Documentation Verification Report

WithTop

πŸ“ Source: Mathlib/Algebra/Order/Ring/WithTop.lean

Statistics

MetricCount
DefinitionswithTopMap, withTopMap, instCommMonoidWithZero, instCommSemiring, instMonoidWithZero, instMulZeroClass, instMulZeroOneClass, instSemigroupWithZero, instCommMonoidWithZero, instCommSemiring, instMonoidWithZero, instMulZeroClass, instMulZeroOneClass, instNonAssocSemiring, instNonUnitalNonAssocSemiring, instNonUnitalSemiring, instSemigroupWithZero, instSemiring
18
TheoremswithTopMap_apply, withTopMap_apply, bot_lt_mul, bot_mul, bot_mul', bot_mul_bot, coe_mul, coe_mul_eq_bind, coe_pow, instIsOrderedRing, instMulPosMono, instMulPosReflectLE, instMulPosReflectLT, instMulPosStrictMono, instNoZeroDivisors, instPosMulMono, instPosMulReflectLE, instPosMulReflectLT, instPosMulStrictMono, mul_bot, mul_bot', mul_coe_eq_bind, mul_def, mul_eq_bot_iff, mul_ne_bot, unbotD_zero_mul, coe_mul, coe_mul_eq_bind, coe_pow, eq_top_of_pow, instIsOrderedRing, instNoZeroDivisors, mul_coe_eq_bind, mul_def, mul_eq_top_iff, mul_left_strictMono, mul_lt_mul, mul_lt_top, mul_ne_top, mul_right_strictMono, mul_top, mul_top', pow_eq_top_iff, pow_lt_pow_left, pow_lt_top, pow_lt_top_iff, pow_ne_top, pow_ne_top_iff, pow_right_strictMono, top_mul, top_mul', top_mul_top, top_pow, untopD_zero_mul
54
Total72

MonoidWithZeroHom

Definitions

NameCategoryTheorems
withTopMap πŸ“–CompOp
2 mathmath: RingHom.withTopMap_apply, withTopMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
withTopMap_apply πŸ“–mathematicalDFunLike.coe
MonoidWithZeroHom
funLike
WithTop
WithTop.instMulZeroOneClass
withTopMap
WithTop.map
β€”β€”

RingHom

Definitions

NameCategoryTheorems
withTopMap πŸ“–CompOp
1 mathmath: withTopMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
withTopMap_apply πŸ“–mathematicalDFunLike.coe
RingHom
instFunLike
WithTop
WithTop.instNonAssocSemiring
withTopMap
ZeroHom.toFun
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
WithTop.instMulZeroOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidWithZeroHom.toZeroHom
MonoidWithZeroHom.withTopMap
toMonoidWithZeroHom
β€”β€”

WithBot

Definitions

NameCategoryTheorems
instCommMonoidWithZero πŸ“–CompOp
1 mathmath: bot_lt_prod
instCommSemiring πŸ“–CompOp
6 mathmath: Polynomial.degree_pow_le_of_le, Polynomial.degree_comp, Order.krullDim_le_of_krullDim_preimage_le, Polynomial.ringKrullDim_le, instIsOrderedRing, Order.krullDim_le_of_krullDim_preimage_le'
instMonoidWithZero πŸ“–CompOp
1 mathmath: coe_pow
instMulZeroClass πŸ“–CompOp
21 mathmath: mul_bot', instPosMulStrictMono, instMulPosMono, mul_coe_eq_bind, bot_lt_mul, instPosMulReflectLE, instMulPosStrictMono, instPosMulMono, unbotD_zero_mul, bot_mul_bot, mul_def, bot_mul', instNoZeroDivisors, mul_eq_bot_iff, instMulPosReflectLT, mul_bot, instMulPosReflectLE, bot_mul, coe_mul_eq_bind, instPosMulReflectLT, coe_mul
instMulZeroOneClass πŸ“–CompOpβ€”
instSemigroupWithZero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt_mul πŸ“–mathematicalWithBot
instLT
Bot.bot
bot
MulZeroClass.toMul
instMulZeroClass
β€”WithTop.mul_lt_top
bot_mul πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
Bot.bot
bot
β€”bot_mul'
bot_mul' πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
Bot.bot
bot
zero
MulZeroClass.toZero
decidableEq
β€”if_congr
coe_eq_zero
bot_ne_zero
bot_mul_bot πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
Bot.bot
bot
β€”β€”
coe_mul πŸ“–mathematicalβ€”some
MulZeroClass.toMul
WithBot
instMulZeroClass
β€”β€”
coe_mul_eq_bind πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
some
β€”mul_bot
coe_pow πŸ“–mathematicalβ€”some
Monoid.toNatPow
MonoidWithZero.toMonoid
WithBot
instMonoidWithZero
β€”β€”
instIsOrderedRing πŸ“–mathematicalβ€”IsOrderedRing
WithBot
CommSemiring.toSemiring
instCommSemiring
instPartialOrder
β€”isOrderedAddMonoid
IsOrderedRing.toIsOrderedAddMonoid
zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
instPosMulMono
IsOrderedRing.toPosMulMono
instMulPosMono
IsOrderedRing.toMulPosMono
instMulPosMono πŸ“–mathematicalβ€”MulPosMono
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
instPreorder
β€”eq_or_ne
MulZeroClass.mul_zero
CanLift.prf
canLift
LT.lt.not_ge
bot_lt_coe
bot_mul
mul_le_mul_of_nonneg_right
instMulPosReflectLE πŸ“–mathematicalβ€”MulPosReflectLE
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
instPreorder
β€”CanLift.prf
canLift
LT.lt.ne_bot
bot_le
coe_mul
bot_mul
LT.lt.ne
LT.lt.not_ge
bot_lt_coe
le_of_mul_le_mul_right
instMulPosReflectLT πŸ“–mathematicalβ€”MulPosReflectLT
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
instPreorder
β€”eq_or_ne
MulZeroClass.mul_zero
CanLift.prf
canLift
LT.lt.not_ge
bot_lt_coe
bot_mul
LE.le.not_gt
bot_le
lt_of_mul_lt_mul_right
instMulPosStrictMono πŸ“–mathematicalβ€”MulPosStrictMono
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
instPreorder
β€”CanLift.prf
canLift
LT.lt.ne_bot
not_lt_bot
bot_mul
LT.lt.ne
mul_lt_mul_of_pos_right
instNoZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
β€”WithTop.instNoZeroDivisors
instPosMulMono πŸ“–mathematicalβ€”PosMulMono
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
instPreorder
β€”eq_or_ne
MulZeroClass.zero_mul
CanLift.prf
canLift
LT.lt.not_ge
bot_lt_coe
mul_bot
mul_le_mul_of_nonneg_left
instPosMulReflectLE πŸ“–mathematicalβ€”PosMulReflectLE
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
instPreorder
β€”CanLift.prf
canLift
LT.lt.ne_bot
bot_le
coe_mul
mul_bot
LT.lt.ne
LT.lt.not_ge
bot_lt_coe
le_of_mul_le_mul_left
instPosMulReflectLT πŸ“–mathematicalβ€”PosMulReflectLT
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
instPreorder
β€”eq_or_ne
MulZeroClass.zero_mul
CanLift.prf
canLift
LT.lt.not_ge
bot_lt_coe
mul_bot
LE.le.not_gt
bot_le
lt_of_mul_lt_mul_left
instPosMulStrictMono πŸ“–mathematicalβ€”PosMulStrictMono
WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
instPreorder
β€”CanLift.prf
canLift
LT.lt.ne_bot
not_lt_bot
mul_bot
LT.lt.ne
mul_lt_mul_of_pos_left
mul_bot πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
Bot.bot
bot
β€”mul_bot'
mul_bot' πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
Bot.bot
bot
zero
MulZeroClass.toZero
decidableEq
β€”if_congr
coe_eq_zero
bot_ne_zero
mul_coe_eq_bind πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
some
β€”bot_mul
mul_def πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
decidableEq
mapβ‚‚
β€”mul_bot
mapβ‚‚_bot_right
mapβ‚‚_coe_right
MulZeroClass.zero_mul
MulZeroClass.mul_zero
mul_eq_bot_iff πŸ“–mathematicalβ€”WithBot
MulZeroClass.toMul
instMulZeroClass
Bot.bot
bot
β€”mul_def
mapβ‚‚_bot_right
mul_ne_bot πŸ“–β€”β€”β€”β€”WithTop.mul_ne_top
unbotD_zero_mul πŸ“–mathematicalβ€”unbotD
MulZeroClass.toZero
WithBot
MulZeroClass.toMul
instMulZeroClass
β€”MulZeroClass.zero_mul
coe_zero
unbotD_coe
MulZeroClass.mul_zero
bot_mul
unbotD_bot
mul_bot
coe_mul

WithTop

Definitions

NameCategoryTheorems
instCommMonoidWithZero πŸ“–CompOp
3 mathmath: prod_lt_top, prod_eq_top, prod_eq_top_iff
instCommSemiring πŸ“–CompOpβ€”
instMonoidWithZero πŸ“–CompOp
7 mathmath: pow_right_strictMono, pow_lt_top, coe_pow, pow_lt_top_iff, pow_eq_top_iff, pow_lt_pow_left, top_pow
instMulZeroClass πŸ“–CompOp
20 mathmath: mul_def, top_mul', untopβ‚€_mul, top_mul, mul_top, mul_coe_eq_bind, untopD_zero_mul, coe_mul_eq_bind, ENat.map_natCast_mul, mul_top', top_mul_top, mul_lt_top, meromorphicOrderAt_pow, meromorphicOrderAt_zpow, mul_left_strictMono, coe_mul, instNoZeroDivisors, mul_right_strictMono, MeromorphicAt.meromorphicOrderAt_comp, mul_eq_top_iff
instMulZeroOneClass πŸ“–CompOp
4 mathmath: RingHom.ENatMap_apply, RingHom.withTopMap_apply, MonoidWithZeroHom.withTopMap_apply, MonoidWithZeroHom.ENatMap_apply
instNonAssocSemiring πŸ“–CompOp
2 mathmath: RingHom.ENatMap_apply, RingHom.withTopMap_apply
instNonUnitalNonAssocSemiring πŸ“–CompOp
1 mathmath: mul_lt_mul
instNonUnitalSemiring πŸ“–CompOpβ€”
instSemigroupWithZero πŸ“–CompOpβ€”
instSemiring πŸ“–CompOp
1 mathmath: instIsOrderedRing

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mul πŸ“–mathematicalβ€”some
MulZeroClass.toMul
WithTop
instMulZeroClass
β€”β€”
coe_mul_eq_bind πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
some
β€”mul_top
coe_pow πŸ“–mathematicalβ€”some
Monoid.toNatPow
MonoidWithZero.toMonoid
WithTop
instMonoidWithZero
β€”β€”
eq_top_of_pow πŸ“–β€”WithTop
Monoid.toNatPow
MonoidWithZero.toMonoid
instMonoidWithZero
Top.top
top
β€”β€”pow_eq_top_iff
instIsOrderedRing πŸ“–mathematicalβ€”IsOrderedRing
WithTop
instSemiring
CommSemiring.toSemiring
instPartialOrder
β€”CanonicallyOrderedAdd.toIsOrderedRing
canonicallyOrderedAdd
instNoZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
WithTop
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
β€”Option.mem_mapβ‚‚_iff
mul_def
NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
mul_coe_eq_bind πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
some
β€”top_mul
mul_def πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
zero
MulZeroClass.toZero
decidableEq
mapβ‚‚
β€”mul_top
mapβ‚‚_top_right
mapβ‚‚_coe_right
MulZeroClass.zero_mul
MulZeroClass.mul_zero
mul_eq_top_iff πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
Top.top
top
β€”mul_def
mapβ‚‚_top_right
mul_left_strictMono πŸ“–mathematicalWithTop
Preorder.toLT
instPreorder
zero
MulZeroClass.toZero
StrictMono
MulZeroClass.toMul
instMulZeroClass
β€”CanLift.prf
canLift
LT.lt.ne_top
top_mul
LT.lt.ne'
mul_lt_mul_of_pos_right
mul_lt_mul πŸ“–mathematicalWithTop
Preorder.toLT
instPreorder
PartialOrder.toPreorder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instNonUnitalNonAssocSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”posMulStrictMono_iff_mulPosStrictMono
CommMagma.to_isCommutative
CanLift.prf
canLift
LT.lt.ne
LT.lt.lt_top
eq_or_ne
top_mul
bot_eq_zero
canonicallyOrderedAdd
LT.lt.ne'
LT.lt.bot_lt
coe_lt_top
mul_top
eq_zero_or_pos
MulZeroClass.mul_zero
mul_pos
mul_lt_mul
PosMulStrictMono.toPosMulMono
LT.lt.le
zero_le
mul_lt_top πŸ“–mathematicalWithTop
instLT
Top.top
top
MulZeroClass.toMul
instMulZeroClass
β€”lt_top_iff_ne_top
mul_ne_top
mul_ne_top πŸ“–β€”β€”β€”β€”β€”
mul_right_strictMono πŸ“–mathematicalWithTop
Preorder.toLT
instPreorder
zero
MulZeroClass.toZero
StrictMono
MulZeroClass.toMul
instMulZeroClass
β€”CanLift.prf
canLift
LT.lt.ne_top
mul_top
LT.lt.ne'
mul_lt_mul_of_pos_left
mul_top πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
Top.top
top
β€”mul_top'
mul_top' πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
Top.top
top
zero
MulZeroClass.toZero
decidableEq
β€”if_congr
coe_eq_zero
top_ne_zero
pow_eq_top_iff πŸ“–mathematicalβ€”WithTop
Monoid.toNatPow
MonoidWithZero.toMonoid
instMonoidWithZero
Top.top
top
β€”pow_zero
top_pow
pow_lt_pow_left πŸ“–mathematicalWithTop
Preorder.toLT
instPreorder
PartialOrder.toPreorder
Monoid.toNatPow
MonoidWithZero.toMonoid
instMonoidWithZero
Semiring.toMonoidWithZero
CommSemiring.toSemiring
β€”pow_right_strictMono
pow_lt_top πŸ“–mathematicalWithTop
Preorder.toLT
instPreorder
Top.top
top
Monoid.toNatPow
MonoidWithZero.toMonoid
instMonoidWithZero
β€”pow_lt_top_iff
pow_lt_top_iff πŸ“–mathematicalβ€”WithTop
Preorder.toLT
instPreorder
Monoid.toNatPow
MonoidWithZero.toMonoid
instMonoidWithZero
Top.top
top
β€”β€”
pow_ne_top πŸ“–β€”β€”β€”β€”pow_ne_top_iff
pow_ne_top_iff πŸ“–β€”β€”β€”β€”β€”
pow_right_strictMono πŸ“–mathematicalβ€”StrictMono
WithTop
instPreorder
PartialOrder.toPreorder
Monoid.toNatPow
MonoidWithZero.toMonoid
instMonoidWithZero
Semiring.toMonoidWithZero
CommSemiring.toSemiring
β€”pow_one
strictMono_id
pow_succ
mul_lt_mul
top_mul πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
Top.top
top
β€”top_mul'
top_mul' πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
Top.top
top
zero
MulZeroClass.toZero
decidableEq
β€”if_congr
coe_eq_zero
top_ne_zero
top_mul_top πŸ“–mathematicalβ€”WithTop
MulZeroClass.toMul
instMulZeroClass
Top.top
top
β€”β€”
top_pow πŸ“–mathematicalβ€”WithTop
Monoid.toNatPow
MonoidWithZero.toMonoid
instMonoidWithZero
Top.top
top
β€”β€”
untopD_zero_mul πŸ“–mathematicalβ€”untopD
MulZeroClass.toZero
WithTop
MulZeroClass.toMul
instMulZeroClass
β€”MulZeroClass.zero_mul
coe_zero
untopD_coe
MulZeroClass.mul_zero
top_mul
untopD_top
mul_top
coe_mul

---

← Back to Index