Documentation Verification Report

Quantale

πŸ“ Source: Mathlib/Algebra/Order/Quantale.lean

Statistics

MetricCount
DefinitionsAddQuantale, leftAddResiduation, rightAddResiduation, Β«term_⇨ᡣ_Β», Β«term_⇨ₗ_Β», IsAddQuantale, IsQuantale, Quantale, leftMulResiduation, rightMulResiduation, Β«term_⇨ᡣ_Β», Β«term_⇨ₗ_Β»
12
Theoremsadd_bot, add_iSup_distrib, add_sup_distrib, bot_add, iSup_add_distrib, instAddLeftMono, instAddRightMono, leftAddResiduation_le_iff_add_le, rightAddResiduation_le_iff_add_le, sup_add_distrib, add_sSup_distrib, sSup_add_distrib, mul_sSup_distrib, sSup_mul_distrib, bot_mul, iSup_mul_distrib, instMulLeftMono, instMulRightMono, leftMulResiduation_le_iff_mul_le, mul_bot, mul_iSup_distrib, mul_sup_distrib, rightMulResiduation_le_iff_mul_le, sup_mul_distrib, add_sSup_distrib, mul_sSup_distrib, sSup_add_distrib, sSup_mul_distrib
28
Total40

AddQuantale

Definitions

NameCategoryTheorems
leftAddResiduation πŸ“–CompOp
1 mathmath: leftAddResiduation_le_iff_add_le
rightAddResiduation πŸ“–CompOp
1 mathmath: rightAddResiduation_le_iff_add_le
Β«term_⇨ᡣ_Β» πŸ“–CompOpβ€”
Β«term_⇨ₗ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_bot πŸ“–mathematicalβ€”AddSemigroup.toAdd
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”sSup_empty
add_sSup_distrib
iSup_congr_Prop
Set.mem_empty_iff_false
iSup_neg
iSup_bot
add_iSup_distrib πŸ“–mathematicalβ€”AddSemigroup.toAdd
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup.eq_1
add_sSup_distrib
iSup_range
add_sup_distrib πŸ“–mathematicalβ€”AddSemigroup.toAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
β€”iSup_pair
sSup_pair
add_sSup_distrib
bot_add πŸ“–mathematicalβ€”AddSemigroup.toAdd
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”sSup_empty
sSup_add_distrib
iSup_congr_Prop
Set.mem_empty_iff_false
iSup_neg
iSup_bot
iSup_add_distrib πŸ“–mathematicalβ€”AddSemigroup.toAdd
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup.eq_1
sSup_add_distrib
iSup_range
instAddLeftMono πŸ“–mathematicalβ€”AddLeftMono
AddSemigroup.toAdd
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
β€”left_eq_sup
add_sup_distrib
sup_of_le_left
instAddRightMono πŸ“–mathematicalβ€”AddRightMono
AddSemigroup.toAdd
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
β€”left_eq_sup
sup_add_distrib
sup_of_le_left
leftAddResiduation_le_iff_add_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
leftAddResiduation
AddSemigroup.toAdd
β€”le_imp_le_of_le_of_le
add_le_add_left
instAddRightMono
le_refl
sSup_add_distrib
iSup_le_iff
le_sSup
rightAddResiduation_le_iff_add_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
rightAddResiduation
AddSemigroup.toAdd
β€”le_imp_le_of_le_of_le
add_le_add_right
instAddLeftMono
le_refl
add_sSup_distrib
iSup_le_iff
le_sSup
sup_add_distrib πŸ“–mathematicalβ€”AddSemigroup.toAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
β€”iSup_pair
sSup_pair
sSup_add_distrib

IsAddQuantale

Theorems

NameKindAssumesProvesValidatesDepends On
add_sSup_distrib πŸ“–mathematicalβ€”AddSemigroup.toAdd
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”β€”
sSup_add_distrib πŸ“–mathematicalβ€”AddSemigroup.toAdd
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”β€”

IsQuantale

Theorems

NameKindAssumesProvesValidatesDepends On
mul_sSup_distrib πŸ“–mathematicalβ€”Semigroup.toMul
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”β€”
sSup_mul_distrib πŸ“–mathematicalβ€”Semigroup.toMul
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”β€”

Quantale

Definitions

NameCategoryTheorems
leftMulResiduation πŸ“–CompOp
1 mathmath: leftMulResiduation_le_iff_mul_le
rightMulResiduation πŸ“–CompOp
1 mathmath: rightMulResiduation_le_iff_mul_le
Β«term_⇨ᡣ_Β» πŸ“–CompOpβ€”
Β«term_⇨ₗ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_mul πŸ“–mathematicalβ€”Semigroup.toMul
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”sSup_empty
sSup_mul_distrib
iSup_congr_Prop
iSup_neg
iSup_bot
iSup_mul_distrib πŸ“–mathematicalβ€”Semigroup.toMul
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup.eq_1
sSup_mul_distrib
iSup_range
instMulLeftMono πŸ“–mathematicalβ€”MulLeftMono
Semigroup.toMul
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
β€”left_eq_sup
mul_sup_distrib
sup_of_le_left
instMulRightMono πŸ“–mathematicalβ€”MulRightMono
Semigroup.toMul
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
β€”left_eq_sup
sup_mul_distrib
sup_of_le_left
leftMulResiduation_le_iff_mul_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
leftMulResiduation
Semigroup.toMul
β€”le_imp_le_of_le_of_le
mul_le_mul_left
instMulRightMono
le_refl
sSup_mul_distrib
le_sSup
mul_bot πŸ“–mathematicalβ€”Semigroup.toMul
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”sSup_empty
mul_sSup_distrib
iSup_congr_Prop
iSup_neg
iSup_bot
mul_iSup_distrib πŸ“–mathematicalβ€”Semigroup.toMul
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup.eq_1
mul_sSup_distrib
iSup_range
mul_sup_distrib πŸ“–mathematicalβ€”Semigroup.toMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
β€”iSup_pair
sSup_pair
mul_sSup_distrib
rightMulResiduation_le_iff_mul_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
rightMulResiduation
Semigroup.toMul
β€”le_imp_le_of_le_of_le
mul_le_mul_right
instMulLeftMono
le_refl
mul_sSup_distrib
le_sSup
sup_mul_distrib πŸ“–mathematicalβ€”Semigroup.toMul
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
β€”iSup_pair
sSup_pair
sSup_mul_distrib

(root)

Definitions

NameCategoryTheorems
AddQuantale πŸ“–CompDataβ€”
IsAddQuantale πŸ“–CompDataβ€”
IsQuantale πŸ“–CompDataβ€”
Quantale πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_sSup_distrib πŸ“–mathematicalβ€”AddSemigroup.toAdd
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”IsAddQuantale.add_sSup_distrib
mul_sSup_distrib πŸ“–mathematicalβ€”Semigroup.toMul
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”IsQuantale.mul_sSup_distrib
sSup_add_distrib πŸ“–mathematicalβ€”AddSemigroup.toAdd
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”IsAddQuantale.sSup_add_distrib
sSup_mul_distrib πŸ“–mathematicalβ€”Semigroup.toMul
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iSup
Set
Set.instMembership
β€”IsQuantale.sSup_mul_distrib

---

← Back to Index