Documentation Verification Report

GeomSum

πŸ“ Source: Mathlib/Algebra/Order/Ring/GeomSum.lean

Statistics

MetricCount
Definitions0
TheoremsgeomSum_lt, geom_sum_Ico_le, geom_sum_le, pred_mul_geom_sum_le, geom_sum_pos, geom_sum_alternating_of_le_neg_one, geom_sum_alternating_of_lt_neg_one, geom_sum_eq_zero_iff_neg_one, geom_sum_ne_zero, geom_sum_neg_iff, geom_sum_pos, geom_sum_pos', geom_sum_pos_and_lt_one, geom_sum_pos_iff
14
Total14

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
geomSum_lt πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Monoid.toNatPow
instMonoid
β€”Finset.sum_le_sum_of_subset
instCanonicallyOrderedAdd
Finset.mem_range
geomSum_eq
tsub_lt_self
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
geom_sum_Ico_le πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.Ico
instPreorder
instLocallyFiniteOrder
Monoid.toNatPow
instMonoid
β€”Finset.Ico_eq_empty_of_le
Finset.sum_empty
add_le_add_iff_left
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
pow_zero
Finset.range_eq_Ico
Finset.insert_Ico_add_one_left_eq_Ico
Finset.sum_insert
zero_add
instCanonicallyOrderedAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
instNoMaxOrder
Finset.sum_congr
geom_sum_le
mul_add
Distrib.leftDistribClass
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
instOrderedSub
mul_one
tsub_pos_of_lt
add_comm
geom_sum_le πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
Monoid.toNatPow
instMonoid
β€”tsub_pos_of_lt
instCanonicallyOrderedAdd
instOrderedSub
Finset.sum_range_zero
MulZeroClass.zero_mul
mul_comm
LE.le.trans
pred_mul_geom_sum_le
tsub_le_self
pred_mul_geom_sum_le πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
Monoid.toNatPow
instMonoid
β€”mul_comm
Finset.sum_mul
one_mul
Finset.sum_range_succ'
Finset.sum_range_succ
pow_zero
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finset.sum_le_sum
pow_succ
add_tsub_add_eq_tsub_left
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le

Odd

Theorems

NameKindAssumesProvesValidatesDepends On
geom_sum_pos πŸ“–mathematicalOdd
Nat.instSemiring
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”Nat.not_odd_zero
Finset.sum_congr
zero_add
Finset.sum_singleton
pow_zero
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
lt_trichotomy
geom_sum_alternating_of_lt_neg_one
LT.lt.trans
zero_lt_one
Nat.not_even_iff_odd
eq_neg_of_add_eq_zero_left
neg_one_geom_sum
geom_sum_pos'

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
geom_sum_alternating_of_le_neg_one πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Even
Nat.instDecidablePredEven
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”LE.le.trans
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
zero_le_one
IsOrderedRing.toZeroLEOneClass
geom_sum_succ
le_add_iff_nonneg_left
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
IsOrderedCancelAddMonoid.toAddLeftReflectLT
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
le_imp_le_of_le_of_le
le_refl
add_le_add_left
mul_one
mul_le_mul_of_nonpos_left
IsOrderedRing.toPosMulMono
geom_sum_alternating_of_lt_neg_one πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Even
Nat.instDecidablePredEven
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”LE.le.trans_lt
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
zero_le_one
IsStrictOrderedRing.toZeroLEOneClass
Nat.le_induction
geom_sum_two
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
IsOrderedCancelAddMonoid.toAddLeftReflectLT
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
geom_sum_succ
lt_add_iff_pos_left
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
lt_imp_lt_of_le_of_le
le_refl
le_of_lt
add_lt_add_left
mul_one
mul_lt_mul_of_neg_left
IsStrictOrderedRing.toPosMulStrictMono
geom_sum_eq_zero_iff_neg_one πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Even
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
eq_or_ne
neg_one_geom_sum
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
geom_sum_ne_zero
Finset.sum_congr
geom_sum_ne_zero πŸ“–β€”β€”β€”β€”Finset.sum_congr
zero_add
Finset.sum_singleton
pow_zero
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Ne.lt_or_gt
eq_neg_iff_add_eq_zero
geom_sum_alternating_of_lt_neg_one
LT.lt.ne
LT.lt.ne'
LT.lt.trans
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
geom_sum_pos'
geom_sum_neg_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Even
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”not_iff_not
not_lt
le_iff_lt_or_eq
geom_sum_pos_iff
geom_sum_eq_zero_iff_neg_one
Nat.not_even_iff_odd
add_eq_zero_iff_eq_neg
imp_iff_not_or
geom_sum_pos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Preorder.toLT
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Finset.sum_pos'
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
pow_nonneg
IsStrictOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Finset.mem_range
Ne.bot_lt
pow_zero
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
geom_sum_pos' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”Finset.sum_congr
zero_add
Finset.sum_singleton
pow_zero
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
lt_or_ge
geom_sum_pos_and_lt_one
geom_sum_pos
geom_sum_pos_and_lt_one πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”Nat.le_induction
geom_sum_two
add_lt_iff_neg_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
contravariant_swap_add_of_contravariant_add
IsOrderedCancelAddMonoid.toAddLeftReflectLT
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
geom_sum_succ
neg_lt_iff_pos_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
neg_mul_eq_neg_mul
mul_lt_one_of_nonneg_of_lt_one_left
IsOrderedRing.toPosMulMono
neg_nonneg
LT.lt.le
mul_neg_of_neg_of_pos
IsStrictOrderedRing.toMulPosStrictMono
geom_sum_pos_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Odd
Nat.instSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”not_le
Nat.not_odd_iff_even
LT.lt.not_ge
geom_sum_alternating_of_le_neg_one
IsStrictOrderedRing.toIsOrderedRing
Odd.geom_sum_pos
geom_sum_pos'

---

← Back to Index