Documentation Verification Report

InjSurj

📁 Source: Mathlib/Algebra/Order/Ring/InjSurj.lean

Statistics

MetricCount
Definitions0
TheoremsisOrderedRing, isStrictOrderedRing
2
Total2

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
isOrderedRing 📖mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
Preorder.toLE
PartialOrder.toPreorder
IsOrderedRingisOrderedAddMonoid
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
isStrictOrderedRing 📖mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLT
IsStrictOrderedRingisOrderedCancelAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
domain_nontrivial
IsStrictOrderedRing.toNontrivial
isOrderedRing
IsStrictOrderedRing.toIsOrderedRing
IsOrderedRing.toZeroLEOneClass
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono

---

← Back to Index