Documentation Verification Report

Interval

πŸ“ Source: Mathlib/Algebra/Order/Ring/Interval.lean

Statistics

MetricCount
Definitions0
Theoremsint_eq_of_mul_mem_Ioo, int_mem_Icc_of_mul_mem_Ioo
2
Total2

IsStrictOrderedRing

Theorems

NameKindAssumesProvesValidatesDepends On
int_eq_of_mul_mem_Ioo πŸ“–β€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Set
Set.instMembership
Set.Ioo
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”β€”Finset.Icc_self
int_mem_Icc_of_mul_mem_Ioo
int_mem_Icc_of_mul_mem_Ioo πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Set
Set.instMembership
Set.Ioo
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Finset
Finset.instMembership
Finset.Icc
instLatticeInt
Int.instLocallyFiniteOrder
β€”mul_lt_mul_iff_rightβ‚€
toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
toIsOrderedRing
toZeroLEOneClass
NeZero.charZero_one
toCharZero

---

← Back to Index