WithTop
π Source: Mathlib/Algebra/Order/Ring/WithTop.lean
Statistics
MonoidWithZeroHom
Definitions
| Name | Category | Theorems |
|---|---|---|
withTopMap π | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
withTopMap_apply π | mathematical | DFunLike.coeMonoidWithZeroHomfunLike | WithTopWithTop.instMulZeroOneClasswithTopMapWithTop.map | β | β |
RingHom
Definitions
| Name | Category | Theorems |
|---|---|---|
withTopMap π | CompOp |
Theorems
WithBot
Definitions
| Name | Category | Theorems |
|---|---|---|
instCommMonoidWithZero π | CompOp | |
instCommSemiring π | CompOp | |
instMonoidWithZero π | CompOp | |
instMulZeroClass π | CompOp | 21 mathmath:mul_bot', instPosMulStrictMono, instMulPosMono, mul_coe_eq_bind, bot_lt_mul, instPosMulReflectLE, instMulPosStrictMono, instPosMulMono, unbotD_zero_mul, bot_mul_bot, mul_def, bot_mul', instNoZeroDivisors, mul_eq_bot_iff, instMulPosReflectLT, mul_bot, instMulPosReflectLE, bot_mul, coe_mul_eq_bind, instPosMulReflectLT, coe_mul |
instMulZeroOneClass π | CompOp | β |
instSemigroupWithZero π | CompOp | β |
Theorems
WithTop
Definitions
| Name | Category | Theorems |
|---|---|---|
instCommMonoidWithZero π | CompOp | |
instCommSemiring π | CompOp | β |
instMonoidWithZero π | CompOp | 7 mathmath:pow_right_strictMono, pow_lt_top, coe_pow, pow_lt_top_iff, pow_eq_top_iff, pow_lt_pow_left, top_pow |
instMulZeroClass π | CompOp | 20 mathmath:mul_def, top_mul', untopβ_mul, top_mul, mul_top, mul_coe_eq_bind, untopD_zero_mul, coe_mul_eq_bind, ENat.map_natCast_mul, mul_top', top_mul_top, mul_lt_top, meromorphicOrderAt_pow, meromorphicOrderAt_zpow, mul_left_strictMono, coe_mul, instNoZeroDivisors, mul_right_strictMono, MeromorphicAt.meromorphicOrderAt_comp, mul_eq_top_iff |
instMulZeroOneClass π | CompOp | |
instNonAssocSemiring π | CompOp | |
instNonUnitalNonAssocSemiring π | CompOp | |
instNonUnitalSemiring π | CompOp | β |
instSemigroupWithZero π | CompOp | β |
instSemiring π | CompOp |
Theorems
---