Documentation Verification Report

Units

πŸ“ Source: Mathlib/Algebra/Order/Monoid/Units.lean

Statistics

MetricCount
DefinitionsinstLinearOrder, instMaxOfLinearOrder, instMinOfLinearOrder, instOrd, instPartialOrderAddUnits, instPreorder, orderEmbeddingVal, instLinearOrder, instMaxOfLinearOrder, instMinOfLinearOrder, instOrd, instPartialOrderUnits, instPreorder, orderEmbeddingVal
14
Theoremscompare_val, max_val, min_val, orderEmbeddingVal_apply, val_le_val, val_lt_val, compare_val, max_val, min_val, orderEmbeddingVal_apply, val_le_val, val_lt_val
12
Total26

AddUnits

Definitions

NameCategoryTheorems
instLinearOrder πŸ“–CompOpβ€”
instMaxOfLinearOrder πŸ“–CompOp
1 mathmath: max_val
instMinOfLinearOrder πŸ“–CompOp
1 mathmath: min_val
instOrd πŸ“–CompOp
1 mathmath: compare_val
instPartialOrderAddUnits πŸ“–CompOp
2 mathmath: instAddArchimedean, isOrderedAddMonoid
instPreorder πŸ“–CompOp
3 mathmath: orderEmbeddingVal_apply, val_le_val, val_lt_val
orderEmbeddingVal πŸ“–CompOp
1 mathmath: orderEmbeddingVal_apply

Theorems

NameKindAssumesProvesValidatesDepends On
compare_val πŸ“–mathematicalβ€”val
AddUnits
instOrd
β€”β€”
max_val πŸ“–mathematicalβ€”val
AddUnits
instMaxOfLinearOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”max_def
val_le_val
min_val πŸ“–mathematicalβ€”val
AddUnits
instMinOfLinearOrder
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”min_def
val_le_val
orderEmbeddingVal_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
AddUnits
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
RelEmbedding.instFunLike
orderEmbeddingVal
val
β€”β€”
val_le_val πŸ“–mathematicalβ€”Preorder.toLE
val
AddUnits
instPreorder
β€”β€”
val_lt_val πŸ“–mathematicalβ€”Preorder.toLT
val
AddUnits
instPreorder
β€”β€”

Units

Definitions

NameCategoryTheorems
instLinearOrder πŸ“–CompOp
1 mathmath: Valuation.IsRankOneDiscrete.valueGroup_genLTOne_eq_generator
instMaxOfLinearOrder πŸ“–CompOp
1 mathmath: max_val
instMinOfLinearOrder πŸ“–CompOp
1 mathmath: min_val
instOrd πŸ“–CompOp
1 mathmath: compare_val
instPartialOrderUnits πŸ“–CompOp
5 mathmath: LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, instMulArchimedean, mulArchimedean_iff, isOrderedMonoid
instPreorder πŸ“–CompOp
47 mathmath: WithZero.logOrderIso_apply, Valuation.IsRankOneDiscrete.generator_lt_one, OrderMonoidIso.val_inv_unitsWithZero_symm_apply, WithZero.val_expOrderIso_apply, Valuation.IsRankOneDiscrete.exists_generator_lt_one', OrderMonoidIso.val_unitsCongr_symm_apply, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, MonoidWithZeroHom.fst_mono, Valuation.ltAddSubgroup_monotone, WithZero.expOrderIso_symm_apply, OrderMonoidIso.val_unitsCongr_apply, OrderMonoidIso.val_inv_unitsCongr_symm_apply, orderEmbeddingVal_apply, OrderMonoidIso.withZeroUnits_symm_apply, MonoidWithZeroHom.inl_strictMono, OrderMonoidIso.withZeroUnits_apply, OrderMonoidIso.val_unitsWithZero_symm_apply, denselyOrdered_units_iff, OrderIso.withZeroUnits_symm_apply, WithZero.withZeroUnitsEquiv_symm_strictMono, val_le_val, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, OrderMonoidIso.unitsWithZero_apply, WithZero.val_inv_expOrderIso_apply, OrderMonoidIso.val_inv_unitsCongr_apply, Valuation.ltSubmodule_monotone, MonoidWithZeroHom.inr_mono, CStarAlgebra.one_le_inv_iff_le_one, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, LinearOrderedCommGroupWithZero.fst_comp_inl, MonoidWithZeroHom.snd_mono, Valued.integer.locallyFiniteOrder_units_mrange_of_isCompact_integer, LinearOrderedCommGroupWithZero.fst_apply, OrderIso.withZeroUnits_apply, MonoidWithZeroHom.inr_strictMono, MonoidWithZeroHom.inl_mono, val_lt_val, Valuation.ltIdeal_mono, LinearOrderedCommGroupWithZero.inl_apply, LinearOrderedCommGroupWithZero.inr_apply, denselyOrdered_iff_denselyOrdered_units_and_nontrivial_units, Valuation.IsRankOneDiscrete.exists_generator_lt_one, WithZero.val_logOrderIso_symm_apply, CStarAlgebra.inv_le_one_iff_one_le, WithZero.val_inv_logOrderIso_symm_apply, WithZero.withZeroUnitsEquiv_strictMono, instDenselyOrderedUnits
orderEmbeddingVal πŸ“–CompOp
1 mathmath: orderEmbeddingVal_apply

Theorems

NameKindAssumesProvesValidatesDepends On
compare_val πŸ“–mathematicalβ€”val
Units
instOrd
β€”β€”
max_val πŸ“–mathematicalβ€”val
Units
instMaxOfLinearOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”max_def
min_val πŸ“–mathematicalβ€”val
Units
instMinOfLinearOrder
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”min_def
orderEmbeddingVal_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Units
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
RelEmbedding.instFunLike
orderEmbeddingVal
val
β€”β€”
val_le_val πŸ“–mathematicalβ€”Preorder.toLE
val
Units
instPreorder
β€”β€”
val_lt_val πŸ“–mathematicalβ€”Preorder.toLT
val
Units
instPreorder
β€”β€”

---

← Back to Index