData
51 mathmath: Submodule.toIsOrderedAddMonoid, MeasureTheory.Lp.instIsOrderedAddMonoid, Finsupp.isOrderedAddMonoid, MeasureTheory.Measure.instIsOrderedAddMonoid, Nat.instIsOrderedAddMonoid, MeasureTheory.SimpleFunc.instIsOrderedAddMonoid, Prod.Lex.isOrderedAddMonoid, WithZero.isOrderedAddMonoid, Filter.Germ.instIsOrderedAddMonoid, BoundedContinuousFunction.instIsOrderedAddMonoid, ArchimedeanClass.instIsOrderedAddMonoid, LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid, ZNum.isOrderedAddMonoid, Function.locallyFinsuppWithin.instIsOrderedAddMonoid, Rat.instIsOrderedAddMonoid, CanonicallyOrderedAdd.toIsOrderedAddMonoid, ContinuousMap.instIsOrderedAddMonoid, AddSubgroup.toIsOrderedAddMonoid, PartENat.isOrderedAddMonoid, WithTop.isOrderedAddMonoid, LinearOrderedAddCommGroupWithTop.toIsOrderedAddMonoid, AddOpposite.instIsOrderedAddMonoid, CompactlySupportedContinuousMap.instIsOrderedAddMonoid, SetTheory.Game.isOrderedAddMonoid, MulOpposite.instIsOrderedAddMonoid, RCLike.toIsOrderedAddMonoid, WithBot.isOrderedAddMonoid, AddSubmonoidClass.toIsOrderedAddMonoid, Matrix.instIsOrderedAddMonoid, AddSubmonoid.toIsOrderedAddMonoid, HahnSeries.instIsOrderedAddMonoidLex, Zsqrtd.instIsOrderedAddMonoidCastInt, Nonneg.isOrderedAddMonoid, LieSubalgebra.instIsOrderedAddMonoid, IsOrderedRing.toIsOrderedAddMonoid, MeasureTheory.OuterMeasure.instIsOrderedAddMonoid, Surreal.isOrderedAddMonoid, StrictMono.isOrderedAddMonoid, instIsOrderedAddMonoidEReal, AddUnits.isOrderedAddMonoid, Real.instIsOrderedAddMonoid, ENNReal.instIsOrderedAddMonoid, Submodule.instIsOrderedAddMonoid, OrderDual.isOrderedAddMonoid, StarOrderedRing.toIsOrderedAddMonoid, Prod.instIsOrderedAddMonoid, IsOrderedCancelAddMonoid.toIsOrderedAddMonoid, IdemSemiring.toIsOrderedAddMonoid, Additive.isOrderedAddMonoid, Int.instIsOrderedAddMonoid, Function.Injective.isOrderedAddMonoid
IsOrderedCancelAddMonoid πŸ“–CompData
30 mathmath: AddSubmonoid.toIsOrderedCancelAddMonoid, instIsOrderedCancelAddMonoidLexFinsupp, AddLocalization.isOrderedAddCancelMonoid, Finsupp.Colex.isOrderedCancelAddMonoid, Multiset.instIsOrderedCancelAddMonoid, Finsupp.isOrderedCancelAddMonoid, ConditionallyCompleteLinearOrderedField.toIsOrderedCancelAddMonoid, NatOrdinal.instIsOrderedCancelAddMonoid, PUnit.isOrderedCancelAddMonoid, AddSubmonoidClass.toIsOrderedCancelAddMonoid, IsStrictOrderedRing.toIsOrderedCancelAddMonoid, IsOrderedAddMonoid.toIsOrderedCancelAddMonoid, Additive.isOrderedCancelAddMonoid, IsOrderedCancelAddMonoid.of_add_lt_add_left, DivisibleHull.instIsOrderedCancelAddMonoid, Function.Injective.isOrderedCancelAddMonoid, Prod.instIsOrderedAddCancelMonoid, Nat.instIsOrderedCancelAddMonoid, OrderDual.isOrderedAddCancelMonoid, Submodule.toIsOrderedCancelAddMonoid, Finsupp.Lex.isOrderedCancelAddMonoid, Seminorm.instIsOrderedCancelAddMonoid, Finsupp.DegLex.instIsOrderedCancelAddMonoidDegLexNat, Filter.Germ.instIsOrderedAddCancelMonoid, StrictMono.isOrderedAddCancelMonoid, Num.isOrderedCancelAddMonoid, MonomialOrder.iocam, Nonneg.isOrderedCancelAddMonoid, Prod.Lex.isOrderedAddCancelMonoid, Real.instIsOrderedCancelAddMonoid
IsOrderedCancelMonoid πŸ“–CompData
14 mathmath: IsOrderedCancelMonoid.of_mul_lt_mul_left, IsOrderedMonoid.toIsOrderedCancelMonoid, PNat.instIsOrderedCancelMonoid, StrictMono.isOrderedCancelMonoid, Localization.isOrderedCancelMonoid, Function.Injective.isOrderedCancelMonoid, Filter.Germ.instIsOrderedCancelMonoid, Multiplicative.isOrderedCancelMonoid, Prod.instIsOrderedCancelMonoid, SubmonoidClass.toIsOrderedCancelMonoid, Positive.isOrderedCancelMonoid, Prod.Lex.isOrderedCancelMonoid, Submonoid.toIsOrderedCancelMonoid, OrderDual.isOrderedCancelMonoid
IsOrderedMonoid πŸ“–CompData
25 mathmath: WithZero.isOrderedMonoid, SubmonoidClass.toIsOrderedMonoid, CanonicallyOrderedMul.toIsOrderedMonoid, Prod.instIsOrderedMonoid, NatOrdinal.instIsOrderedMonoid, StrictMono.isOrderedMonoid, Associates.instIsOrderedMonoid, ENNReal.instIsOrderedMonoid, LinearOrderedCommMonoidWithZero.toIsOrderedMonoid, MulOpposite.instIsOrderedMonoid, Positive.isOrderedMonoid, ValuativeRel.instIsOrderedMonoidValueGroupWithZero, IsOrderedCancelMonoid.toIsOrderedMonoid, Submonoid.toIsOrderedMonoid, Subgroup.toIsOrderedMonoid, Multiplicative.isOrderedMonoid, ContinuousMap.instIsOrderedMonoid, Function.Injective.isOrderedMonoid, Prod.Lex.isOrderedMonoid, Units.isOrderedMonoid, CanonicallyOrderedAdd.toIsOrderedMonoid, OrderDual.isOrderedMonoid, MeasureTheory.SimpleFunc.instIsOrderedMonoid, AddOpposite.instIsOrderedMonoid, Filter.Germ.instIsOrderedMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
add_self_neg_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toZero
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
not_lt
nonneg_add_self_iff
add_self_nonpos_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toZero
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
not_le
pos_add_self_iff
mul_self_le_one_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toOne
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
one_lt_mul_self_iff
mul_self_lt_one_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toOne
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
one_le_mul_self_iff
nonneg_add_self_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
β€”Function.mtr
not_le
add_neg'
IsOrderedAddMonoid.toAddLeftMono
add_nonneg
one_le_mul_self_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toMul
β€”Function.mtr
mul_lt_one'
IsOrderedMonoid.toMulLeftMono
one_le_mul
one_lt_mul_self_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toMul
β€”Function.mtr
mul_le_one'
IsOrderedMonoid.toMulLeftMono
one_lt_mul''
pos_add_self_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
β€”Function.mtr
not_lt
add_nonpos
IsOrderedAddMonoid.toAddLeftMono
add_pos'

---

← Back to Index