Documentation Verification Report

Round

πŸ“ Source: Mathlib/Algebra/Order/Round.lean

Statistics

MetricCount
Definitionsround
1
Theoremsmap_round, abs_sub_round, abs_sub_round_div_natCast_eq, abs_sub_round_eq_min, round_add_intCast, round_add_natCast, round_add_ofNat, round_add_one, round_eq, round_eq_div, round_eq_half_ceil_two_mul, round_eq_iff, round_eq_zero_iff, round_intCast, round_intCast_add, round_le, round_le_add_half, round_natCast, round_natCast_add, round_neg_two_inv, round_ofNat, round_ofNat_add, round_one, round_sub_intCast, round_sub_natCast, round_sub_ofNat, round_sub_one, round_two_inv, round_zero, sub_half_lt_round
30
Total31

Int

Theorems

NameKindAssumesProvesValidatesDepends On
map_round πŸ“–mathematicalStrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
round
DivisionRing.toRing
Field.toDivisionRing
β€”Nat.instAtLeastTwoHAddOfNat
round_eq
map_floor
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
one_div
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_ofNat

(root)

Definitions

NameCategoryTheorems
round πŸ“–CompOp
44 mathmath: abs_sub_round, round_neg_two_inv, round_add_natCast, round_two_inv, Real.round_exp_one_eq_three, round_sub_intCast, round_sub_one, round_eq_div, GaussianInt.toComplex_div_re, round_natCast, round_intCast_add, sub_half_lt_round, round_add_one, round_add_intCast, abs_sub_round_div_natCast_eq, Rat.round_cast, round_natCast_add, GaussianInt.toComplex_im_div, Real.exists_nat_abs_mul_sub_round_le, round_le, abs_sub_round_eq_min, GaussianInt.div_def, round_eq, round_intCast, round_sub_ofNat, GaussianInt.toComplex_re_div, round_eq_zero_iff, round_ofNat_add, round_add_ofNat, Rat.isInt_round, UnitAddCircle.norm_eq, Int.map_round, Rat.isNat_round, round_le_add_half, round_eq_half_ceil_two_mul, round_eq_iff, round_sub_natCast, round_one, AddCircle.norm_eq, round_zero, round_ofNat, AddCircle.norm_eq', Real.round_pi_eq_three, GaussianInt.toComplex_div_im

Theorems

NameKindAssumesProvesValidatesDepends On
abs_sub_round πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toIntCast
round
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
round_eq
abs_sub_le_iff
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Int.floor_le
Int.lt_floor_add_one
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
abs_sub_round_div_natCast_eq πŸ“–mathematicalβ€”abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCast
round
β€”Nat.cast_zero
div_zero
round_zero
Int.cast_zero
sub_self
abs_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
inf_of_le_right
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
abs_sub_round_eq_min
Nat.cast_min
min_div_div_right
LT.lt.le
Int.fract_div_natCast_eq_div_natCast_mod
Nat.cast_sub
sub_div
div_self
LT.lt.ne'
abs_sub_round_eq_min πŸ“–mathematicalβ€”abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toIntCast
round
SemilatticeInf.toMin
Lattice.toSemilatticeInf
Int.fract
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”min_def_lt
two_mul
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
lt_or_ge
Int.self_sub_floor
Int.abs_fract
lt_of_lt_of_le
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
tsub_le_iff_left
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
not_lt
abs_sub_comm
Int.ceil_sub_self_eq
LT.lt.ne
Int.abs_one_sub_fract
round_add_intCast πŸ“–mathematicalβ€”round
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”round.eq_1
Int.fract_add_intCast
Int.floor_add_intCast
Int.ceil_add_intCast
apply_iteβ‚‚
round_add_natCast πŸ“–mathematicalβ€”round
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Int.cast_natCast
round_add_intCast
round_add_ofNat πŸ“–mathematicalβ€”round
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”round_add_natCast
round_add_one πŸ“–mathematicalβ€”round
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”round_add_intCast
Int.cast_one
round_eq πŸ“–mathematicalβ€”round
DivisionRing.toRing
Field.toDivisionRing
Int.floor
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Int.cast_mul_floor_div_cancel_of_pos
two_pos
Int.instZeroLEOneClass
Int.instAddLeftMono
round_eq_div
Int.cast_ofNat
one_div
mul_add
Distrib.leftDistribClass
mul_inv_cancelβ‚€
IsStrictOrderedRing.toCharZero
Int.floor_add_one
round_eq_div πŸ“–mathematicalβ€”round
Int.floor
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Int.floor_add_fract
round.eq_1
Int.fract_intCast_add
Int.fract_fract
Int.floor_intCast_add
mul_add
Distrib.leftDistribClass
Int.cast_ofNat
Int.cast_mul
Int.ceil_intCast_add
add_assoc
two_ne_zero
Int.floor_eq_zero_iff
lt_of_le_of_lt
le_mul_of_one_le_left
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
IsStrictOrderedRing.toPosMulStrictMono
instNontrivialOfCharZero
zero_add
Int.cast_one
mul_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.Contrapose.contraposeβ‚‚
lt_imp_lt_of_le_of_le
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
le_refl
MulZeroClass.mul_zero
NeZero.charZero_one
Int.instCharZero
sub_self
LT.lt.le
Int.fract_lt_one
round_eq_half_ceil_two_mul πŸ“–mathematicalβ€”round
Int.ceil
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
em
Int.ceil_intCast
Int.even_or_odd
round_intCast
two_mul
two_ne_zero
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
IsStrictOrderedRing.isDomain
AddGroup.existsAddOfLE
ZeroLEOneClass.neZero.two
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Int.cast_mul
Int.cast_ofNat
Int.mul_fract_eq_one_iff_exists_int
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.cast_one
Int.cast_one
round_eq_div
Int.ceil_eq_floor_add_one_iff_notMem
round_eq_iff πŸ“–mathematicalβ€”round
DivisionRing.toRing
Field.toDivisionRing
Set
Set.instMembership
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddGroupWithOne.toIntCast
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
round_eq
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
add_sub_assoc
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
AddGroup.toOrderedSub
round_eq_zero_iff πŸ“–mathematicalβ€”round
DivisionRing.toRing
Field.toDivisionRing
Set
Set.instMembership
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Int.cast_zero
one_div
zero_sub
zero_add
round_intCast πŸ“–mathematicalβ€”round
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”Int.fract_intCast
MulZeroClass.mul_zero
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Int.floor_intCast
round_intCast_add πŸ“–mathematicalβ€”round
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”add_comm
round_add_intCast
round_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toIntCast
round
β€”abs_sub_round_eq_min
min_le_iff
le_or_gt
abs_eq_self
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Int.fract_add_floor
add_sub_assoc
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Int.le_floor
abs_eq_neg_self
LT.lt.le
sub_neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
add_comm
neg_add
neg_sub
le_add_neg_iff_add_le
sub_add_cancel
le_sub_comm
Nat.cast_one
Int.cast_one
Int.floor_lt
round_le_add_half πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
round
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
round_eq
Int.floor_le
round_natCast πŸ“–mathematicalβ€”round
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Int.fract_natCast
MulZeroClass.mul_zero
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Int.floor_natCast
round_natCast_add πŸ“–mathematicalβ€”round
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”add_comm
round_add_natCast
round_neg_two_inv πŸ“–mathematicalβ€”round
DivisionRing.toRing
Field.toDivisionRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsRat.neg_to_eq
Mathlib.Meta.NormNum.isRat_neg
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.isRat_lt_true
DivisionRing.toNontrivial
round_ofNat πŸ“–mathematicalβ€”roundβ€”round_natCast
round_ofNat_add πŸ“–mathematicalβ€”round
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”round_natCast_add
round_one πŸ“–mathematicalβ€”round
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Int.fract_one
MulZeroClass.mul_zero
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Int.floor_one
round_sub_intCast πŸ“–mathematicalβ€”round
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddGroupWithOne.toIntCast
β€”sub_eq_add_neg
round_add_intCast
round_sub_natCast πŸ“–mathematicalβ€”round
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
β€”Int.cast_natCast
round_sub_intCast
round_sub_ofNat πŸ“–mathematicalβ€”round
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”round_sub_natCast
round_sub_one πŸ“–mathematicalβ€”round
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”round_sub_intCast
Int.cast_one
round_two_inv πŸ“–mathematicalβ€”round
DivisionRing.toRing
Field.toDivisionRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
round_zero πŸ“–mathematicalβ€”round
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Int.fract_zero
MulZeroClass.mul_zero
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Int.floor_zero
sub_half_lt_round πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
AddGroupWithOne.toIntCast
round
β€”Nat.instAtLeastTwoHAddOfNat
round_eq
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.add_subst
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
Int.sub_one_lt_floor

---

← Back to Index