aeval 📖 | CompOp | 260 mathmath: mem_aroots', IntermediateField.aeval_gen_minpoly, algEquivCMulXAddC_apply, LinearMap.exists_monic_and_aeval_eq_zero, AnalyticOn.aeval_polynomial, PowerBasis.exists_eq_aeval, algebraMap_pi_eq_aeval, StandardEtalePair.inv_aeval_X_g, polynomial_smul_apply', continuous_aeval, Matrix.pow_eq_aeval_mod_charpoly, derivWithin_aeval, eval_minpolyDiv_self, disjoint_ker_aeval_of_isCoprime, PolynomialModule.smul_def, aeval_algebraMap_apply_eq_algebraMap_eval, eval₂_minpolyDiv_self, aeval_algebraMap_eq_zero_iff, ConjRootClass.aeval_minpoly_iff, mem_rootSet_of_injective, aeval_map_algebraMap, eval₂_minpolyDiv_of_eval₂_eq_zero, minpoly.eq_iff_aeval_eq_zero, toPowerSeries_toMvPowerSeries, PolynomialModule.aeval_equivPolynomial, aeval_iterate_derivative_of_ge, aeval_fn_apply, sum_smul_minpolyDiv_eq_X_pow, AlgebraicIndependent.polynomial_aeval_of_transcendental, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, Module.AEval.of_symm_smul, aeval_sumIDeriv, Subalgebra.aeval_coe, aeval_iterate_derivative_self, PowerBasis.equivAdjoinSimple_symm_aeval, differentiableOn_aeval, transcendental_iff_injective, IsCyclotomicExtension.aeval_zeta, bernoulli_generating_function, aeval_X_pow, Bivariate.aveal_eq_map_swap, LindemannWeierstrass.exp_polynomial_approx, IntermediateField.aeval_coe, aeval_one, aeval_eq_zero_of_mem_rootSet, Algebra.discr_powerBasis_eq_norm, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, aeval_subalgebra_coe, isConjRoot_iff_aeval_eq_zero, aeval_X_left_apply, aeval_prod_apply, aeval_add_of_sq_eq_zero, Chebyshev.aeval_T, aeval_comp, deriv_aeval, Derivation.comp_aeval_eq, ofReal_eval, MvPolynomial.transcendental_polynomial_aeval_X_iff, aeval_prod, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, MvPolynomial.algebraicIndependent_polynomial_aeval_X, MvPolynomial.optionEquivRight_symm_apply, aeval_pi_apply, AdjoinRoot.aeval_eq_of_algebra, differentiable_aeval, exists_monic_aeval_eq_zero_forall_mem_pow_of_isIntegral, aeval_X_left, minpoly.dvd_iff, cfc_map_polynomial, aevalTower_ofId, LinearMap.pow_eq_aeval_mod_charpoly, PowerBasis.liftEquiv_symm_apply, PowerBasis.equivAdjoinSimple_aeval, traceForm_dualSubmodule_adjoin, sup_aeval_range_eq_top_of_isCoprime, fderiv_aeval, sup_ker_aeval_eq_ker_aeval_mul_of_coprime, IsAlgebraic.exists_nonzero_coeff_and_aeval_eq_zero, Module.End.aeval_apply_of_hasEigenvector, PowerBasis.mem_span_pow', Algebra.adjoin_singleton_eq_range_aeval, transcendental_aeval_iff, Splits.aeval_eq_prod_aroots, NumberField.Ideal.liesOver_primesOverSpanEquivMonicFactorsMod_symm, aeval_X_left_eq_map, AnalyticWithinAt.aeval_polynomial, aeval_apply_smul_mem_of_le_comap, minpoly.ker_aeval_eq_span_minpoly, Chebyshev.aeval_S, mem_annIdeal_iff_aeval_eq_zero, valuation_aeval_eq_valuation_X_pow_natDegree_of_one_lt_valuation_X, aeval_eq_smeval, Algebra.adjoin_mem_exists_aeval, isNilpotent_aeval_sub_of_isNilpotent_sub, Module.End.IsSemisimple.aeval, minpoly.aeval, Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff, int_eval₂_eq, padic_polynomial_dist, aeval_conj, algEquivAevalNegX_symm_apply, hermite_eq_deriv_gaussian', aeval_smul, PowerBasis.mem_span_pow, aeval_def, aeval_mul, StandardEtalePresentation.toSubmersivePresentation_jacobian, IsAlgClosed.exists_aeval_eq_zero_of_injective, differentiableAt_aeval, hasFDerivAt_aeval, algEquivOfCompEqX_symm_apply, aeval_eq_prod_aroots_sub_of_monic_of_splits, LinearMap.aeval_eq_aeval_mod_charpoly, deriv_gaussian_eq_hermite_mul_gaussian, algEquivAevalXAddC_symm_apply, MvPolynomial.aeval_toMvPolynomial, AnalyticAt.aeval_polynomial, Monic.mem_rootSet, spectrum.map_polynomial_aeval_of_nonempty, PowerBasis.equivOfMinpoly_aeval, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, aevalTower_id, transcendental_iff_ker_eq_bot, minpoly.isIntegrallyClosed_dvd_iff, hermite_eq_deriv_gaussian, Algebra.adjoin_eq_exists_aeval, mem_roots_iff_aeval_eq_zero, hasDerivWithinAt_aeval, aeval_coe_eq_smeval, IsMonicOfDegree.aeval_add, hasStrictDerivAt_aeval, aeval_algebraMap_eq_zero_iff_of_injective, StandardEtalePresentation.exists_mul_aeval_x_g_pow_eq_aeval_x, PowerSeries.subst_coe, minpoly.aeval_algHom, aeval_apply_smul_mem_of_le_comap', LinearMap.aeval_self_charpoly, spectrum.subset_polynomial_aeval, IsConjRoot.aeval_eq_zero, PolyEquivTensor.toFunBilinear_apply_apply, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, aeval_root_of_mapAlg_eq_multiset_prod_X_sub_C, aeval_continuousMap_apply, coe_aeval_mk_apply, coeff_zero_eq_aeval_zero, cfc_polynomial, spectrum.map_polynomial_aeval_of_degree_pos, annIdealGenerator_aeval_eq_zero, sup_ker_aeval_le_ker_aeval_mul, fderivWithin_aeval, Derivation.map_aeval, Splits.aeval_eq_prod_aroots_of_monic, aeval_neg, aeval_derivative_mem_differentIdeal, exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map, StandardEtalePair.HasMap.isUnit_derivative_f, aeval_sumIDeriv_eq_eval, aeval_C, PowerBasis.exists_eq_aeval', aeval_eq_prod_aroots_sub_of_splits, MvPolynomial.rename_polynomial_aeval_X, comp_eq_aeval, valuation_aeval_monomial_eq_valuation_pow, aeval_ofReal, hasDerivAt_aeval, Chebyshev.aeval_C, aeval_eq_sum_range, Chebyshev.aeval_U, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply_eq_span, Differential.deriv_aeval_eq, Algebra.exists_aeval_invOf_eq_zero_of_idealMap_adjoin_sup_span_eq_top, MvPolynomial.transcendental_polynomial_aeval_X, StandardEtalePresentation.aeval_val_equivMvPolynomial, mem_rootSet', NormedAlgebra.Real.exists_isMonicOfDegree_two_and_aeval_eq_zero, StandardEtalePair.aeval_X_g_mul_mk_X, Transcendental.aeval, aeval_endomorphism, IntermediateField.mem_adjoin_simple_iff, Module.AEval.of_aeval_smul, Algebra.mem_ideal_map_adjoin, mem_aroots, aeval_algEquiv, algEquivAevalNegX_apply, Module.End.ker_aeval_ring_hom'_unit_polynomial, hasFDerivWithinAt_aeval, contDiff_aeval, mem_rootSet, AdjoinRoot.aeval_algHom_eq_zero, aeval_monomial, eval_map_algebraMap, algEquivOfCompEqX_apply, mem_rootSet_of_ne, IsAdjoinRoot.aeval_root_self, aeval_eq_sum_range', aeval_zero, conductor_mul_differentIdeal, Module.AEval.annihilator_top_eq_ker_aeval, minpoly.eq_iff_aeval_minpoly_eq_zero, algEquivCMulXAddC_symm_apply, IsMonicOfDegree.aeval_sub, ContinuousMap.polynomial_comp_attachBound, isAlgebraic_iff_not_injective, differentiableWithinAt_aeval, AdjoinRoot.aeval_eq, coeff_zero_eq_aeval_zero', AnalyticOnNhd.aeval_polynomial, algEquivAevalXAddC_apply, aeval_pi, newtonMap_apply, Derivation.apply_aeval_eq', coe_aeval_eq_eval, Matrix.aeval_self_charpoly, PowerSeries.aeval_coe, aeval_iterate_derivative_of_lt, PowerSeries.substAlgHom_coe, Module.Basis.traceDual_powerBasis_eq, aeval_pi_apply₂, IsAdjoinRoot.aeval_root_eq_map, aeval_mem_adjoin_singleton, tendsto_abv_aeval_atTop, MvPolynomial.transcendental_supported_polynomial_aeval_X_iff, aeval_algHom_apply, shiftedLegendre_eval_symm, RatFunc.aeval_X_left_eq_algebraMap, expand_aeval, aeval_natCast, MvPolynomial.aeval_comp_toMvPolynomial, aeval_algHom, PowerBasis.aeval_minpolyGen, coe_aeval_eq_evalRingHom, AdjoinRoot.coe_algHomOfDvd, spectrum.map_polynomial_aeval, Derivation.compAEval_apply, Matrix.aeval_eq_aeval_mod_charpoly, aeval_algebraMap_apply, minpoly.ker_eval, map_aeval_eq_aeval_map, Module.AEval.annihilator_eq_ker_aeval, aeval_add, continuousOn_aeval, aeval_sub, continuousAt_aeval, IsSepClosed.exists_aeval_eq_zero, Module.End.eigenspace_aeval_polynomial_degree_1, inv_eq_of_aeval_divX_ne_zero, exists_monic_aeval_eq_zero_forall_mem_of_mem_map, Transcendental.aeval_of_transcendental, aeval_X, aeval_homogenize_of_eq_one, IsAlgClosed.exists_aeval_eq_zero, LinearMap.exists_monic_and_coeff_mem_pow_and_aeval_eq_zero_of_range_le_smul, cfc_comp_polynomial, PowerBasis.liftEquiv_apply_coe, MvPolynomial.transcendental_supported_polynomial_aeval_X, aeval_sumIDeriv_of_pos, continuousWithinAt_aeval, KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk_symm_apply_eq_span, Derivation.apply_aeval_eq, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply
|
algebraOfAlgebra 📖 | CompOp | 641 mathmath: MvPolynomial.pUnitAlgEquiv_symm_monomial, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_apply, units_coeff_zero_smul, RatFunc.laurent_injective, mem_aroots', Ideal.Filtration.submodule_closure_single, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_symm_apply, Derivation.apply_eval_eq, Ideal.Filtration.submodule_eq_span_le_iff_stable_ge, IntermediateField.aeval_gen_minpoly, polynomialFunctions.eq_adjoin_X, mem_lifts_iff_mem_alg, roots_expand, MvPolynomial.pUnitAlgEquiv_apply, algEquivCMulXAddC_apply, lcoeff_comp_mapAlgHom_eq, coe_taylorAlgHom, transcendental, LinearMap.exists_monic_and_aeval_eq_zero, expand_contract, AnalyticOn.aeval_polynomial, PowerBasis.exists_eq_aeval, MvPolynomial.support_finSuccEquiv, algebraMap_pi_eq_aeval, Monic.free_quotient, StandardEtalePair.inv_aeval_X_g, expand_eq_sum, polynomial_smul_apply', continuous_aeval, Differential.implicitDeriv_C, Matrix.pow_eq_aeval_mod_charpoly, MvPolynomial.mem_image_support_coeff_finSuccEquiv, derivWithin_aeval, eval_minpolyDiv_self, disjoint_ker_aeval_of_isCoprime, toAlgHom_taylorEquiv, PolynomialModule.smul_def, IsAdjoinRoot.mem_ker_map, aroots_smul_nonzero, mapAlgEquiv_id, mem_reesAlgebra_iff_support, aeval_algebraMap_apply_eq_algebraMap_eval, eval₂_minpolyDiv_self, KaehlerDifferential.polynomialEquiv_symm, aeval_algebraMap_eq_zero_iff, ConjRootClass.aeval_minpoly_iff, contract_expand, RatFunc.laurent_X, MvPolynomial.optionEquivLeft_C, sum_bernoulli, mem_rootSet_of_injective, aeval_map_algebraMap, eval₂_minpolyDiv_of_eval₂_eq_zero, RatFunc.transcendental_X, MvPolynomial.optionEquivLeft_X_some, minpoly.eq_iff_aeval_eq_zero, PolyEquivTensor.right_inv, toPowerSeries_toMvPowerSeries, PolynomialModule.aeval_equivPolynomial, algEquivOfCompEqX_symm, MvPolynomial.pUnitAlgEquiv_symm_apply, quotientSpanXSubCAlgEquiv_symm_apply, coeff_zero_of_isScalarTower, Irreducible.natSepDegree_eq_one_iff_of_monic', rootMultiplicity_expand_pow, aeval_iterate_derivative_of_ge, derivative_expand, aeval_fn_apply, MvPolynomial.natDegree_finSuccEquiv, StandardEtalePresentation.toPresentation_algebra_smul, sum_smul_minpolyDiv_eq_X_pow, Monic.natSepDegree_eq_one_iff_of_irreducible', subalgebraNontrivial, RatFunc.laurent_algebraMap, PowerBasis.quotientEquivQuotientMinpolyMap_apply, pUnitAlgEquiv_symm_toPowerSeries, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, Module.AEval.of_symm_smul, KaehlerDifferential.polynomialEquiv_D, MvPolynomial.optionEquivLeft_apply, hilbertPoly_smul, MvPolynomial.totalDegree_coeff_finSuccEquiv_add_le, Derivation.mapCoeffs_X, finrank_quotient_span_eq_natDegree', cyclotomic_expand_eq_cyclotomic_mul, matPolyEquiv_map_smul, RatFunc.laurent_div, aeval_sumIDeriv, Subalgebra.aeval_coe, matPolyEquiv_diagonal_X, Ideal.Filtration.mem_submodule, aeval_iterate_derivative_self, mapAlgHom_eq_eval₂AlgHom'_CAlgHom, PolyEquivTensor.toFunAlgHom_apply_tmul, algebraMap_apply, PowerBasis.equivAdjoinSimple_symm_aeval, adjoin_monomial_eq_reesAlgebra, MvPolynomial.optionEquivRight_C, Bivariate.Polynomial.Bivariate.pderiv_one_equivMvPolynomial, toAddCircle_X_pow_eq_fourier, differentiableOn_aeval, MvPolynomial.degreeOf_coeff_finSuccEquiv, transcendental_iff_injective, IsCyclotomicExtension.aeval_zeta, bernoulli_generating_function, MvPolynomial.nonempty_support_finSuccEquiv, AdjoinRoot.quotEquivQuotMap_symm_apply_mk, derivative'_apply, aeval_X_pow, Bivariate.aveal_eq_map_swap, aevalTower_algebraMap, rootsExpandPowEquivRoots_apply, Bivariate.swap_apply, LindemannWeierstrass.exp_polynomial_approx, map_expand, algEquivCMulXAddC_symm_eq, X_pow_smul_rTensor_monomial, instIsPushoutFractionRingPolynomial_1, WeierstrassCurve.Affine.CoordinateRing.instIsScalarTowerPolynomial, leadingCoeff_smul_integralNormalization, MvPolynomial.eval₂_const_pUnitAlgEquiv_symm, MvPolynomial.eval_comp_toMvPolynomial, MvPolynomial.support_finSuccEquiv_nonempty, Monic.quotient_isIntegral, expand_eq_comp_X_pow, IntermediateField.aeval_coe, MvPolynomial.degree_optionEquivLeft, aeval_one, Module.AEval.instIsScalarTowerOrigPolynomial, aeval_eq_zero_of_mem_rootSet, KaehlerDifferential.polynomialEquiv_comp_D, IsLocalization.integerNormalization_map_to_map, Algebra.discr_powerBasis_eq_norm, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, Derivation.mapCoeffs_C, expand_one, aeval_subalgebra_coe, separable_or, matPolyEquiv_coeff_apply_aux_1, isConjRoot_iff_aeval_eq_zero, MvPolynomial.optionEquivRight_X_none, aeval_X_left_apply, coeff_mapAlgHom_apply, aeval_prod_apply, aeval_add_of_sq_eq_zero, monomial_mem_adjoin_monomial, Chebyshev.aeval_T, aeval_comp, deriv_aeval, monic_mapAlg_iff, matPolyEquiv_symm_apply_coeff, toMvPolynomial_eq_rename_comp, Derivation.comp_aeval_eq, aeval_homogenize_X_one, instIsPushoutPolynomial_1, comap_taylorEquiv_degreeLT, ofReal_eval, MvPolynomial.transcendental_polynomial_aeval_X_iff, rootsExpandEquivRoots_apply, aeval_prod, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, MvPolynomial.eval_eq_eval_mv_eval', expand_C, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, aevalTower_toAlgHom, MvPolynomial.optionEquivLeft_X_none, IsAdjoinRootMonic.map_modByMonic, CAlgHom_apply, Monic.quotient_isIntegralElem, toAddCircle.integrable, MvPolynomial.optionEquivRight_symm_apply, mkDerivation_one_eq_derivative', ofFinsupp_algebraMap, aeval_pi_apply, IsAdjoinRoot.map_repr, aevalTower_comp_algebraMap, AdjoinRoot.aeval_eq_of_algebra, RatFunc.laurent_at_zero, aevalTower_X, transcendental_X, differentiable_aeval, finrank_quotient_span_eq_natDegree, roots_expand_map_frobenius, aeval_X_left, map_under_lt_comap_of_weaklyQuasiFiniteAt, MvPolynomial.finSuccEquiv_coeff_coeff, Derivation.mapCoeffs_monomial, roots_expand_image_frobenius, minpoly.dvd_iff, RatFunc.smul_eq_C_mul, Differential.coeff_mapCoeffs, aevalTower_C, RatFunc.laurent_laurent, cfc_map_polynomial, MvPolynomial.optionEquivRight_X_some, hilbertPoly_succ, IsAdjoinRoot.map_X, polynomialFunctions.starClosure_eq_adjoin_X, LinearMap.pow_eq_aeval_mod_charpoly, PowerBasis.liftEquiv_symm_apply, rootsExpandPowToRoots_apply, PowerBasis.equivAdjoinSimple_aeval, traceForm_dualSubmodule_adjoin, polyEquivTensor_symm_apply_tmul, AdjoinRoot.quotEquivQuotMap_apply, IsAdjoinRootMonic.modByMonicHom_map, Bivariate.equivMvPolynomial_symm_X_0, sup_aeval_range_eq_top_of_isCoprime, spectralNorm.spectralNorm_pow_natDegree_eq_prod_roots, instIsScalarTowerPolynomial, notMem_nonZeroDivisors_iff, mapAlgEquiv_comp, fderiv_aeval, sup_ker_aeval_eq_ker_aeval_mul_of_coprime, not_quasiFiniteAt, IsAlgebraic.exists_nonzero_coeff_and_aeval_eq_zero, Module.End.aeval_apply_of_hasEigenvector, PowerBasis.mem_span_pow', Algebra.adjoin_singleton_eq_range_aeval, isCoprime_expand, MvPolynomial.optionEquivLeft_coeff_coeff, Matrix.charpoly.optionEquivLeft_symm_univ_isHomogeneous, transcendental_aeval_iff, Splits.aeval_eq_prod_aroots, expand_inj, PolynomialModule.isScalarTower', quotientSpanXSubCAlgEquiv_mk, NumberField.Ideal.liesOver_primesOverSpanEquivMonicFactorsMod_symm, aeval_X_left_eq_map, mkDerivationEquiv_symm_apply, PowerSeries.smul_weierstrassMod, expand_expand, Bivariate.swap_Y, mapAlgHom_monomial, AnalyticWithinAt.aeval_polynomial, aeval_apply_smul_mem_of_le_comap, minpoly.ker_aeval_eq_span_minpoly, Chebyshev.aeval_S, mem_annIdeal_iff_aeval_eq_zero, valuation_aeval_eq_valuation_X_pow_natDegree_of_one_lt_valuation_X, instIsNoetherianRingSubtypePolynomialMemSubalgebraReesAlgebra, C_eq_algebraMap, mapAlg_eq_map, smul_mem_lifts, IsPrimitiveRoot.minpoly_dvd_expand, eval_unique, Bivariate.equivMvPolynomial_symm_C, aeval_eq_smeval, Matrix.det_one_add_X_smul, Algebra.adjoin_mem_exists_aeval, coe_polyEquivTensor'_symm, reesAlgebra.monomial_mem, Ideal.Filtration.inf_submodule, roots_expand_image_frobenius_subset, isNilpotent_aeval_sub_of_isNilpotent_sub, Module.End.IsSemisimple.aeval, RatFunc.smul_eq_C_smul, Differential.mapCoeffs_monomial, MvPolynomial.support_coeff_finSuccEquiv, minpoly.aeval, mkDerivationEquiv_apply, coe_polyEquivTensor', Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff, Differential.mapCoeffs_C, int_eval₂_eq, Bivariate.swap_X, padic_polynomial_dist, aeval_conj, algEquivAevalNegX_symm_apply, IsAdjoinRoot.adjoinRootAlgEquiv_apply_eq_map, hermite_eq_deriv_gaussian', aeval_smul, Ideal.Filtration.submodule_span_single, RatFunc.algebraMap_eq_C, Bivariate.equivMvPolynomial_symm_X_1, Matrix.matPolyEquiv_charmatrix, PowerBasis.mem_span_pow, aeval_def, aeval_mul, StandardEtalePresentation.toSubmersivePresentation_jacobian, IsAlgClosed.exists_aeval_eq_zero_of_injective, expand_eq_zero, differentiableAt_aeval, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, taylorAlgHom_apply, hasFDerivAt_aeval, IsAdjoinRoot.lift_map, algEquivOfCompEqX_symm_apply, aeval_eq_prod_aroots_sub_of_monic_of_splits, MvPolynomial.mem_support_coeff_optionEquivLeft, Bivariate.swap_C_C, LinearMap.aeval_eq_aeval_mod_charpoly, deriv_gaussian_eq_hermite_mul_gaussian, algEquivAevalXAddC_symm_apply, MvPolynomial.aeval_toMvPolynomial, AdjoinRoot.coe_mkₐ, AnalyticAt.aeval_polynomial, Monic.mem_rootSet, spectrum.map_polynomial_aeval_of_nonempty, expand_zero, roots_expand_pow_map_iterateFrobenius_le, PowerBasis.equivOfMinpoly_aeval, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, Bivariate.swap_monomial_monomial, rootMultiplicity_expand, MvPolynomial.totalDegree_coeff_optionEquivLeft_add_le, AdjoinRoot.quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, Bivariate.swap_map_C, transcendental_iff_ker_eq_bot, expand_X, eval_C_X_eval₂_map_C_X, minpoly.isIntegrallyClosed_dvd_iff, expand_monomial, matPolyEquiv_map_C, mul_scaleRoots, hermite_eq_deriv_gaussian, Differential.mapCoeffs_X, Monic.finite_quotient, MvPolynomial.optionEquivLeft_coeff_some_coeff_none, roots_smul_nonzero, Algebra.adjoin_eq_exists_aeval, Bivariate.pderiv_zero_equivMvPolynomial, mem_roots_iff_aeval_eq_zero, Bivariate.equivMvPolynomial_X, hasDerivWithinAt_aeval, reesAlgebra.fg, aeval_coe_eq_smeval, IsMonicOfDegree.aeval_add, hasStrictDerivAt_aeval, MvPolynomial.natDegree_optionEquivLeft, aeval_algebraMap_eq_zero_iff_of_injective, StandardEtalePresentation.exists_mul_aeval_x_g_pow_eq_aeval_x, natSepDegree_smul_nonzero, PowerSeries.subst_coe, MvPolynomial.mem_support_finSuccEquiv, minpoly.aeval_algHom, mapAlgEquiv_toAlgHom, monic_expand_iff, eval_det, natSepDegree_expand, toAddCircle_monomial_eq_smul_fourier, instIsPushoutPolynomial, aeval_apply_smul_mem_of_le_comap', MvPolynomial.rename_comp_toMvPolynomial, MvPolynomial.finSuccEquiv_comp_C_eq_C, IsAdjoinRoot.adjoinRootAlgEquiv_apply_mk, LinearMap.aeval_self_charpoly, MvPolynomial.finSuccEquiv_eq, spectrum.subset_polynomial_aeval, PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul, IsAdjoinRootMonic.map_modByMonicHom, MvPolynomial.image_support_finSuccEquiv, IsConjRoot.aeval_eq_zero, PowerSeries.IsWeierstrassDivisorAt.mod_smul, Bivariate.aevalAeval_swap, matPolyEquiv_symm_C, toFinsupp_algebraMap, Bivariate.equivMvPolynomial_C_X, PolyEquivTensor.toFunBilinear_apply_apply, RatFunc.laurent_C, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, algHom_ext_iff, coeToPowerSeries.algHom_apply, MvPolynomial.degree_finSuccEquiv, Bivariate.Polynomial.Bivariate.pderiv_zero_equivMvPolynomial, roots_expand_pow_map_iterateFrobenius, MvPolynomial.nonempty_support_optionEquivLeft, map_expand_pow_char, coeff_expand_mul, IsDistinguishedAt.algEquivQuotient_symm_apply, not_irreducible_expand, expand_mul, aeval_continuousMap_apply, mkDerivation_X, coe_aeval_mk_apply, coeff_zero_eq_aeval_zero, derivation_ext_iff, MvPolynomial.support_optionEquivLeft, MvPolynomial.finSuccEquiv_X_succ, cfc_polynomial, polynomial_expand_eq, toFinsuppIsoAlg_symm_apply_toFinsupp, PolyEquivTensor.invFun_monomial, coe_expand, polynomialFunctions_coe, mkDerivation_one_eq_derivative, fourierCoeff_toAddCircle_natCast, spectrum.map_polynomial_aeval_of_degree_pos, MvPolynomial.eval₂_const_pUnitAlgEquiv, annIdealGenerator_aeval_eq_zero, toContinuousMapAlgHom_apply, sup_ker_aeval_le_ker_aeval_mul, fderivWithin_aeval, StandardEtalePresentation.toPresentation_σ', Derivation.map_aeval, matPolyEquiv_eval_eq_map, Splits.aeval_eq_prod_aroots_of_monic, PolyEquivTensor.left_inv, matPolyEquiv_coeff_apply, aeval_neg, aeval_derivative_mem_differentIdeal, taylorEquiv_symm, Matrix.charpoly_vecMulVec, exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map, MvPolynomial.optionEquivRight_apply, coeff_expand, MvPolynomial.finSuccEquiv_apply, rootsExpandToRoots_apply, StandardEtalePair.HasMap.isUnit_derivative_f, leadingCoeff_expand, aeval_sumIDeriv_eq_eval, expand_eq_C, aeval_C, PowerBasis.exists_eq_aeval', aeval_eq_prod_aroots_sub_of_splits, KaehlerDifferential.polynomial_D_apply, MvPolynomial.rename_polynomial_aeval_X, comp_eq_aeval, valuation_aeval_monomial_eq_valuation_pow, toMvPolynomial_X, aeval_ofReal, hasDerivAt_aeval, coe_algebraMap_eq_CC, Chebyshev.aeval_C, aeval_eq_sum_range, polyEquivTensor_apply, MvPolynomial.eval_toMvPolynomial, Chebyshev.aeval_U, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply_eq_span, Differential.deriv_aeval_eq, Algebra.exists_aeval_invOf_eq_zero_of_idealMap_adjoin_sup_span_eq_top, MvPolynomial.toMvPowerSeries_pUnitAlgEquiv, derivation_C, eval_C_X_comp_eval₂_map_C_X, StandardEtalePresentation.aeval_val_equivMvPolynomial, instIsPushoutFractionRingPolynomial, mem_rootSet', Bivariate.swap_C, NormedAlgebra.Real.exists_isMonicOfDegree_two_and_aeval_eq_zero, IsAdjoinRoot.algebraMap_apply, StandardEtalePair.aeval_X_g_mul_mk_X, Transcendental.aeval, MvPolynomial.eval₂_pUnitAlgEquiv_symm, Derivation.compAEval_eq, aeval_endomorphism, RatFunc.transcendental, IntermediateField.mem_adjoin_simple_iff, expand_contract', Module.AEval.of_aeval_smul, Algebra.mem_ideal_map_adjoin, mem_aroots, ZMod.expand_card, IsAdjoinRoot.map_self, toFinsuppIsoAlg_apply, MvPolynomial.optionEquivLeft_monomial, aeval_algEquiv, support_subset_support_matPolyEquiv, algEquivAevalNegX_apply, Module.End.ker_aeval_ring_hom'_unit_polynomial, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, Derivation.mapCoeffs_apply, MvPolynomial.optionEquivLeft_symm_apply, Algebra.FinitePresentation.polynomial, hasFDerivWithinAt_aeval, contDiff_aeval, IsAdjoinRoot.ofAlgEquiv_map_apply, matPolyEquiv_symm_map_eval, mem_reesAlgebra_iff, MvPolynomial.mem_support_coeff_finSuccEquiv, mem_rootSet, AdjoinRoot.aeval_algHom_eq_zero, map_under_lt_comap_of_quasiFiniteAt, IsAdjoinRoot.map_eq_zero_iff, Algebra.FiniteType.instPolynomial, exists_separable_of_irreducible, roots_expand_image_iterateFrobenius, aeval_monomial, eval_map_algebraMap, mapAlgEquiv_coe_ringHom, AdjoinRoot.quotEquivQuotMap_symm_apply, StandardEtalePresentation.toPresentation_val, algEquivOfCompEqX_apply, matPolyEquiv_eval, mem_rootSet_of_ne, mapAlg_comp, IsAdjoinRoot.aeval_root_self, Differential.implicitDeriv_X, aeval_eq_sum_range', expand_char, aeval_zero, MvPolynomial.pUnitAlgEquiv_monomial, conductor_mul_differentIdeal, Module.AEval.annihilator_top_eq_ker_aeval, roots_expand_pow_image_iterateFrobenius_subset, minpoly.eq_iff_aeval_minpoly_eq_zero, algEquivCMulXAddC_symm_apply, IsMonicOfDegree.aeval_sub, MvPolynomial.finSuccEquiv_rename_finSuccEquiv, ContinuousMap.polynomial_comp_attachBound, expand_eval, isAlgebraic_iff_not_injective, FiniteField.expand_card, coeff_expand_mul', differentiableWithinAt_aeval, AdjoinRoot.aeval_eq, coeff_zero_eq_aeval_zero', roots_expand_pow, AnalyticOnNhd.aeval_polynomial, contract_mul_expand, algEquivAevalXAddC_apply, map_frobenius_expand, matPolyEquiv_symm_X, aeval_pi, newtonMap_apply, Derivation.apply_aeval_eq', aevalTower_comp_C, coe_aeval_eq_eval, Matrix.aeval_self_charpoly, smul_modByMonic, IsAdjoinRoot.algEquiv_map, mapAlgHom_comp, instFiniteTypeSubtypePolynomialMemSubalgebraReesAlgebraOfIsNoetherianRing, PowerSeries.aeval_coe, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, Monic.expand, aeval_iterate_derivative_of_lt, PowerSeries.substAlgHom_coe, MvPolynomial.rename_toMvPolynomial, natDegree_expand, Module.Basis.traceDual_powerBasis_eq, MvPolynomial.optionEquivLeft_symm_C_X, aeval_pi_apply₂, MvPolynomial.finSuccEquiv_X_zero, MvPolynomial.degreeOf_eq_natDegree, aeval_mem_adjoin_singleton, eval₂AlgHom'_apply, toAddCircle_X_eq_fourier_one, tendsto_abv_aeval_atTop, MvPolynomial.transcendental_supported_polynomial_aeval_X_iff, StandardEtalePresentation.toPresentation_relation, cyclotomic_expand_eq_cyclotomic, toMvPolynomial_injective, aeval_algHom_apply, coe_toLaurentAlg, PowerSeries.IsWeierstrassDivisionAt.smul, shiftedLegendre_eval_symm, RatFunc.aeval_X_left_eq_algebraMap, Bivariate.pderiv_one_equivMvPolynomial, residueFieldMapCAlgEquiv_symm_X, mapAlgHom_coe_ringHom, MvPolynomial.optionEquivLeft_elim_eval, Algebra.FormallySmooth.polynomial, MvPolynomial.optionEquivLeft_symm_X, expand_aeval, matPolyEquiv_coeff_apply_aux_2, aeval_natCast, aevalTower_comp_toAlgHom, MvPolynomial.aeval_comp_toMvPolynomial, aeval_algHom, coe_aevalAeval_eq_evalEval, IsSplittingField.IsScalarTower.splits, PowerBasis.aeval_minpolyGen, coe_aeval_eq_evalRingHom, instFiniteDimensionalQuotientPolynomialIdealSpanSingletonSetSmithCoeffs, AdjoinRoot.coe_algHomOfDvd, toLaurentAlg_apply, not_weaklyQuasiFiniteAt, MvPolynomial.eval₂_pUnitAlgEquiv, matPolyEquiv_smul_one, spectrum.map_polynomial_aeval, toAddCircle_C_eq_smul_fourier_zero, algHom_ext'_iff, isLocalHom_expand, ker_modByMonicHom, MvPolynomial.aeval_natDegree_le, MvPolynomial.optionEquivLeft_symm_C_C, Derivation.compAEval_apply, matPolyEquiv_eq_X_pow_sub_C, coe_taylorEquiv, Matrix.aeval_eq_aeval_mod_charpoly, aeval_algebraMap_apply, MvPolynomial.IsHomogeneous.finSuccEquiv_coeff_isHomogeneous, fourierCoeff_toAddCircle, IsDistinguishedAt.algEquivQuotient_apply, minpoly.ker_eval, mapAlgHom_id, map_aeval_eq_aeval_map, adjoin_X, residueFieldMapCAlgEquiv_algebraMap, Module.AEval.annihilator_eq_ker_aeval, Bivariate.equivMvPolynomial_C_C, aeval_add, instIsLocalHomRingHomAlgebraMap, continuousOn_aeval, aeval_sub, IsTranscendenceBasis.polynomial, IsAdjoinRoot.map_surjective, continuousAt_aeval, IsSepClosed.exists_aeval_eq_zero, Module.End.eigenspace_aeval_polynomial_degree_1, inv_eq_of_aeval_divX_ne_zero, exists_monic_aeval_eq_zero_forall_mem_of_mem_map, taylorLinearEquiv_apply_coe, aeval_X, polyEquivTensor_symm_apply_tmul_eq_smul, AdjoinRoot.mkₐ_toRingHom, IsAdjoinRoot.algEquiv_apply_map, roots_expand_map_frobenius_le, aeval_homogenize_of_eq_one, toContinuousMapOnAlgHom_apply, IsAdjoinRoot.ker_map, coe_mapAlgHom, MvPolynomial.totalDegree_coeff_optionEquivLeft_le, mkDerivation_apply, residueFieldMapCAlgEquiv_symm_C, Ideal.Filtration.submodule_fg_iff_stable, algEquivAevalXAddC_symm, IsAlgClosed.exists_aeval_eq_zero, expand_injective, map_iterateFrobenius_expand, eval₂_algebraMap_X, LinearMap.exists_monic_and_coeff_mem_pow_and_aeval_eq_zero_of_range_le_smul, toMvPolynomial_C, add_scaleRoots_of_natDegree_eq, cfc_comp_polynomial, C_smul_derivation_apply, expand_pow, map_taylorEquiv_degreeLT, PowerBasis.liftEquiv_apply_coe, algebraMap_eq, coe_mapAlgEquiv, IsAdjoinRootMonic.modByMonic_repr_map, trdeg_of_isDomain, fourierCoeff_toAddCircle_eq_zero_of_lt_zero, aeval_sumIDeriv_of_pos, MvPolynomial.eval_polynomial_eval_finSuccEquiv, continuousWithinAt_aeval, KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk_symm_apply_eq_span, Derivation.apply_aeval_eq, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply
|