Documentation Verification Report

Rat

📁 Source: Mathlib/Algebra/Order/Ring/Unbundled/Rat.lean

Statistics

MetricCount
DefinitionstoOfScientific, instDistribLattice, instInf, instLattice, instPartialOrder, instPreorder, instSemilatticeInf, instSemilatticeSup, instSup, linearOrder
10
Theoremscast_ofScientific, toOfScientific_def, abs_def, abs_def', den_abs_eq_den, divInt_le_divInt, div_lt_div_iff_mul_lt_mul, instAddLeftMono, lt_iff_le_not_ge, lt_one_iff_num_lt_denom, mkRat_neg, mkRat_neg_iff, mkRat_nonneg, mkRat_nonneg_iff, mkRat_nonpos, mkRat_nonpos_iff, mkRat_pos, mkRat_pos_iff, num_abs_eq_abs_num, num_neg, num_nonpos, num_pos, ofScientific_nonneg
23
Total33

NNRat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_ofScientific 📖mathematicalcast
NNRat
NNRatCast.toOfScientific
instNNRatCast

NNRatCast

Definitions

NameCategoryTheorems
toOfScientific 📖CompOp
25 mathmath: HahnSeries.single_zero_ofScientific, Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true, toOfScientific_def, Real.pi_lt_d6, Real.exp_one_gt_d9, Real.log_two_gt_d9, instLawfulOfScientificOfCharZero, Real.pi_gt_d2, Behrend.ceil_lt_mul, NNReal.coe_ofScientific, NNRat.cast_ofScientific, Real.pi_lt_d2, Real.pi_gt_d4, Real.exp_one_lt_d9, Real.pi_lt_d20, Real.log_two_lt_d9, Rat.cast_ofScientific, SubfieldClass.ofScientific_mem, Real.pi_gt_d20, NNRat.Nonneg.coe_ofScientific, Real.exp_neg_one_gt_d9, Mathlib.Meta.NormNum.isNat_ofScientific_of_false, Real.pi_gt_d6, Real.exp_neg_one_lt_d9, Real.pi_lt_d4

Theorems

NameKindAssumesProvesValidatesDepends On
toOfScientific_def 📖mathematicaltoOfScientific
NNRat.cast
Rat.ofScientific_nonneg

Rat

Definitions

NameCategoryTheorems
instDistribLattice 📖CompOp
instInf 📖CompOp
2 mathmath: cast_min, NNRat.coe_min
instLattice 📖CompOp
75 mathmath: Real.ofCauchy_sup, NNRat.abs_coe, NumberField.mixedEmbedding.norm_eq_norm, coe_nnabs, NumberField.FinitePlace.prod_eq_inv_abs_norm, Real.ofCauchy_zero, NumberField.Units.dirichletUnitTheorem.seq_next, Real.of_near, Real.ofCauchy_mul, Real.cauchy_sub, Real.mk_one, num_abs_eq_abs_num, Real.ofCauchy_nnratCast, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_of_norm_le, Real.lt_cauchy, finite_rat_abs_sub_lt_one_div_den_sq, NumberField.det_basisOfFractionalIdeal_eq_absNorm, Real.ofCauchy_sub, Real.mk_lt, NumberField.Units.norm, SimpleGraph.nonuniformWitnesses_spec, preimage_cast_uIcc, Real.mk_mul, Real.cauchy_inv, Real.cauchy_nnratCast, Real.mk_add, AddSubgroup.relIndex_eq_abs_det, SimpleGraph.not_isUniform_iff, uniformContinuous_abs, Real.ofCauchy_natCast, Real.cauchy_natCast, FractionalIdeal.absNorm_span_singleton, Real.ofCauchy_ratCast, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, den_abs_eq_den, Real.ofCauchy_intCast, Real.ofCauchy_div, cast_abs, abs_def, Real.cauchy_neg, Real.mk_const, Rel.abs_edgeDensity_sub_edgeDensity_le_one_sub_mul, Real.cauchy_intCast, Real.mk_zero, Real.cauchy_add, Real.ofCauchy_add, Real.ofCauchy_inv, NumberField.exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, Real.cauchy_zero, Real.ofCauchy_neg, SimpleGraph.nonuniformWitness_spec, infinitePlace_apply, Real.mk_inf, Real.mk_eq, Real.ofCauchy_one, NumberField.isUnit_iff_norm, FractionalIdeal.abs_det_basis_change, AbsoluteValue.real_eq_abs, Real.mk_sup, sqrt_eq, Real.cauchy_one, Real.cauchy_ratCast, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, Real.cauchy_mul, Real.ringEquivCauchy_apply, Real.mk_neg, NumberField.InfinitePlace.prod_eq_abs_norm, instHasSolidNormRat, NumberField.InfinitePlace.Completion.Rat.norm_infinitePlace_completion, Real.mk_le, Real.ringEquivCauchy_symm_apply_cauchy, Real.isCauSeq_iff_lift, abs_def', Real.ofCauchy_inf
instPartialOrder 📖CompOp
19 mathmath: padicNorm.instIsAbsoluteValueRat, Padic.complete', padicNormE.nonarchimedean', NNRat.floor_coe, padicNormE.image', padicNormE.eq_padic_norm', padicNormE.defn, padicNormE.add_eq_max_of_ne', instIsOrderedAddMonoid, NNRat.mk_natCast, Padic.padicNormE.is_norm, natFloor_natCast_div_natCast, Padic.complete'', NNRat.ceil_coe, Padic.exi_rat_seq_conv, instIsStrictOrderedRing, Padic.rat_dense', instArchimedeanRat, instStarOrderedRing
instPreorder 📖CompOp
51 mathmath: ProbabilityTheory.tendsto_defaultRatCDF_atBot, ProbabilityTheory.tendsto_defaultRatCDF_atTop, ProbabilityTheory.IsMeasurableRatCDF.iInf_rat_gt_eq, NNRat.mk_zero, ProbabilityTheory.IsRatCondKernelCDFAux.tendsto_atBot_zero, ProbabilityTheory.monotone_defaultRatCDF, preimage_cast_Ioi, ProbabilityTheory.IsMeasurableRatCDF.tendsto_atBot_zero, Filter.Eventually.ratCast_atBot, preimage_cast_Icc, instOrderTopology, Real.exists_seq_rat_strictAnti_tendsto, ProbabilityTheory.IsRatCondKernelCDFAux.mono, preimage_cast_Ico, ProbabilityTheory.IsRatCondKernelCDF.tendsto_atTop_one, instPosMulMono, comap_cast_atBot, addSubmonoid_closure_range_pow, ProbabilityTheory.monotone_preCDF, tendsto_ratCast_atBot_iff, preimage_cast_Iic, ProbabilityTheory.IsRatStieltjesPoint.mono, preimage_cast_Ici, addSubmonoid_closure_range_mul_self, DivisibleHull.qsmul_def, ProbabilityTheory.IsRatCondKernelCDF.tendsto_atBot_zero, totallyBounded_Icc, cast_mono, preimage_cast_Iio, NNRat.toNNRat_mono, ProbabilityTheory.IsRatStieltjesPoint.tendsto_atTop_one, ProbabilityTheory.IsRatStieltjesPoint.tendsto_atBot_zero, NNRat.coe_mono, ProbabilityTheory.IsRatCondKernelCDFAux.integrable_iInf_rat_gt, cast_strictMono, MeasureTheory.Measure.tendsto_IicSnd_atTop, ProbabilityTheory.IsRatCondKernelCDFAux.setIntegral_iInf_rat_gt, preimage_cast_Ioo, DivisibleHull.instIsStrictOrderedModuleRat, ProbabilityTheory.IsRatCondKernelCDFAux.tendsto_atTop_one, MeasureTheory.Measure.tendsto_IicSnd_atBot, ProbabilityTheory.iInf_rat_gt_defaultRatCDF, ProbabilityTheory.IsRatCondKernelCDF.mono, preimage_cast_Ioc, comap_cast_atTop, Real.exists_seq_rat_strictMono_tendsto, Filter.Eventually.ratCast_atTop, ProbabilityTheory.IsRatStieltjesPoint.iInf_rat_gt_eq, ProbabilityTheory.IsMeasurableRatCDF.tendsto_atTop_one, tendsto_ratCast_atTop_iff, LinearOrderedField.toPosSMulStrictMono_rat
instSemilatticeInf 📖CompOp
instSemilatticeSup 📖CompOp
instSup 📖CompOp
9 mathmath: padicNormE.nonarchimedean', padicNorm.nonarchimedean, NNRat.coe_max, padicNormE.add_eq_max_of_ne', cast_max, padicNorm.sub, PadicSeq.norm_nonarchimedean, padicNorm.add_eq_max_of_ne, PadicSeq.add_eq_max_of_ne
linearOrder 📖CompOp
124 mathmath: num_lt_succ_floor_mul_den, NNRat.coe_floor, PadicInt.isCauSeq_nthHom, GenContFract.IntFractPair.coe_stream_nth_rat_eq, GenContFract.coe_of_h_rat_eq, Real.ofCauchy_sup, Padic.complete', HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, PadicSeq.ne_zero_iff_nequiv_zero, GenContFract.coe_of_s_rat_eq, cast_fract, ceil_intCast_div_natCast, NNRat.floor_coe, GenContFract.of_terminates_iff_of_rat_terminates, Padic.exi_rat_seq_conv_cauchy, Real.ofCauchy_zero, Real.of_near, Real.ofCauchy_mul, GenContFract.IntFractPair.coe_stream'_rat_eq, Real.cauchy_sub, Padic.zero_def, Real.mk_one, GenContFract.IntFractPair.exists_nth_stream_eq_none_of_rat, floor_natCast_div_natCast, Real.ofCauchy_nnratCast, HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, Real.lt_cauchy, round_cast, padicNormE.defn, CauSeq.Completion.ofRat_rat, Real.ofCauchy_sub, Real.mk_lt, NNRat.intCeil_cast, floor_cast, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, GenContFract.IntFractPair.coe_of_rat_eq, GenContFract.coe_of_rat_eq, PadicSeq.norm_neg, NNRat.coe_ceil, Nat.Ioc_filter_modEq_card, ceil_natCast_div_natCast, Int.Ioc_filter_modEq_card, Real.mk_mul, PadicSeq.norm_nonarchimedean, Real.cauchy_inv, PadicSeq.not_equiv_zero_const_of_nonzero, Real.cauchy_nnratCast, GenContFract.IntFractPair.of_inv_fr_num_lt_num_of_pos, Real.mk_add, Nat.Ico_filter_modEq_card, PadicInt.coe_adicCompletionIntegersEquiv_apply, natFloor_natCast_div_natCast, RootPairing.linearIndepOn_root_baseOf, GaussianInt.div_def, Int.Ico_filter_dvd_card, GenContFract.coe_of_s_get?_rat_eq, Real.ofCauchy_natCast, PadicInt.nthHomSeq_mul, fract_inv_num_lt_num_of_pos, Padic.mk_eq, den_le_and_le_num_le_of_sub_lt_one_div_den_sq, Real.cauchy_natCast, Padic.complete'', Real.ofCauchy_ratCast, Nat.coprime_sub_mul_floor_rat_div_of_coprime, NNRat.ceil_coe, Padic.exi_rat_seq_conv, Real.ofCauchy_intCast, PadicSeq.not_limZero_const_of_nonzero, preimage_cast_uIoc, Real.ofCauchy_div, HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, RootPairing.eq_baseOf_of_linearIndepOn_of_mem_or_neg_mem_closure, floor_def', Real.cauchy_neg, uniformSpace_eq, Real.mk_const, Real.cauchy_intCast, Real.mk_zero, Real.cauchy_add, Real.ofCauchy_add, RootPairing.eq_baseOf_iff, Real.ofCauchy_inv, Real.cauchy_zero, Real.ofCauchy_neg, Int.Ico_filter_modEq_card, Int.Ioc_filter_dvd_eq, Real.mk_inf, ceil_cast, PadicSeq.add_eq_max_of_ne, Real.mk_eq, Real.ofCauchy_one, PadicInt.isCauSeq_padicNorm_of_pow_dvd_sub, Real.mk_sup, PadicInt.nthHomSeq_add, Real.cauchy_one, PadicInt.nthHomSeq_one, GenContFract.terminates_of_rat, Real.cauchy_ratCast, Nat.count_modEq_card_eq_ceil, PadicSeq.norm_const, PadicSeq.norm_one, Real.cauchy_mul, Real.ringEquivCauchy_apply, PadicSeq.norm_zero_iff, Real.mk_neg, instNonemptySeedRatReal, NNRat.intFloor_cast, den_intFract, Int.mod_nat_eq_sub_mul_floor_rat_div, PadicSeq.norm_mul, Padic.const_equiv, Int.Ico_filter_dvd_eq, Real.mk_le, Real.ringEquivCauchy_symm_apply_cauchy, floor_intCast_div_natCast, Real.isCauSeq_iff_lift, Real.mk_pos, Int.Ioc_filter_dvd_card, ceil_def', PadicSeq.eq_zero_iff_equiv_zero, Real.ofCauchy_inf, niven_fract_angle_div_pi_eq, RootPairing.baseOf_root_eq_baseOf_coroot

Theorems

NameKindAssumesProvesValidatesDepends On
abs_def 📖mathematicalabs
instLattice
addGroup
abs_def' 📖mathematicalabs
instLattice
addGroup
instLatticeInt
Int.instAddGroup
den_ne_zero
Int.abs_eq_natAbs
den_ne_zero
Int.abs_eq_natAbs
abs_def
den_abs_eq_den 📖mathematicalabs
instLattice
addGroup
den_ne_zero
Int.abs_eq_natAbs
abs_def'
divInt_le_divInt 📖sub_eq_add_neg
ne_of_gt
neg_mul
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
zero_add
div_lt_div_iff_mul_lt_mul 📖div_def'
Nat.cast_one
mul_one
one_mul
divInt_le_divInt
instAddLeftMono 📖mathematicalAddLeftMono
lt_iff_le_not_ge 📖
lt_one_iff_num_lt_denom 📖Nat.cast_one
mul_one
one_mul
mkRat_neg 📖mkRat_neg_iff
mkRat_neg_iff 📖
mkRat_nonneg 📖
mkRat_nonneg_iff 📖
mkRat_nonpos 📖eq_or_ne
mkRat_nonpos_iff
mkRat_nonpos_iff 📖
mkRat_pos 📖mkRat_pos_iff
mkRat_pos_iff 📖
num_abs_eq_abs_num 📖mathematicalabs
instLattice
addGroup
instLatticeInt
Int.instAddGroup
den_ne_zero
Int.abs_eq_natAbs
abs_def'
num_neg 📖lt_iff_lt_of_le_iff_le
num_nonpos 📖instIsEmptyFalse
num_pos 📖lt_iff_lt_of_le_iff_le
num_nonpos
ofScientific_nonneg 📖ofScientific.eq_1

---

← Back to Index