Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Order/Ring/Defs.lean

Statistics

MetricCount
DefinitionsIsOrderedRing, IsStrictOrderedRing
2
TheoremstoCharZero, of_mul_nonneg, toIsOrderedAddMonoid, toIsStrictOrderedRing, toMulPosMono, toPosMulMono, toZeroLEOneClass, isDomain, noZeroDivisors, of_mul_pos, toCharZero, toIsOrderedCancelAddMonoid, toIsOrderedRing, toMulPosStrictMono, toNoMaxOrder, toNontrivial, toPosMulStrictMono, toZeroLEOneClass, instNoMaxOrderOfNontrivial, instNoMinOrderOfNontrivial, instOrderedRingOfIsStrictOrderedRing, one_add_le_one_add_mul_one_sub, one_add_le_one_sub_mul_one_add, one_sub_le_one_add_mul_one_sub, one_sub_le_one_sub_mul_one_add
25
Total27

AddMonoidWithOne

Theorems

NameKindAssumesProvesValidatesDepends On
toCharZero πŸ“–mathematicalβ€”CharZeroβ€”StrictMono.injective
strictMono_nat_of_lt_succ
Nat.cast_succ
lt_add_one

IsOrderedRing

Theorems

NameKindAssumesProvesValidatesDepends On
of_mul_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
IsOrderedRing
Ring.toSemiring
β€”mul_sub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_nonneg
sub_mul
toIsOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
toIsStrictOrderedRing πŸ“–mathematicalβ€”IsStrictOrderedRing
Ring.toSemiring
β€”IsStrictOrderedRing.of_mul_pos
toIsOrderedAddMonoid
toZeroLEOneClass
LE.le.lt_of_ne'
mul_nonneg
toPosMulMono
LT.lt.le
mul_ne_zero
LT.lt.ne'
toMulPosMono πŸ“–mathematicalβ€”MulPosMono
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
PartialOrder.toPreorder
β€”β€”
toPosMulMono πŸ“–mathematicalβ€”PosMulMono
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
PartialOrder.toPreorder
β€”β€”
toZeroLEOneClass πŸ“–mathematicalβ€”ZeroLEOneClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLE
PartialOrder.toPreorder
β€”β€”

IsStrictOrderedRing

Theorems

NameKindAssumesProvesValidatesDepends On
isDomain πŸ“–mathematicalβ€”IsDomainβ€”Ne.lt_or_gt
StrictAnti.injective
strictAnti_mul_left
toPosMulStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
toIsOrderedCancelAddMonoid
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
toIsOrderedRing
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
StrictMono.injective
strictMono_mul_left_of_pos
strictAnti_mul_right
toMulPosStrictMono
strictMono_mul_right_of_pos
toNontrivial
noZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Mathlib.Tactic.Contrapose.contrapose₁
Ne.lt_or_gt
LT.lt.ne'
mul_pos_of_neg_of_neg
toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
toIsOrderedCancelAddMonoid
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
toIsOrderedRing
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
LT.lt.ne
mul_neg_of_neg_of_pos
mul_neg_of_pos_of_neg
toPosMulStrictMono
mul_pos
of_mul_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
IsStrictOrderedRing
Ring.toSemiring
β€”IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
mul_sub
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_pos
sub_mul
toCharZero πŸ“–mathematicalβ€”CharZero
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”AddMonoidWithOne.toCharZero
toZeroLEOneClass
NeZero.one
toNontrivial
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
toIsOrderedCancelAddMonoid
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
toIsOrderedRing
toIsOrderedCancelAddMonoid πŸ“–mathematicalβ€”IsOrderedCancelAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
toIsOrderedRing πŸ“–mathematicalβ€”IsOrderedRingβ€”IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
toIsOrderedCancelAddMonoid
toZeroLEOneClass
PosMulStrictMono.toPosMulMono
toPosMulStrictMono
MulPosStrictMono.toMulPosMono
toMulPosStrictMono
toMulPosStrictMono πŸ“–mathematicalβ€”MulPosStrictMono
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
PartialOrder.toPreorder
β€”β€”
toNoMaxOrder πŸ“–mathematicalβ€”NoMaxOrder
Preorder.toLT
PartialOrder.toPreorder
β€”lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
toIsOrderedCancelAddMonoid
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
toIsOrderedRing
one_pos
toZeroLEOneClass
NeZero.charZero_one
toCharZero
toNontrivial πŸ“–mathematicalβ€”Nontrivialβ€”β€”
toPosMulStrictMono πŸ“–mathematicalβ€”PosMulStrictMono
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
PartialOrder.toPreorder
β€”β€”
toZeroLEOneClass πŸ“–mathematicalβ€”ZeroLEOneClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLE
PartialOrder.toPreorder
β€”β€”

(root)

Definitions

NameCategoryTheorems
IsOrderedRing πŸ“–CompData
28 mathmath: instIsOrderedRingProd, Real.instIsOrderedRing, ENNReal.instIsOrderedRing, SetSemiring.instIsOrderedRing, Subsemiring.toIsOrderedRing, Nonneg.isOrderedRing, AddOpposite.instIsOrderedRing, NatOrdinal.instIsOrderedRing, Subring.toIsOrderedRing, Filter.Germ.instIsOrderedRing, CanonicallyOrderedAdd.toIsOrderedRing, SubsemiringClass.toIsOrderedRing, IsOrderedRing.mkOfCone, IsStrictOrderedRing.toIsOrderedRing, Cardinal.isOrderedRing, NNReal.instIsOrderedRing, FractionalIdeal.instIsOrderedRing, MulOpposite.instIsOrderedRing, Submodule.instIsOrderedRing, WithTop.instIsOrderedRing, StarOrderedRing.toIsOrderedRing, WithBot.instIsOrderedRing, Subalgebra.toIsOrderedRing, HahnSeries.instIsOrderedRingLexOfNoZeroDivisors, Function.Injective.isOrderedRing, AlgebraicGeometry.Scheme.IdealSheafData.instIsOrderedRing, IsOrderedRing.of_mul_nonneg, ArchimedeanClass.FiniteResidueField.instIsOrderedRing
IsStrictOrderedRing πŸ“–CompData
25 mathmath: ArchimedeanClass.FiniteElement.instIsStrictOrderedRing, Nonneg.isStrictOrderedRing, Int.instIsStrictOrderedRing, HahnSeries.instIsStrictOrderedRingLexOfIsDomain, Zsqrtd.instIsStrictOrderedRingCastInt, RCLike.toIsStrictOrderedRing, Subsemiring.toIsStrictOrderedRing, instIsStrictOrderedRingNNRat, Num.isStrictOrderedRing, Surreal.instIsStrictOrderedRing, Subring.toIsStrictOrderedRing, Subalgebra.toIsStrictOrderedRing, Hyperreal.instIsStrictOrderedRing, IsStrictOrderedRing.of_mul_pos, Rat.instIsStrictOrderedRing, Nat.instIsStrictOrderedRing, NNReal.instIsStrictOrderedRing, ConditionallyCompleteLinearOrderedField.toIsStrictOrderedRing, SubsemiringClass.toIsStrictOrderedRing, Function.Injective.isStrictOrderedRing, ZNum.isStrictOrderedRing, Subfield.toIsStrictOrderedRing, Filter.Germ.instIsStrictOrderedRing, IsOrderedRing.toIsStrictOrderedRing, Real.instIsStrictOrderedRing

Theorems

NameKindAssumesProvesValidatesDepends On
instNoMaxOrderOfNontrivial πŸ“–mathematicalβ€”NoMaxOrder
Preorder.toLT
PartialOrder.toPreorder
β€”IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedCancelAddMonoid.toAddLeftReflectLT
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
IsOrderedRing.toZeroLEOneClass
NeZero.one
instNoMinOrderOfNontrivial πŸ“–mathematicalβ€”NoMinOrder
Preorder.toLT
PartialOrder.toPreorder
β€”IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
NeZero.one
instOrderedRingOfIsStrictOrderedRing πŸ“–mathematicalβ€”Semiring.toGrindSemiring
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLT
instIsPreorder_mathlib
β€”instIsPreorder_mathlib
instOrderedAddOfAddRightMonoOfAddRightReflectLE
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
contravariant_swap_add_of_contravariant_add
IsOrderedCancelAddMonoid.toAddLeftReflectLT
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.one
IsStrictOrderedRing.toNontrivial
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
one_add_le_one_add_mul_one_sub πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”mul_one_sub
one_add_mul
Distrib.rightDistribClass
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_assoc
add_le_add_right
one_add_le_one_sub_mul_one_add πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”one_sub_mul
mul_one_add
Distrib.leftDistribClass
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_assoc
add_le_add_right
one_sub_le_one_add_mul_one_sub πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”mul_one_sub
one_add_mul
Distrib.rightDistribClass
sub_le_sub_iff
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_assoc
add_comm
add_le_add_right
one_sub_le_one_sub_mul_one_add πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”one_sub_mul
mul_one_add
Distrib.leftDistribClass
sub_le_sub_iff
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_assoc
add_comm
add_le_add_right

---

← Back to Index