Documentation Verification Report

Module

📁 Source: Mathlib/Algebra/Order/Nonneg/Module.lean

Statistics

MetricCount
DefinitionsinstModule, instSMul, instSMulWithZero
3
Theoremscoe_smul, instIsOrderedModule, instIsScalarTower, instIsStrictOrderedModule, mk_smul
5
Total8

Nonneg

Definitions

NameCategoryTheorems
instModule 📖CompOp
57 mathmath: ProperCone.dual_insert, ProperCone.dual_sUnion, ProperCone.innerDual_univ, ProperCone.coe_positive, ProperCone.mem_map, PointedCone.coe_map, PointedCone.subset_dual_dual, ProperCone.coe_bot, ProperCone.innerDual_sUnion, PointedCone.dual_union, ProperCone.innerDual_zero, PointedCone.mem_dual, PointedCone.dual_empty, instModuleFinite, ProperCone.dual_univ, PointedCone.dual_insert, ConvexCone.toPointedCone_top, PointedCone.convex, ProperCone.dual_iUnion, PointedCone.mem_map, PointedCone.coe_closure, ProperCone.innerDual_union, PointedCone.tmul_subset_maxTensorProduct, ProperCone.dual_zero, PointedCone.dual_zero, PointedCone.minTensorProduct_le_maxTensorProduct, PointedCone.tmul_subset_minTensorProduct, PointedCone.subset_span, PointedCone.ext_iff, ProperCone.innerDual_insert, PointedCone.dual_iUnion, PointedCone.mem_span_set, ProperCone.toPointedCone_bot, ProperCone.innerDual_empty, PointedCone.dual_le_dual, PointedCone.mem_closure, ProperCone.mem_bot, ProperCone.dual_empty, ProperCone.dual_union, PointedCone.mem_comap, PointedCone.mem_toConvexCone, PointedCone.isClosed_dual, PointedCone.mem_positive, ProperCone.innerDual_iUnion, PointedCone.mem_maxTensorProduct, PointedCone.dual_flip_dual_dual_flip, ProperCone.mem_toPointedCone, PointedCone.dual_sUnion, ProperCone.innerDual_toSubmodule, ConvexCone.mem_toPointedCone, PointedCone.closure_eq, PointedCone.dual_univ, PointedCone.dual_eq_iInter_dual_singleton, PointedCone.dual_dual_flip_dual, PointedCone.coe_comap, PointedCone.salient_iff_inter_neg_eq_singleton, PointedCone.dual_span
instSMul 📖CompOp
7 mathmath: instIsScalarTower, mk_smul, instIsOrderedModule, instContinuousSMulSubtypeLeOfNat, coe_smul, instContinuousConstSMulSubtypeLeOfNat, instIsStrictOrderedModule
instSMulWithZero 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSMul
instIsOrderedModule 📖mathematicalIsOrderedModule
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulWithZero.toSMulZeroClass
Subtype.preorder
zero
PosSMulMono.smul_le_smul_of_nonneg_left
IsOrderedModule.toPosSMulMono
SMulPosMono.smul_le_smul_of_nonneg_right
IsOrderedModule.toSMulPosMono
instIsScalarTower 📖mathematicalIsScalarTower
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSMul
SMul.comp.isScalarTower
IsOrderedRing.toZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toPosMulMono
instIsStrictOrderedModule 📖mathematicalIsStrictOrderedModule
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulWithZero.toSMulZeroClass
Subtype.preorder
zero
PosSMulStrictMono.smul_lt_smul_of_pos_left
IsStrictOrderedModule.toPosSMulStrictMono
SMulPosStrictMono.smul_lt_smul_of_pos_right
IsStrictOrderedModule.toSMulPosStrictMono
mk_smul 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSMul

---

← Back to Index