Documentation Verification Report

StandardPart

πŸ“ Source: Mathlib/Algebra/Order/Ring/StandardPart.lean

Statistics

MetricCount
DefinitionsFiniteElement, instCommRing, instFloorRing, instLinearOrder, instRatCast, mk, FiniteResidueField, instField, instLinearOrder, mk, ofArchimedean, stdPart
12
Theoremsext, ext_iff, instIsDomain, instIsStrictOrderedRing, instValuationRing, isUnit_iff_mk_eq_zero, mk_add_mk, mk_intCast, mk_le_mk, mk_lt_mk, mk_mul_mk, mk_natCast, mk_neg, mk_one, mk_ratCast, mk_sub_mk, mk_zero, neg_mk, not_isUnit_iff_mk_pos, val_add, val_mul, val_one, val_sub, val_zero, ind, instArchimedean, instIsOrderedRing, lt_of_mk_lt_mk, mk_eq_mk, mk_eq_zero, mk_le_mk, mk_lt_mk, mk_ne_zero, mk_ratCast, ofArchimedean_apply, ofArchimedean_inj, ofArchimedean_injective, ordConnected_preimage_mk, le_stdPart_of_le, lt_of_lt_stdPart, lt_of_stdPart_lt, mk_sub_pos_iff, mk_sub_stdPart_pos, ofArchimedean_stdPart, stdPart_add, stdPart_add_eq_left, stdPart_add_eq_right, stdPart_div, stdPart_eq, stdPart_eq_sInf, stdPart_eq_sSup, stdPart_eq_zero, stdPart_intCast, stdPart_inv, stdPart_le_of_le, stdPart_map_real, stdPart_monotoneOn, stdPart_mul, stdPart_natCast, stdPart_neg, stdPart_nonneg, stdPart_nonpos, stdPart_ofNat, stdPart_of_mk_ne_zero, stdPart_of_mk_nonneg, stdPart_one, stdPart_ratCast, stdPart_real, stdPart_sub, stdPart_sub_eq_left, stdPart_sub_eq_right, stdPart_zero
72
Total84

ArchimedeanClass

Definitions

NameCategoryTheorems
FiniteElement πŸ“–CompOp
31 mathmath: FiniteResidueField.mk_ratCast, FiniteElement.instIsStrictOrderedRing, FiniteResidueField.ofArchimedean_apply, FiniteResidueField.mk_eq_zero, FiniteElement.val_add, FiniteElement.not_isUnit_iff_mk_pos, FiniteElement.mk_le_mk, FiniteElement.mk_intCast, FiniteElement.val_mul, FiniteElement.mk_mul_mk, FiniteElement.mk_add_mk, FiniteElement.instValuationRing, FiniteElement.val_sub, FiniteElement.mk_ratCast, FiniteResidueField.mk_eq_mk, FiniteElement.val_zero, FiniteElement.isUnit_iff_mk_eq_zero, FiniteElement.instIsDomain, FiniteResidueField.mk_le_mk, FiniteElement.val_one, FiniteElement.mk_zero, ofArchimedean_stdPart, FiniteElement.mk_neg, FiniteResidueField.mk_lt_mk, FiniteElement.mk_one, FiniteResidueField.ordConnected_preimage_mk, stdPart_of_mk_nonneg, FiniteElement.mk_lt_mk, FiniteElement.mk_natCast, FiniteElement.neg_mk, FiniteElement.mk_sub_mk
FiniteResidueField πŸ“–CompOp
13 mathmath: FiniteResidueField.mk_ratCast, FiniteResidueField.ofArchimedean_apply, FiniteResidueField.mk_eq_zero, FiniteResidueField.ofArchimedean_inj, FiniteResidueField.ofArchimedean_injective, FiniteResidueField.mk_eq_mk, FiniteResidueField.mk_le_mk, FiniteResidueField.instArchimedean, ofArchimedean_stdPart, FiniteResidueField.mk_lt_mk, FiniteResidueField.ordConnected_preimage_mk, stdPart_of_mk_nonneg, FiniteResidueField.instIsOrderedRing
stdPart πŸ“–CompOp
36 mathmath: stdPart_zero, stdPart_of_mk_ne_zero, stdPart_eq_sInf, Hyperreal.stdPart_coe, stdPart_add, stdPart_map_real, stdPart_eq, stdPart_ofNat, mk_sub_stdPart_pos, stdPart_one, stdPart_intCast, stdPart_add_eq_right, stdPart_monotoneOn, stdPart_neg, stdPart_sub_eq_right, stdPart_natCast, ofArchimedean_stdPart, stdPart_div, stdPart_nonneg, stdPart_le_of_le, stdPart_sub, stdPart_sub_eq_left, stdPart_eq_zero, mk_sub_pos_iff, Hyperreal.stdPart_of_tendsto, stdPart_add_eq_left, stdPart_mul, Hyperreal.stdPart_omega, le_stdPart_of_le, stdPart_of_mk_nonneg, Hyperreal.stdPart_epsilon, stdPart_ratCast, stdPart_real, stdPart_inv, stdPart_nonpos, stdPart_eq_sSup

Theorems

NameKindAssumesProvesValidatesDepends On
le_stdPart_of_le πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
DFunLike.coe
OrderRingHom
Real
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
OrderRingHom.instFunLike
Real.instLE
stdPart
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
le_imp_le_iff_lt_imp_lt
lt_of_stdPart_lt
lt_of_lt_stdPart πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
Real
Real.instLT
stdPart
Preorder.toLT
DFunLike.coe
OrderRingHom
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
OrderRingHom.instFunLike
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
sub_lt_sub_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
OrderRingHom.instRingHomClass
lt_of_mk_lt_mk_of_nonpos
IsStrictOrderedRing.toIsOrderedRing
mk_map_of_archimedean'
Real.instArchimedean
sub_eq_zero
LT.lt.ne
mk_sub_pos_iff
AddGroup.toOrderedSub
zero_add
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
OrderRingHom.toRingHom_eq_coe
OrderRingHom.monotone'
LT.lt.le
lt_of_stdPart_lt πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
Real
Real.instLT
stdPart
Preorder.toLT
DFunLike.coe
OrderRingHom
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
OrderRingHom.instFunLike
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
OrderRingHom.instRingHomClass
lt_of_lt_stdPart
mk_neg
stdPart_neg
Real.instIsOrderedAddMonoid
mk_sub_pos_iff πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
Preorder.toLT
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DFunLike.coe
OrderRingHom
Real
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
OrderRingHom.instFunLike
stdPart
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_map_nonneg_of_archimedean
Real.instIsStrictOrderedRing
Real.instArchimedean
FiniteResidueField.mk_eq_zero
map_sub
RingHomClass.toAddMonoidHomClass
OrderRingHom.instRingHomClass
FiniteResidueField.ofArchimedean_apply
ofArchimedean_stdPart
sub_eq_zero
mk_sub_stdPart_pos πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
Preorder.toLT
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DFunLike.coe
OrderRingHom
Real
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
OrderRingHom.instFunLike
stdPart
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_sub_pos_iff
ofArchimedean_stdPart πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
DFunLike.coe
OrderRingHom
Real
FiniteResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Real.commRing
Real.linearOrder
FiniteResidueField.instField
FiniteResidueField.instLinearOrder
OrderRingHom.instFunLike
FiniteResidueField.ofArchimedean
Real.instIsStrictOrderedRing
Real.instArchimedean
stdPart
FiniteElement
FiniteElement.instCommRing
FiniteElement.instLinearOrder
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Real.instIsStrictOrderedRing
Real.instArchimedean
FiniteResidueField.instArchimedean
OrderRingHom.comp_apply
OrderRingHom.comp_assoc
OrderRingHom.apply_eq_self
FiniteResidueField.instIsOrderedRing
stdPart_add πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
stdPart
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Real
Real.instAdd
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
FiniteResidueField.instArchimedean
NonUnitalSubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
OrderRingHom.instRingHomClass
stdPart_add_eq_left πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
stdPart
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
add_comm
stdPart_add_eq_right
stdPart_add_eq_right πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
stdPart
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
le_or_gt
stdPart_add
LT.lt.le
stdPart_of_mk_ne_zero
LT.lt.ne'
zero_add
LT.lt.ne
mk_add_eq_mk_right
LT.lt.trans
stdPart_div πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
instNeg
stdPart
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Real
Real.instDivInvMonoid
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
div_eq_mul_inv
stdPart_mul
mk_inv
stdPart_inv
stdPart_eq πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
OrderRingHom
Real
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
OrderRingHom.instFunLike
stdPartβ€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_nonneg_of_le_of_le_of_archimedean
Real.instIsStrictOrderedRing
Real.instArchimedean
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
contravariant_lt_of_covariant_le
lt_trichotomy
exists_between
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
LE.le.not_gt
le_stdPart_of_le
stdPart_le_of_le
stdPart_eq_sInf πŸ“–mathematicalβ€”stdPart
InfSet.sInf
Real
Real.instInfSet
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
OrderRingHom
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
OrderRingHom.instFunLike
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
le_or_gt
exists_int_lt_of_mk_nonneg
exists_int_gt_of_mk_nonneg
map_intCast
OrderRingHom.instRingHomClass
LE.le.not_gt
OrderRingHom.monotone'
LT.lt.le
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
OrderRingHom.toRingHom_eq_coe
LT.lt.trans
stdPart_eq
notMem_of_lt_csInf
csInf_lt_iff
LE.le.trans
stdPart_of_mk_ne_zero
LT.lt.ne
IsStrictOrderedRing.toIsOrderedRing
LT.lt.trans_le
mk_map_nonneg_of_archimedean
Real.instIsStrictOrderedRing
Real.instArchimedean
Set.eq_empty_iff_forall_notMem
LT.lt.not_gt
lt_of_mk_lt_mk_of_nonneg
Real.sInf_empty
Set.eq_univ_iff_forall
lt_of_mk_lt_mk_of_nonpos
Real.sInf_univ
stdPart_eq_sSup πŸ“–mathematicalβ€”stdPart
SupSet.sSup
Real
Real.instSupSet
setOf
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
OrderRingHom
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
OrderRingHom.instFunLike
β€”stdPart_neg
stdPart_eq_sInf
Real.sInf_neg
Set.ext
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
OrderRingHom.instRingHomClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
stdPart_eq_zero πŸ“–mathematicalβ€”stdPart
Real
Real.instZero
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Mathlib.Tactic.Contrapose.contrapose₃
FiniteResidueField.instIsOrderedRing
FiniteResidueField.instArchimedean
Eq.ge
stdPart_of_mk_nonneg
map_ne_zero
Real.instNontrivial
RingHomClass.toMonoidWithZeroHomClass
OrderRingHom.instRingHomClass
FiniteResidueField.mk_ne_zero
Ne.lt_or_gt
LT.lt.not_ge
LT.lt.le
OrderRingHom.comp_apply
FiniteResidueField.mk_eq_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
stdPart_intCast πŸ“–mathematicalβ€”stdPart
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Real
Real.instIntCast
β€”stdPart.congr_simp
Rat.cast_intCast
stdPart_ratCast
stdPart_inv πŸ“–mathematicalβ€”stdPart
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Real
Real.instInv
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
eq_or_ne
neg_zero
FiniteResidueField.instArchimedean
Eq.ge
eq_inv_of_mul_eq_one_left
FiniteElement.ext
inv_mul_cancelβ‚€
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
OrderRingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
stdPart_of_mk_ne_zero
mk_inv
neg_ne_zero
inv_zero
stdPart_le_of_le πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
DFunLike.coe
OrderRingHom
Real
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
OrderRingHom.instFunLike
Real.instLE
stdPart
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
le_imp_le_iff_lt_imp_lt
lt_of_lt_stdPart
stdPart_map_real πŸ“–mathematicalβ€”stdPart
DFunLike.coe
OrderRingHom
Real
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
OrderRingHom.instFunLike
β€”FiniteResidueField.instArchimedean
Real.instIsStrictOrderedRing
Real.instArchimedean
Real.ringHom_apply
OrderRingHom.instRingHomClass
stdPart_monotoneOn πŸ“–mathematicalβ€”MonotoneOn
Real
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
stdPart
setOf
ArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Preorder.toLE
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
FiniteResidueField.instArchimedean
OrderRingHom.monotone'
stdPart_mul πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
stdPart
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Real
Real.instMul
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
FiniteResidueField.instArchimedean
NonUnitalSubsemiringClass.mulMemClass
SubringClass.toSubsemiringClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
OrderRingHom.instRingHomClass
stdPart_natCast πŸ“–mathematicalβ€”stdPart
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Real
Real.instNatCast
β€”stdPart.congr_simp
Int.cast_natCast
stdPart_intCast
stdPart_neg πŸ“–mathematicalβ€”stdPart
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Real
Real.instNeg
β€”FiniteResidueField.instArchimedean
mk_neg
map_neg
RingHomClass.toAddMonoidHomClass
OrderRingHom.instRingHomClass
neg_zero
stdPart_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Real
Real.instLE
Real.instZero
stdPart
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
eq_or_ne
FiniteResidueField.instArchimedean
Eq.ge
map_nonneg
OrderRingHom.instOrderHomClass
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
OrderRingHom.instRingHomClass
stdPart_of_mk_ne_zero
le_refl
stdPart_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Real
Real.instLE
stdPart
Real.instZero
β€”stdPart_neg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
stdPart_nonneg
neg_nonneg
IsOrderedRing.toIsOrderedAddMonoid
stdPart_ofNat πŸ“–mathematicalβ€”stdPart
Real
Real.instNatCast
β€”stdPart_natCast
stdPart_of_mk_ne_zero πŸ“–mathematicalβ€”stdPart
Real
Real.instZero
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
stdPart_eq_zero
stdPart_of_mk_nonneg πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
stdPart
DFunLike.coe
OrderRingHom
FiniteResidueField
Real
Semiring.toNonAssocSemiring
FiniteResidueField.instField
FiniteResidueField.instLinearOrder
Real.semiring
Real.instPreorder
OrderRingHom.instFunLike
FiniteElement
CommSemiring.toSemiring
CommRing.toCommSemiring
FiniteElement.instCommRing
FiniteElement.instLinearOrder
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
FiniteResidueField.instArchimedean
OrderRingHom.comp_apply
OrderRingHom.subsingleton
Real.instIsStrictOrderedRing
Real.instArchimedean
stdPart_one πŸ“–mathematicalβ€”stdPart
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Real
Real.instOne
β€”FiniteResidueField.instArchimedean
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
OrderRingHom.instRingHomClass
stdPart_ratCast πŸ“–mathematicalβ€”stdPart
DivisionRing.toRatCast
Field.toDivisionRing
Real
Real.instRatCast
β€”IsOrderedRing.toIsStrictOrderedRing
FiniteResidueField.instIsOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
FiniteResidueField.instArchimedean
mk_ratCast_nonneg
stdPart_of_mk_nonneg
FiniteElement.mk_ratCast
FiniteResidueField.mk_ratCast
map_ratCast
OrderRingHom.instRingHomClass
stdPart_real πŸ“–mathematicalβ€”stdPart
Real
Real.linearOrder
Real.instField
Real.instIsOrderedRing
β€”stdPart_map_real
Real.instIsOrderedRing
stdPart_sub πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
stdPart
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Real
Real.instSub
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
sub_eq_add_neg
stdPart_add
mk_neg
stdPart_neg
stdPart_sub_eq_left πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
stdPart
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
sub_eq_add_neg
stdPart_add_eq_left
mk_neg
stdPart_sub_eq_right πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
instLinearOrder
instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
stdPart
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Real
Real.instNeg
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
sub_eq_add_neg
stdPart_add_eq_right
stdPart_neg
stdPart_zero πŸ“–mathematicalβ€”stdPart
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Real
Real.instZero
β€”FiniteResidueField.instArchimedean
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
OrderRingHom.instRingHomClass

ArchimedeanClass.FiniteElement

Definitions

NameCategoryTheorems
instCommRing πŸ“–CompOp
28 mathmath: ArchimedeanClass.FiniteResidueField.mk_ratCast, instIsStrictOrderedRing, ArchimedeanClass.FiniteResidueField.ofArchimedean_apply, ArchimedeanClass.FiniteResidueField.mk_eq_zero, val_add, not_isUnit_iff_mk_pos, mk_intCast, val_mul, mk_mul_mk, mk_add_mk, instValuationRing, val_sub, ArchimedeanClass.FiniteResidueField.mk_eq_mk, val_zero, isUnit_iff_mk_eq_zero, instIsDomain, ArchimedeanClass.FiniteResidueField.mk_le_mk, val_one, mk_zero, ArchimedeanClass.ofArchimedean_stdPart, mk_neg, ArchimedeanClass.FiniteResidueField.mk_lt_mk, mk_one, ArchimedeanClass.FiniteResidueField.ordConnected_preimage_mk, ArchimedeanClass.stdPart_of_mk_nonneg, mk_natCast, neg_mk, mk_sub_mk
instFloorRing πŸ“–CompOpβ€”
instLinearOrder πŸ“–CompOp
12 mathmath: ArchimedeanClass.FiniteResidueField.mk_ratCast, instIsStrictOrderedRing, ArchimedeanClass.FiniteResidueField.ofArchimedean_apply, ArchimedeanClass.FiniteResidueField.mk_eq_zero, mk_le_mk, ArchimedeanClass.FiniteResidueField.mk_eq_mk, ArchimedeanClass.FiniteResidueField.mk_le_mk, ArchimedeanClass.ofArchimedean_stdPart, ArchimedeanClass.FiniteResidueField.mk_lt_mk, ArchimedeanClass.FiniteResidueField.ordConnected_preimage_mk, ArchimedeanClass.stdPart_of_mk_nonneg, mk_lt_mk
instRatCast πŸ“–CompOp
2 mathmath: ArchimedeanClass.FiniteResidueField.mk_ratCast, mk_ratCast
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
Ring.toAddCommGroup
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
Ring.toAddCommGroup
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
β€”ext
instIsDomain πŸ“–mathematicalβ€”IsDomain
ArchimedeanClass.FiniteElement
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”ValuationSubring.instIsDomainSubtypeMem
instIsStrictOrderedRing πŸ“–mathematicalβ€”IsStrictOrderedRing
ArchimedeanClass.FiniteElement
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”Subring.toIsStrictOrderedRing
ValuationSubring.instSubringClass
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
instValuationRing πŸ“–mathematicalβ€”ValuationRing
ArchimedeanClass.FiniteElement
instCommRing
instIsDomain
β€”instIsDomain
ValuationSubring.instValuationRingSubtypeMem
isUnit_iff_mk_eq_zero πŸ“–mathematicalβ€”IsUnit
ArchimedeanClass.FiniteElement
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
ArchimedeanClass.instZero
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
not_iff_not
not_isUnit_iff_mk_pos
lt_iff_not_ge
LE.le.ge_iff_eq'
mk_add_mk πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ArchimedeanClass.FiniteElement
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instCommRing
LE.le.trans
LinearOrder.toMin
le_min
ArchimedeanClass.min_le_mk_add
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_intCast πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ArchimedeanClass.mk_intCast_nonneg
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsDomain.to_noZeroDivisors
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ArchimedeanClass.FiniteElement
CommRing.toRing
instCommRing
β€”ArchimedeanClass.mk_intCast_nonneg
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_le_mk πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ArchimedeanClass.FiniteElement
instLinearOrder
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_lt_mk πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ArchimedeanClass.FiniteElement
Preorder.toLT
instLinearOrder
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_mul_mk πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
LinearOrderedAddCommGroupWithTop.toSubNegMonoid
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
ArchimedeanClass.FiniteElement
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
ArchimedeanClass.instAddCommMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
ArchimedeanClass.instIsOrderedAddMonoid
β€”IsOrderedRing.toIsOrderedAddMonoid
mk_natCast πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ArchimedeanClass.mk_natCast_nonneg
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsDomain.to_noZeroDivisors
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ArchimedeanClass.FiniteElement
CommRing.toRing
instCommRing
β€”ArchimedeanClass.mk_natCast_nonneg
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_neg πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ArchimedeanClass.FiniteElement
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CommRing.toRing
instCommRing
β€”β€”
mk_one πŸ“–mathematicalβ€”AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ArchimedeanClass.FiniteElement
CommRing.toRing
instCommRing
β€”β€”
mk_ratCast πŸ“–mathematicalβ€”DivisionRing.toRatCast
Field.toDivisionRing
ArchimedeanClass.mk_ratCast_nonneg
ArchimedeanClass.FiniteElement
instRatCast
β€”ArchimedeanClass.mk_ratCast_nonneg
mk_sub_mk πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ArchimedeanClass.FiniteElement
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
LE.le.trans
LinearOrder.toMin
le_min
ArchimedeanClass.min_le_mk_sub
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_zero πŸ“–mathematicalβ€”MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
ArchimedeanClass.FiniteElement
instCommRing
β€”β€”
neg_mk πŸ“–mathematicalArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ArchimedeanClass.FiniteElement
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CommRing.toRing
instCommRing
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
not_isUnit_iff_mk_pos πŸ“–mathematicalβ€”IsUnit
ArchimedeanClass.FiniteElement
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
ArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
CommRing.toRing
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
β€”Valuation.Integer.not_isUnit_iff_valuation_lt_one
val_add πŸ“–mathematicalβ€”ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
Ring.toAddCommGroup
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
ArchimedeanClass.FiniteElement
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
β€”β€”
val_mul πŸ“–mathematicalβ€”ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
Ring.toAddCommGroup
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
ArchimedeanClass.FiniteElement
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
β€”β€”
val_one πŸ“–mathematicalβ€”ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
Ring.toAddCommGroup
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
ArchimedeanClass.FiniteElement
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instCommRing
DivisionRing.toRing
Field.toDivisionRing
β€”β€”
val_sub πŸ“–mathematicalβ€”ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
Ring.toAddCommGroup
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
ArchimedeanClass.FiniteElement
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instCommRing
DivisionRing.toRing
Field.toDivisionRing
β€”β€”
val_zero πŸ“–mathematicalβ€”ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
Ring.toAddCommGroup
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
ArchimedeanClass.FiniteElement
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
β€”β€”

ArchimedeanClass.FiniteResidueField

Definitions

NameCategoryTheorems
instField πŸ“–CompOp
13 mathmath: mk_ratCast, ofArchimedean_apply, mk_eq_zero, ofArchimedean_inj, ofArchimedean_injective, mk_eq_mk, mk_le_mk, instArchimedean, ArchimedeanClass.ofArchimedean_stdPart, mk_lt_mk, ordConnected_preimage_mk, ArchimedeanClass.stdPart_of_mk_nonneg, instIsOrderedRing
instLinearOrder πŸ“–CompOp
13 mathmath: mk_ratCast, ofArchimedean_apply, mk_eq_zero, ofArchimedean_inj, ofArchimedean_injective, mk_eq_mk, mk_le_mk, instArchimedean, ArchimedeanClass.ofArchimedean_stdPart, mk_lt_mk, ordConnected_preimage_mk, ArchimedeanClass.stdPart_of_mk_nonneg, instIsOrderedRing
mk πŸ“–CompOpβ€”
ofArchimedean πŸ“–CompOp
4 mathmath: ofArchimedean_apply, ofArchimedean_inj, ofArchimedean_injective, ArchimedeanClass.ofArchimedean_stdPart

Theorems

NameKindAssumesProvesValidatesDepends On
ind πŸ“–β€”DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteElement
ArchimedeanClass.FiniteResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ArchimedeanClass.FiniteElement.instCommRing
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.FiniteElement.instLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instLinearOrder
OrderRingHom.instFunLike
β€”β€”β€”
instArchimedean πŸ“–mathematicalβ€”Archimedean
ArchimedeanClass.FiniteResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”ind
le_or_gt
zero_nsmul
IsOrderedRing.toIsOrderedAddMonoid
Eq.le
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_ne_zero
LT.lt.ne'
OrderRingHom.monotone'
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedRing πŸ“–mathematicalβ€”IsOrderedRing
ArchimedeanClass.FiniteResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”ind
OrderRingHom.monotone'
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
ArchimedeanClass.FiniteElement.instIsStrictOrderedRing
le_refl
zero_le_one
IsStrictOrderedRing.toZeroLEOneClass
mul_comm
lt_of_mk_lt_mk πŸ“–β€”ArchimedeanClass.FiniteResidueField
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteElement
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ArchimedeanClass.FiniteElement.instCommRing
ArchimedeanClass.FiniteElement.instLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
OrderRingHom.instFunLike
β€”β€”β€”
mk_eq_mk πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteElement
ArchimedeanClass.FiniteResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ArchimedeanClass.FiniteElement.instCommRing
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.FiniteElement.instLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instLinearOrder
OrderRingHom.instFunLike
ArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
Preorder.toLT
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
CommRing.toRing
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Quotient.eq
Submodule.quotientRel_def
IsLocalRing.mem_maximalIdeal
mem_nonunits_iff
ArchimedeanClass.FiniteElement.not_isUnit_iff_mk_pos
SubringClass.addSubgroupClass
ValuationSubring.instSubringClass
AddSubgroupClass.coe_sub
mk_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteElement
ArchimedeanClass.FiniteResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ArchimedeanClass.FiniteElement.instCommRing
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.FiniteElement.instLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instLinearOrder
OrderRingHom.instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
ArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
Preorder.toLT
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
CommRing.toRing
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
sub_zero
mk_le_mk πŸ“–mathematicalβ€”ArchimedeanClass.FiniteResidueField
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteElement
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ArchimedeanClass.FiniteElement.instCommRing
ArchimedeanClass.FiniteElement.instLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
OrderRingHom.instFunLike
β€”ValuationRing.isLocalRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
ArchimedeanClass.FiniteElement.instIsStrictOrderedRing
ValuationRing.toPreValuationRing
ArchimedeanClass.FiniteElement.instIsDomain
ArchimedeanClass.FiniteElement.instValuationRing
Quotient.eq_iff_equiv
mk_lt_mk πŸ“–mathematicalβ€”ArchimedeanClass.FiniteResidueField
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteElement
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ArchimedeanClass.FiniteElement.instCommRing
ArchimedeanClass.FiniteElement.instLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
OrderRingHom.instFunLike
β€”ValuationRing.isLocalRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
ArchimedeanClass.FiniteElement.instIsStrictOrderedRing
ValuationRing.toPreValuationRing
ArchimedeanClass.FiniteElement.instIsDomain
ArchimedeanClass.FiniteElement.instValuationRing
Quotient.eq_iff_equiv
mk_ne_zero πŸ“–mathematicalβ€”Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ValuationSubring
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Multiplicative
OrderDual
ArchimedeanClass
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instLinearOrderedCommGroupWithZeroMultiplicativeOrderDualOfLinearOrderedAddCommGroupWithTop
ArchimedeanClass.instLinearOrderedAddCommGroupWithTop
DFunLike.coe
Equiv
AddValuation
ArchimedeanClass.instLinearOrderedAddCommMonoidWithTop
Valuation
instLinearOrderedCommMonoidWithZeroMultiplicativeOrderDual
EquivLike.toFunLike
Equiv.instEquivLike
AddValuation.toValuation
ArchimedeanClass.addValuation
ArchimedeanClass.instZero
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
β€”IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mk_eq_zero
not_lt
LE.le.ge_iff_eq'
mk_ratCast πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteElement
ArchimedeanClass.FiniteResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ArchimedeanClass.FiniteElement.instCommRing
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.FiniteElement.instLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instLinearOrder
OrderRingHom.instFunLike
ArchimedeanClass.FiniteElement.instRatCast
DivisionRing.toRatCast
Field.toDivisionRing
β€”ArchimedeanClass.mk_ratCast_nonneg
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Nat.cast_zero
IsStrictOrderedRing.toCharZero
IsOrderedRing.toIsStrictOrderedRing
instIsOrderedRing
IsDomain.to_noZeroDivisors
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
map_natCast
OrderRingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
ArchimedeanClass.mk_natCast_nonneg
ArchimedeanClass.FiniteElement.mk_natCast
add_nonneg
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedAddMonoid.toAddLeftMono
ArchimedeanClass.instIsOrderedAddMonoid
Rat.cast_div
Rat.cast_intCast
Rat.cast_natCast
IsUnit.div_mul_cancel
map_intCast
ofArchimedean_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instLinearOrder
OrderRingHom.instFunLike
ofArchimedean
ArchimedeanClass.FiniteElement
ArchimedeanClass.FiniteElement.instCommRing
ArchimedeanClass.FiniteElement.instLinearOrder
EuclideanDomain.toCommRing
Field.toEuclideanDomain
ArchimedeanClass.mk_map_nonneg_of_archimedean
IsOrderedRing.toIsStrictOrderedRing
DivisionRing.toRing
Field.toDivisionRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DivisionRing.isSimpleRing
β€”β€”
ofArchimedean_inj πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
ArchimedeanClass.FiniteResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instLinearOrder
OrderRingHom.instFunLike
ofArchimedean
β€”ofArchimedean_injective
ofArchimedean_injective πŸ“–mathematicalβ€”ArchimedeanClass.FiniteResidueField
DFunLike.coe
OrderRingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instLinearOrder
OrderRingHom.instFunLike
ofArchimedean
β€”injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
OrderRingHom.instRingHomClass
Mathlib.Tactic.Contrapose.contrapose₁
ArchimedeanClass.mk_map_nonneg_of_archimedean
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
ofArchimedean_apply
IsOrderedRing.toIsOrderedAddMonoid
mk_ne_zero
ArchimedeanClass.mk_map_of_archimedean'
ordConnected_preimage_mk πŸ“–mathematicalβ€”Set.OrdConnected
ArchimedeanClass.FiniteElement
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ArchimedeanClass.FiniteElement.instLinearOrder
Set.preimage
ArchimedeanClass.FiniteResidueField
DFunLike.coe
OrderRingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ArchimedeanClass.FiniteElement.instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instLinearOrder
OrderRingHom.instFunLike
Set
Set.instSingletonSet
β€”β€”

---

← Back to Index