📁 Source: Mathlib/Algebra/Order/Ring/Int.lean
add_two_le_iff_lt_of_even_sub
instIsStrictOrderedRing
isCompl_even_odd
two_le_iff_pos_of_even
cast_natAbs
exists_add_mul_eq_of_gcd_dvd_of_mul_pred_le
Even
IsStrictOrderedRing
instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.of_mul_pos
instIsOrderedAddMonoid
instZeroLEOneClass
instNontrivial
IsCompl
Set
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
Set.instBoundedOrder
setOf
Odd
le_iff_pos_of_dvd
Even.two_dvd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCast
abs
Int.instAddGroup
Int.natCast_natAbs
Int.cast_natCast
MulZeroClass.mul_zero
mul_comm
zero_add
add_zero
Int.gcd_dvd_iff
cast_injective
Int.instCharZero
add_mul
Distrib.rightDistribClass
add_assoc
add_right_comm
mul_right_comm
cast_add
cast_mul
lt_irrefl
add_le_add
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
cast_succ
mul_add
Distrib.leftDistribClass
sub_le_sub_iff_right
cast_le
Int.instZeroLEOneClass
---
← Back to Index