Documentation Verification Report

Ring

πŸ“ Source: Mathlib/Algebra/Order/Positive/Ring.lean

Statistics

MetricCount
DefinitionsaddCommSemigroup, addLeftCancelSemigroup, addRightCancelSemigroup, addSemigroup, commMonoid, instAddSubtypeLtOfNat_mathlib, instDistribSubtypeLtOfNat, instMonoidSubtypeLtOfNat, instMulSubtypeLtOfNat_mathlib, instOneSubtypeLtOfNat_mathlib, instPowSubtypeLtOfNatNat_mathlib, instSemigroupSubtypeLtOfNat
12
TheoremsaddLeftMono, addLeftReflectLE, addLeftReflectLT, addLeftStrictMono, addRightReflectLE, addRightReflectLT, addRightStrictMono, coe_add, isOrderedCancelMonoid, isOrderedMonoid, val_mul, val_one, val_pow
13
Total25

Positive

Definitions

NameCategoryTheorems
addCommSemigroup πŸ“–CompOpβ€”
addLeftCancelSemigroup πŸ“–CompOpβ€”
addRightCancelSemigroup πŸ“–CompOpβ€”
addSemigroup πŸ“–CompOpβ€”
commMonoid πŸ“–CompOp
2 mathmath: isOrderedMonoid, isOrderedCancelMonoid
instAddSubtypeLtOfNat_mathlib πŸ“–CompOp
8 mathmath: addRightReflectLE, addLeftStrictMono, addLeftReflectLE, addLeftMono, addRightReflectLT, addLeftReflectLT, addRightStrictMono, coe_add
instDistribSubtypeLtOfNat πŸ“–CompOpβ€”
instMonoidSubtypeLtOfNat πŸ“–CompOp
7 mathmath: UpperHalfPlane.coe_pos_real_smul, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, UpperHalfPlane.pos_real_smul_injective, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, UpperHalfPlane.pos_real_re, UpperHalfPlane.pos_real_im, UpperHalfPlane.isometry_pos_mul
instMulSubtypeLtOfNat_mathlib πŸ“–CompOp
4 mathmath: Nonneg.val_unitsEquivPos_symm_apply_coe, val_mul, Nonneg.unitsEquivPos_apply_coe, Nonneg.val_inv_unitsEquivPos_symm_apply_coe
instOneSubtypeLtOfNat_mathlib πŸ“–CompOp
1 mathmath: val_one
instPowSubtypeLtOfNatNat_mathlib πŸ“–CompOp
1 mathmath: val_pow
instSemigroupSubtypeLtOfNat πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addLeftMono πŸ“–mathematicalβ€”AddLeftMono
Preorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddSubtypeLtOfNat_mathlib
Preorder.toLE
β€”StrictMono.monotone
add_lt_add_right
addLeftStrictMono
addLeftReflectLE πŸ“–mathematicalβ€”AddLeftReflectLE
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddSubtypeLtOfNat_mathlib
Preorder.toLE
β€”Subtype.coe_le_coe
le_of_add_le_add_left
addLeftReflectLT πŸ“–mathematicalβ€”AddLeftReflectLT
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddSubtypeLtOfNat_mathlib
β€”Subtype.coe_lt_coe
lt_of_add_lt_add_left
addLeftStrictMono πŸ“–mathematicalβ€”AddLeftStrictMono
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddSubtypeLtOfNat_mathlib
β€”Subtype.coe_lt_coe
add_lt_add_right
addRightReflectLE πŸ“–mathematicalβ€”AddRightReflectLE
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddSubtypeLtOfNat_mathlib
Preorder.toLE
β€”Subtype.coe_le_coe
le_of_add_le_add_right
addRightReflectLT πŸ“–mathematicalβ€”AddRightReflectLT
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddSubtypeLtOfNat_mathlib
β€”Subtype.coe_lt_coe
lt_of_add_lt_add_right
addRightStrictMono πŸ“–mathematicalβ€”AddRightStrictMono
Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddSubtypeLtOfNat_mathlib
β€”Subtype.coe_lt_coe
add_lt_add_left
coe_add πŸ“–mathematicalβ€”Preorder.toLT
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddSubtypeLtOfNat_mathlib
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”β€”
isOrderedCancelMonoid πŸ“–mathematicalβ€”IsOrderedCancelMonoid
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commMonoid
Subtype.partialOrder
β€”isOrderedMonoid
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
isOrderedMonoid πŸ“–mathematicalβ€”IsOrderedMonoid
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commMonoid
Subtype.partialOrder
β€”Subtype.coe_le_coe
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
LT.lt.le
val_mul πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMulSubtypeLtOfNat_mathlib
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
val_one πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instOneSubtypeLtOfNat_mathlib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
val_pow πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instPowSubtypeLtOfNatNat_mathlib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”β€”

---

← Back to Index