Documentation Verification Report

Prod

📁 Source: Mathlib/Algebra/Order/Monoid/Prod.lean

Statistics

MetricCount
Definitions0
TheoremsisOrderedAddCancelMonoid, isOrderedAddMonoid, isOrderedCancelMonoid, isOrderedMonoid, instCanonicallyOrderedAdd, instCanonicallyOrderedMul, instExistsAddOfLE, instExistsMulOfLE, instIsOrderedAddCancelMonoid, instIsOrderedAddMonoid, instIsOrderedCancelMonoid, instIsOrderedMonoid
12
Total12

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instCanonicallyOrderedAdd 📖mathematicalCanonicallyOrderedAdd
instAdd
instLE_mathlib
instExistsAddOfLE
CanonicallyOrderedAdd.toExistsAddOfLE
le_def
le_add_self
le_self_add
instCanonicallyOrderedMul 📖mathematicalCanonicallyOrderedMul
instMul
instLE_mathlib
instExistsMulOfLE
CanonicallyOrderedMul.toExistsMulOfLE
le_def
le_mul_self
le_self_mul
instExistsAddOfLE 📖mathematicalExistsAddOfLE
instAdd
instLE_mathlib
ExistsAddOfLE.exists_add_of_le
instExistsMulOfLE 📖mathematicalExistsMulOfLE
instMul
instLE_mathlib
ExistsMulOfLE.exists_mul_of_le
instIsOrderedAddCancelMonoid 📖mathematicalIsOrderedCancelAddMonoid
instAddCommMonoid
instPartialOrder
instIsOrderedAddMonoid
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
le_of_add_le_add_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedCancelAddMonoid.toAddLeftReflectLT
instIsOrderedAddMonoid 📖mathematicalIsOrderedAddMonoid
instAddCommMonoid
instPartialOrder
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedCancelMonoid 📖mathematicalIsOrderedCancelMonoid
instCommMonoid
instPartialOrder
instIsOrderedMonoid
IsOrderedCancelMonoid.toIsOrderedMonoid
le_of_mul_le_mul_left'
IsLeftCancelMul.mulLeftReflectLE_of_mulLeftReflectLT
IsCancelMul.toIsLeftCancelMul
IsOrderedCancelMonoid.toIsCancelMul
IsOrderedCancelMonoid.toMulLeftReflectLT
instIsOrderedMonoid 📖mathematicalIsOrderedMonoid
instCommMonoid
instPartialOrder
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono

Prod.Lex

Theorems

NameKindAssumesProvesValidatesDepends On
isOrderedAddCancelMonoid 📖mathematicalIsOrderedCancelAddMonoid
Lex
instAddCommMonoidLex
Prod.instAddCommMonoid
instPartialOrder
isOrderedAddMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
le_iff
lt_of_add_lt_add_left
IsOrderedCancelAddMonoid.toAddLeftReflectLT
add_left_cancel
le_of_add_le_add_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
isOrderedAddMonoid 📖mathematicalIsOrderedAddMonoid
Lex
instAddCommMonoidLex
Prod.instAddCommMonoid
instPartialOrder
le_iff
add_lt_add_left
covariant_swap_add_of_covariant_add
add_le_add_left
IsOrderedAddMonoid.toAddLeftMono
isOrderedCancelMonoid 📖mathematicalIsOrderedCancelMonoid
Lex
instCommMonoidLex
Prod.instCommMonoid
instPartialOrder
isOrderedMonoid
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
IsCancelMul.toIsLeftCancelMul
IsOrderedCancelMonoid.toIsCancelMul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
le_iff
lt_of_mul_lt_mul_left'
IsOrderedCancelMonoid.toMulLeftReflectLT
mul_left_cancel
le_of_mul_le_mul_left'
IsLeftCancelMul.mulLeftReflectLE_of_mulLeftReflectLT
isOrderedMonoid 📖mathematicalIsOrderedMonoid
Lex
instCommMonoidLex
Prod.instCommMonoid
instPartialOrder
le_iff
mul_lt_mul_left
covariant_swap_mul_of_covariant_mul
mul_le_mul_left
IsOrderedMonoid.toMulLeftMono

---

← Back to Index