Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Order/Ring/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsadd_pow_le, pow_nonneg, pow_pos, pow_pos_iff, nonneg, pow_inj, pow_injective, pow_le_pow, pow_lt_pow, pow_neg, pow_neg_iff, pow_nonneg_iff, pow_nonpos, pow_nonpos_iff, pow_pos_iff, strictMono_pow, add_pow_le, add_sq_le, not_isSquare_of_neg, pow_add_pow_le, pow_add_pow_le', pow_four_le_pow_two_of_pow_two_le, pow_two_pos_of_ne_zero, sq_pos_iff, sq_pos_of_ne_zero, sq_pos_of_neg
26
Total26

Even

Theorems

NameKindAssumesProvesValidatesDepends On
add_pow_le πŸ“–mathematicalEvenPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
pow_mul
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toMulPosMono
sq_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_sq_le
Commute.mul_pow
mul_two
mul_le_mul_of_nonneg_left
add_pow_le
pow_nonneg
IsStrictOrderedRing.toZeroLEOneClass
zero_le_two
pow_nonneg πŸ“–mathematicalEvenPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_add
mul_self_nonneg
IsOrderedRing.toPosMulMono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
pow_pos πŸ“–mathematicalEvenPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”LE.le.lt_of_ne'
pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
IsStrictOrderedRing.isDomain
pow_pos_iff πŸ“–mathematicalEvenPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_add
mul_self_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
contravariant_lt_of_covariant_le
pow_ne_zero_iff
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
IsStrictOrderedRing.isDomain

IsSquare

Theorems

NameKindAssumesProvesValidatesDepends On
nonneg πŸ“–mathematicalIsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”mul_self_nonneg

Odd

Theorems

NameKindAssumesProvesValidatesDepends On
pow_inj πŸ“–mathematicalOdd
Nat.instSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_injective
pow_injective πŸ“–mathematicalOdd
Nat.instSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”StrictMono.injective
strictMono_pow
pow_le_pow πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”StrictMono.le_iff_le
strictMono_pow
pow_lt_pow πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”StrictMono.lt_iff_lt
strictMono_pow
pow_neg πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_neg_iff
pow_neg_iff πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”lt_imp_lt_of_le_imp_le
pow_nonneg
IsStrictOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
pow_succ
mul_neg_of_pos_of_neg
IsStrictOrderedRing.toPosMulStrictMono
Even.pow_pos
Nat.instAtLeastTwoHAddOfNat
even_two_mul
LT.lt.ne
pow_nonneg_iff πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”le_iff_le_iff_lt_iff_lt
pow_neg_iff
pow_nonpos πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_nonpos_iff
pow_nonpos_iff πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”le_iff_lt_or_eq
pow_neg_iff
pow_eq_zero_iff
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
IsStrictOrderedRing.isDomain
Nat.instIsDomain
Nat.instCharZero
pow_pos_iff πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”lt_iff_lt_of_le_iff_le
pow_nonpos_iff
strictMono_pow πŸ“–mathematicalOdd
Nat.instSemiring
StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”IsDomain.to_noZeroDivisors
Nat.instIsDomain
Nat.instCharZero
le_total
pow_lt_pow_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
lt_or_ge
LE.le.trans_lt
pow_nonpos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
ExistsAddOfLE.exists_add_of_le
nonneg_of_le_add_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
LE.le.trans_eq
lt_of_add_lt_add_right
contravariant_swap_add_of_contravariant_add
add_assoc
pow_add_pow_eq_zero
zero_add
add_rotate'
add_zero
add_left_comm

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
add_pow_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
pow_zero
Nat.instZeroLEOneClass
one_mul
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
contravariant_lt_of_covariant_le
IsStrictOrderedRing.toZeroLEOneClass
pow_one
pow_succ
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
add_nonneg
mul_assoc
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
add_comm
add_add_add_comm
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
add_le_add_right
le_total
mul_add_mul_le_mul_add_mul
pow_le_pow_leftβ‚€
mul_add_mul_le_mul_add_mul'
pow_nonneg
zero_le_two
add_sq_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
pow_succ'
pow_zero
mul_one
add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
add_comm
add_add_add_comm
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
le_total
mul_add_mul_le_mul_add_mul
IsOrderedRing.toMulPosMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
contravariant_lt_of_covariant_le
mul_add_mul_le_mul_add_mul'
two_mul
not_isSquare_of_neg πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”LT.lt.not_ge
IsSquare.nonneg
pow_add_pow_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”zero_add
pow_one
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
pow_succ'
le_add_of_nonneg_right
add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
add_comm
add_assoc
mul_le_mul_of_nonneg_left
pow_add_pow_le' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
le_add_of_nonneg_right
le_add_of_nonneg_left
pow_four_le_pow_two_of_pow_two_le πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”β€”pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
sq_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
pow_mul
pow_two_pos_of_ne_zero πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”sq_pos_of_ne_zero
sq_pos_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Even.pow_pos_iff
Nat.instAtLeastTwoHAddOfNat
even_two
two_ne_zero
sq_pos_of_ne_zero πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”sq_pos_iff
sq_pos_of_neg πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”sq
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
contravariant_swap_add_of_contravariant_add
IsOrderedCancelAddMonoid.toAddLeftReflectLT
IsStrictOrderedRing.toIsOrderedCancelAddMonoid

---

← Back to Index