Documentation Verification Report

Untop0

šŸ“ Source: Mathlib/Algebra/Order/WithTop/Untop0.lean

Statistics

MetricCount
Definitionsuntopā‚€
1
Theoremscoe_untopā‚€_of_ne_top, le_of_untopā‚€_le_untopā‚€, untopD_add, untopā‚€_add, untopā‚€_coe, untopā‚€_eq_zero, untopā‚€_le_untopā‚€, untopā‚€_le_untopā‚€_iff, untopā‚€_max, untopā‚€_min, untopā‚€_mul, untopā‚€_natCast, untopā‚€_neg, untopā‚€_nonneg, untopā‚€_ofNat, untopā‚€_top, untopā‚€_zero
17
Total18

WithTop

Definitions

NameCategoryTheorems
untopā‚€ šŸ“–CompOp
19 mathmath: untopā‚€_ofNat, untopā‚€_natCast, untopā‚€_mul, untopā‚€_zero, untopā‚€_le_untopā‚€, untopā‚€_min, meromorphicOrderAt_ne_top_iff, untopā‚€_nonneg, untopā‚€_top, MeromorphicAt.tendsto_nhds_meromorphicTrailingCoeffAt, untopā‚€_add, untopā‚€_max, MeromorphicOn.divisor_apply, coe_untopā‚€_of_ne_top, untopā‚€_coe, untopā‚€_eq_zero, MeromorphicOn.divisor_def, untopā‚€_le_untopā‚€_iff, untopā‚€_neg

Theorems

NameKindAssumesProvesValidatesDepends On
coe_untopā‚€_of_ne_top šŸ“–mathematical—some
untopā‚€
—ne_top_iff_exists
le_of_untopā‚€_le_untopā‚€ šŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
untopā‚€
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithTop
instPreorder
—CanLift.prf
canLift
untopD_add šŸ“–mathematical—untopD
WithTop
add
—CanLift.prf
canLift
untopā‚€_add šŸ“–mathematical—untopā‚€
AddZero.toZero
AddZeroClass.toAddZero
WithTop
add
AddZero.toAdd
—untopD_add
untopā‚€_coe šŸ“–mathematical—untopā‚€
some
——
untopā‚€_eq_zero šŸ“–mathematical—untopā‚€
WithTop
zero
Top.top
top
——
untopā‚€_le_untopā‚€ šŸ“–mathematicalWithTop
Preorder.toLE
instPreorder
PartialOrder.toPreorder
untopā‚€
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
—CanLift.prf
canLift
untopā‚€_le_untopā‚€_iff šŸ“–mathematical—Preorder.toLE
PartialOrder.toPreorder
untopā‚€
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithTop
instPreorder
—CanLift.prf
canLift
untopā‚€_max šŸ“–mathematical—untopā‚€
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithTop
SemilatticeSup.toMax
semilatticeSup
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
—CanLift.prf
canLift
max_eq_right
coe_le_coe
max_eq_left
LT.lt.le
coe_lt_coe
not_le
untopā‚€_min šŸ“–mathematical—untopā‚€
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithTop
SemilatticeInf.toMin
semilatticeInf
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
—CanLift.prf
canLift
untopā‚€_mul šŸ“–mathematical—untopā‚€
MulZeroClass.toZero
WithTop
MulZeroClass.toMul
instMulZeroClass
—untopD_zero_mul
untopā‚€_natCast šŸ“–mathematical—untopā‚€
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
WithTop
AddMonoidWithOne.toNatCast
addMonoidWithOne
——
untopā‚€_neg šŸ“–mathematical—untopā‚€
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithTop
LinearOrderedAddCommGroup.instNeg
NegZeroClass.toNeg
—untopā‚€_top
neg_zero
untopā‚€_nonneg šŸ“–mathematical—Preorder.toLE
PartialOrder.toPreorder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
untopā‚€
WithTop
instPreorder
zero
—le_refl
untopā‚€_ofNat šŸ“–mathematical—untopā‚€
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
——
untopā‚€_top šŸ“–mathematical—untopā‚€
Top.top
WithTop
top
——
untopā‚€_zero šŸ“–mathematical—untopā‚€
WithTop
zero
——

---

← Back to Index