Documentation Verification Report

Int

📁 Source: Mathlib/Algebra/Order/Ring/Int.lean

Statistics

MetricCount
Definitions0
Theoremsadd_two_le_iff_lt_of_even_sub, instIsStrictOrderedRing, isCompl_even_odd, two_le_iff_pos_of_even, cast_natAbs, exists_add_mul_eq_of_gcd_dvd_of_mul_pred_le
6
Total6

Int

Theorems

NameKindAssumesProvesValidatesDepends On
add_two_le_iff_lt_of_even_sub 📖Even
instIsStrictOrderedRing 📖mathematicalIsStrictOrderedRing
instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.of_mul_pos
instIsOrderedAddMonoid
instZeroLEOneClass
instNontrivial
isCompl_even_odd 📖mathematicalIsCompl
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
Set.instBoundedOrder
setOf
Even
Odd
instSemiring
two_le_iff_pos_of_even 📖Evenle_iff_pos_of_dvd
Even.two_dvd

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_natAbs 📖mathematicalAddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCast
abs
instLatticeInt
Int.instAddGroup
Int.natCast_natAbs
Int.cast_natCast
exists_add_mul_eq_of_gcd_dvd_of_mul_pred_le 📖MulZeroClass.mul_zero
mul_comm
zero_add
add_zero
Int.gcd_dvd_iff
cast_injective
Int.instCharZero
add_mul
Distrib.rightDistribClass
add_assoc
add_right_comm
mul_right_comm
cast_add
cast_mul
lt_irrefl
add_le_add
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
cast_succ
mul_add
Distrib.leftDistribClass
sub_le_sub_iff_right
cast_le
Int.instZeroLEOneClass

---

← Back to Index