Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Polynomial/Basic.lean

Statistics

MetricCount
DefinitionsC, X, coeff, coeffs, commRing, commSemiring, distribMulAction, distribSMul, erase, inhabited, instAdd, instDecidableEq, instIntCast, instMul, instNSMul, instNatCast, instNeg, instOne, instSub, instZSMul, instZero, monomial, ofMultiset, pow, repr, semiring, smulZeroClass, sum, support, toFinsupp, toFinsuppIso, toFinsuppIsoLinear, unique, update, Β«term_[X]Β»
35
Theoremspolynomial, C_0, C_1, C_add, C_eq_intCast, C_eq_natCast, C_eq_zero, C_inj, C_injective, C_mul, C_mul_X_eq_monomial, C_mul_X_pow_eq_monomial, C_mul_monomial, C_ne_zero, C_neg, C_ofNat, C_pow, C_sub, of_polynomial_ne, X_mul, X_mul_C, X_mul_monomial, X_ne_C, X_ne_zero, X_pow_eq_monomial, X_pow_mul, X_pow_mul_C, X_pow_mul_assoc, X_pow_mul_assoc_C, X_pow_mul_monomial, addHom_ext, addHom_ext', addHom_ext'_iff, addSubmonoid_closure_setOf_eq_monomial, binomial_eq_binomial, card_support_eq_zero, coeff_C, coeff_C_ne_zero, coeff_C_succ, coeff_C_zero, coeff_X, coeff_X_of_ne_one, coeff_X_one, coeff_X_zero, coeff_erase, coeff_inj, coeff_injective, coeff_mem_coeffs, coeff_monomial, coeff_monomial_of_ne, coeff_monomial_same, coeff_monomial_succ, coeff_natCast_ite, coeff_neg, coeff_ofFinsupp, coeff_ofNat_succ, coeff_ofNat_zero, coeff_one, coeff_one_zero, coeff_sub, coeff_update, coeff_update_apply, coeff_update_ne, coeff_update_same, coeff_zero, coeffs_empty_iff, coeffs_monomial, coeffs_nonempty_iff, coeffs_one, coeffs_zero, commute_X, commute_X_pow, eq_zero_of_eq_zero, erase_def, erase_monomial, erase_ne, erase_same, erase_zero, eta, exists_iff_exists_finsupp, ext, ext_iff, faithfulSMul, finite_range_coeff, forall_eq_iff_forall_eq, forall_iff_forall_finsupp, induction_on, induction_on', instIsCancelMulZeroOfIsCancelAdd, instIsDomainOfIsCancelAdd, instIsLeftCancelMulZeroOfIsCancelAdd, instIsRightCancelMulZeroOfIsCancelAdd, instIsTorsionFree, instNoZeroDivisors, isCentralScalar, isScalarTower, isScalarTower_right, lhom_ext', lhom_ext'_iff, mem_coeffs_iff, mem_support_iff, monomial_add, monomial_add_erase, monomial_eq_monomial_iff, monomial_eq_zero_iff, monomial_injective, monomial_left_inj, monomial_mul_C, monomial_mul_X, monomial_mul_X_pow, monomial_mul_monomial, monomial_neg, monomial_one_one_eq_X, monomial_one_right_eq_X_pow, monomial_pow, monomial_sub, monomial_zero_left, monomial_zero_one, monomial_zero_right, mul_eq_sum_sum, natCast_mul, nnqsmul_eq_C_mul, noZeroDivisors_iff, nontrivial, nontrivial_iff, notMem_support_iff, ofFinsupp_add, ofFinsupp_eq_one, ofFinsupp_eq_zero, ofFinsupp_erase, ofFinsupp_inj, ofFinsupp_intCast, ofFinsupp_mul, ofFinsupp_natCast, ofFinsupp_neg, ofFinsupp_nsmul, ofFinsupp_ofNat, ofFinsupp_one, ofFinsupp_pow, ofFinsupp_single, ofFinsupp_smul, ofFinsupp_sub, ofFinsupp_sum, ofFinsupp_zero, ofFinsupp_zsmul, ofMultiset_apply, qsmul_eq_C_mul, smulCommClass, smul_C, smul_X_eq_monomial, smul_monomial, smul_sum, subsingleton_iff_subsingleton, sum_C_index, sum_C_mul_X_pow_eq, sum_X_index, sum_add, sum_add', sum_add_index, sum_def, sum_eq_of_subset, sum_monomial_eq, sum_monomial_index, sum_smul_index, sum_smul_index', sum_zero_index, support_C, support_C_mul_X, support_C_mul_X', support_C_mul_X_pow, support_C_mul_X_pow', support_C_subset, support_X, support_X_empty, support_X_pow, support_add, support_binomial', support_eq_empty, support_erase, support_monomial, support_monomial', support_neg, support_nonempty, support_ofFinsupp, support_toFinsupp, support_trinomial', support_update, support_update_ne_zero, support_update_zero, support_zero, toFinsuppIsoLinear_apply, toFinsuppIsoLinear_symm_apply_toFinsupp, toFinsuppIso_apply, toFinsuppIso_symm_apply, toFinsupp_C, toFinsupp_C_mul_X, toFinsupp_C_mul_X_pow, toFinsupp_X, toFinsupp_X_pow, toFinsupp_add, toFinsupp_apply, toFinsupp_eq_one, toFinsupp_eq_zero, toFinsupp_erase, toFinsupp_inj, toFinsupp_injective, toFinsupp_intCast, toFinsupp_monomial, toFinsupp_mul, toFinsupp_natCast, toFinsupp_neg, toFinsupp_nsmul, toFinsupp_ofNat, toFinsupp_one, toFinsupp_pow, toFinsupp_smul, toFinsupp_sub, toFinsupp_sum, toFinsupp_zero, toFinsupp_zsmul, update_zero_eq_erase
221
Total256

IsSMulRegular

Theorems

NameKindAssumesProvesValidatesDepends On
polynomial πŸ“–mathematicalIsSMulRegular
SMulZeroClass.toSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Polynomial
Polynomial.instZero
Polynomial.smulZeroClass
β€”finsupp

Polynomial

Definitions

NameCategoryTheorems
C πŸ“–CompOp
806 mathmath: mul_div_eq_iff_isRoot, not_ker_le_map_C_of_surjective_of_quasiFiniteAt, isUnit_C_add_X_mul_iff, isMonicOfDegree_X_add_one, natDegree_mul_leadingCoeff_inv, ker_mapRingHom, X_pow_mul_assoc_C, separable_X_add_C, mahlerMeasure_const, eq_X_sub_C_of_separable_of_root_eq, eq_C_of_derivative_eq_zero, derivative_X_sq, coe_normUnit_of_ne_zero, separable_X_pow_sub_C_unit, splits_iff_exists_multiset, taylorWithin_succ, MvPolynomial.pUnitAlgEquiv_apply, algEquivCMulXAddC_apply, mul_divByMonic_eq_iff_isRoot, monic_X_sub_C, RatFunc.num_div, mem_image_comap_C_basicOpen, ker_evalRingHom, StandardEtalePair.inv_aeval_X_g, IsPurelyInseparable.minpoly_eq', expand_eq_sum, root_X_sub_C, AlgebraicGeometry.Polynomial.isOpenMap_comap_C, X_pow_sub_C_splits_of_isPrimitiveRoot, Differential.implicitDeriv_C, WeierstrassCurve.Affine.CoordinateRing.smul, resultant_X_add_C_right, pow_rootMultiplicity_dvd, AdjoinRoot.minpoly_root, X_pow_sub_C_eq_prod, rootMultiplicity_eq_rootMultiplicity, derivative_C_mul, support_trinomial, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_symm_mk, rootMultiplicity_eq_natTrailingDegree, div_def, Cubic.of_a_eq_zero', C_inj, prod_X_sub_C_nextCoeff, mem_roots_sub_C', Monic.leadingCoeff_C_mul, Ideal.mem_leadingCoeffNth_zero, leadingCoeff_quadratic, Multiset.prod_X_sub_X_eq_sum_esymm, coeffList_C_mul, support_C_mul_X, ChevalleyThm.chevalley_polynomialC, nnqsmul_eq_C_mul, leadingCoeff_C_mul_of_isUnit, aroots_X_sub_C, fiberEquivQuotient_tmul, MvPolynomial.optionEquivLeft_C, degree_quadratic_lt, AlgebraicGeometry.Polynomial.comap_C_mem_imageOfDf, C_mul_X_eq_monomial, eval_det_add_X_smul, prod_multiset_X_sub_C_of_monic_of_roots_card_eq, logMahlerMeasure_C_mul, C_1, WeierstrassCurve.Οˆβ‚‚_sq, MvPolynomial.optionEquivLeft_X_some, monic_X_pow_add_C, monic_multisetProd_X_sub_C, isCoprime_of_is_root_of_eval_derivative_ne_zero, leadingCoeff_det_X_one_add_C, quotientSpanXSubCAlgEquiv_symm_apply, X_pow_sub_C_irreducible_iff_of_odd, zero_notMem_multiset_map_X_sub_C, card_roots_sub_C', Irreducible.natSepDegree_eq_one_iff_of_monic', eq_C_of_degree_eq_zero, nextCoeffUp_C_eq_zero, X_pow_sub_C_irreducible_of_odd, derivative_pow_succ, StandardEtalePresentation.toPresentation_algebra_smul, minpoly.eq_of_irreducible, Ideal.quotient_map_C_eq_zero, natDegree_X_pow_sub_C, Monic.natSepDegree_eq_one_iff_of_irreducible', AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, roots_C_mul_X_pow, iterate_derivative_eq_factorial_smul_sum, iterate_derivative_X_add_pow, Chebyshev.S_eq_U_comp_half_mul_X, degree_C_mul_of_isUnit, aroots_quadratic_eq_pair_iff_of_ne_zero', degree_mul_leadingCoeff_inv, eq_prod_roots_of_splits, eq_prod_roots_of_monic_of_splits_id, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, MvPolynomial.optionEquivLeft_apply, minpoly_algHom_toLinearMap, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_eqβ‚‚, prime_C_iff, Lagrange.interpolate_eq_nodalWeight_mul_nodal_div_X_sub_C, natSepDegree_X_sub_C_pow, isMonicOfDegree_two_iff', not_isRoot_C, Multiset.prod_X_add_C_coeff, natDegree_C_add, Monic.eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one, C_mul', eraseLead_add_C_mul_X_pow, minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C, isMonicOfDegree_X_sub_one, ConjRootClass.minpoly.map_eq_prod, sumIDeriv_C, roots_C_mul, coeff_divByMonic_X_sub_C_rec, leadingCoeff_X_pow_add_C, eval_C, Matrix.charmatrix_apply_eq, Lagrange.nodal_insert_eq_nodal, mapAlgHom_eq_evalβ‚‚AlgHom'_CAlgHom, eval_divByMonic_eq_trailingCoeff_comp, algebraMap_apply, MvPolynomial.optionEquivRight_C, monomial_mul_C, X_pow_sub_C_irreducible_iff_forall_prime_of_odd, as_sum_range_C_mul_X_pow', Matrix.derivative_det_one_add_X_smul, integralNormalization_C, rootMultiplicity_X_sub_C_pow, resultant_X_sub_C_right, update_eq_add_sub_coeff, monic_finprod_X_sub_C, degree_C_mul_of_mul_ne_zero, Ideal.jacobson_bot_polynomial_le_sInf_map_maximal, Real.Polynomial.isRoot_cos_pi_div_five, coe_C, WeierstrassCurve.Affine.C_addPolynomial, natDegree_finset_prod_X_sub_C_eq_card, support_C_mul_X', pow_rootMultiplicity_not_dvd, divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative, Bivariate.aveal_eq_map_swap, le_trailingDegree_C, Bivariate.swap_apply, Ideal.injective_quotient_le_comap_map, C_eq_zero, dvd_comp_X_add_C_iff, separable_X_pow_sub_C, dvd_comp_C_mul_X_add_C_iff, X_pow_sub_one_splits, coeff_C_ne_zero, isMonicOfDegree_add_add_two, degree_X_pow_add_C, Matrix.det_one_add_smul, Monic.comp_X_sub_C, degree_X_sub_C, iterate_derivative_X_sub_pow, support_trinomial', C_0, isSplittingField_X_pow_sub_C_of_root_adjoin_eq_top, exists_finset_of_splits, Submodule.IsPrincipal.contentIdeal_le_span_iff_dvd, Matrix.charpoly_of_upperTriangular, irreducible_mul_leadingCoeff_inv, IsSepClosed.roots_eq_zero_iff, gal_X_pow_sub_C_isSolvable, Lagrange.interpolate_eq_sum, Module.AEval.C_smul, sum_C_index, Matrix.charmatrix_apply_ne, natTrailingDegree_C, X_mul_C, Derivation.mapCoeffs_C, coeff_C_mul_X, leadingCoeff_cubic, resultant_C_zero_right, natDegree_eq_one, minpoly.sub_algebraMap, WeierstrassCurve.Ο†_three, C_eq_natCast, derivative_X_sub_C_sq, Matrix.charpoly_sub_scalar, smul_eq_C_mul, opRingEquiv_op_C, C_eq_intCast, degree_C_lt_degree_C_mul_X, aroots_C_mul, isUnit_iff, roots_X_pow_char_pow_sub_C_pow, Multiset.prod_X_sub_C_dvd_iff_le_roots, leadingCoeff_mul_prod_normalizedFactors, Matrix.IsHermitian.charpoly_cfc_eq, mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero, nextCoeff_C_mul_X_add_C, prod_multiset_root_eq_finset_root, dvd_C_mul, X_pow_sub_C_separable_iff, IsPurelyInseparable.minpoly_eq, nextCoeff_mul_C, coeff_X_sub_C_mul, Cubic.of_a_eq_zero, comp_C_mul_X_eq_zero_iff, gal_X_pow_sub_C_isSolvable_aux, degree_quadratic, monic_X_pow_sub_C, leadingCoeff_linear, rootMultiplicity_eq_natFind_of_ne_zero, isMonicOfDegree_two_iff, C_mul_X_pow_eq_monomial, nextCoeff_X_add_C, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, PowerSeries.trunc_mul_C, eq_X_add_C_of_degree_le_one, expand_C, logMahlerMeasure_X_sub_C, C_mem_lifts, natDegree_mul_leadingCoeff_self_inv, CAlgHom_apply, trailingDegree_C_mul_X_pow, X_pow_sub_one_eq_prod, prod_multiset_X_sub_C_dvd, degree_cubic_lt, AdjoinRoot.mul_div_root_cancel, eq_X_add_C_of_natDegree_le_one, minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow, degree_C, Cubic.of_b_eq_zero, derivative_X_add_C, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial, support_binomial', minpoly.IsIntegrallyClosed.isIntegral_iff_leadingCoeff_dvd, exists_image_comap_of_monic, cyclotomic_eq_prod_X_sub_primitiveRoots, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_add_eq, X_add_C_scaleRoots, resultant_C_right, splits_C, Splits.comp_X_sub_C, WeierstrassCurve.Ξ¨_ofNat, natDegree_C_mul_X, comp_C, coeff_mul_X_sub_C, RatFunc.numDenom_div, natDegree_X_add_C, map_under_lt_comap_of_weaklyQuasiFiniteAt, support_C, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C', natSepDegree_C_mul_X_sub_C_pow, height_map_C, RatFunc.num_C, X_sub_C_mul_divByMonic_eq_sub_modByMonic, roots_C_mul_X_sub_C_of_IsUnit, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, derivative_X_pow_succ, eq_C_of_natDegree_le_zero, monic_X_add_C, logMahlerMeasure_X_add_C, aevalTower_C, WeierstrassCurve.Affine.addPolynomial_slope, coeff_C_mul, rootMultiplicity_eq_nat_find_of_nonzero, roots_quadratic_eq_pair_iff_of_ne_zero, derivative_X_sub_C_pow, natDegree_C_mul_eq_of_mul_eq_one, eraseLead_C_mul_X, natDegree_C, X_pow_sub_C_irreducible_iff_of_prime_pow, Lagrange.basis_eq_prod_sub_inv_mul_nodal_div, toLaurent_comp_C, IsRoot.mul_div_eq, sum_C_mul_X_pow_eq, isOpen_image_comap_of_monic, as_sum_support_C_mul_X_pow, degree_quadratic_le, eq_quadratic_of_degree_le_two, WeierstrassCurve.Ο†_one, divX_eq_zero_iff, MulSemiringAction.charpoly_eq_prod_smul, card_support_eq, leadingCoeff_pow_X_add_C, AlgebraicGeometry.Polynomial.imageOfDf_eq_comap_C_compl_zeroLocus, cauchyBound_C, roots_C_mul_X_add_C, natDegree_C_mul_le, leadingCoeff_X_pow_sub_C, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, Bivariate.equivMvPolynomial_symm_X_0, minpoly.eq_X_sub_C_of_algebraMap_inj, taylor_apply, natDegree_C_mul_of_mul_ne_zero, WeierstrassCurve.Affine.C_addPolynomial_slope, Splits.eq_prod_roots, evalEvalRingHom_apply, div_wf_lemma, Matrix.charmatrix_fromBlocks, eq_X_add_C_of_degree_eq_one, mahlerMeasure_C_mul_X_add_C, eq_C_of_natDegree_eq_zero, evalβ‚‚_C_X, smeval_C, mem_span_C_coeff, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, X_mul_divX_add, card_support_binomial, separable_C_mul_X_pow_add_C_mul_X_add_C', Splits.comp_X_add_C, C_mul_monomial, monic_C_mul_of_mul_leadingCoeff_eq_one, separable_X_pow_sub_C', isOpenMap_comap_C, natDegree_mul_C_eq_of_mul_eq_one, content_C_mul, Splits.eq_X_sub_C_of_single_root, coeff_det_X_add_C_card, quotientSpanXSubCAlgEquiv_mk, Cubic.of_c_eq_zero', Lagrange.X_sub_C_dvd_nodal, roots_X_sub_C, isUnit_C, WeierstrassCurve.C_Ξ¨β‚‚Sq, natDegree_quadratic_le, Bivariate.swap_Y, rootSet_C_mul_X_pow, le_rootMultiplicity_iff, support_C_subset, Cubic.of_b_eq_zero', WeierstrassCurve.Affine.derivative_addPolynomial_slope, support_C_mul_X_pow', eq_C_content_mul_primPart, C'_mem_lifts, rootMultiplicity_mul_X_sub_C_pow, card_support_eq', C_eq_algebraMap, Finset.prod_X_add_C_coeff, Bivariate.equivMvPolynomial_symm_C, divX_mul_X_add, natSepDegree_X_pow_char_pow_sub_C, coeffList_C, Matrix.det_one_add_X_smul, comp_eq_zero_iff, RatFunc.smul_eq_C_smul, degree_X_pow_sub_C, Irreducible.natSepDegree_eq_one_iff_of_monic, natDegree_X_pow_add_C, divX_C_mul, iterate_derivative_C, degree_mul_leadingCoeff_self_inv, mahlerMeasure_X_add_C, taylor_X_pow, eq_C_coeff_zero_iff_natDegree_eq_zero, Differential.mapCoeffs_C, comp_C_mul_X_coeff, gal_C_isSolvable, resultant_X_sub_C_pow_left, derivative_C_mul_X, Bivariate.swap_X, eval_iterate_derivative_rootMultiplicity, Splits.X_add_C, degree_C_lt, nextCoeff_C_eq_zero, degree_C_mul_X_pow_le, separable_prod_X_sub_C_iff', le_trailingDegree_C_mul_X_pow, AdjoinRoot.root_isInv, PowerSeries.trunc_one_left, coeff_mul_C, rootMultiplicity_C, eq_prod_roots_of_splits_id, coeff_C, natDegree_X_sub_C, WeierstrassCurve.Affine.CoordinateRing.mk_Ο†, Matrix.matPolyEquiv_charmatrix, natDegree_C_mul, card_support_eq_three, resultant_X_sub_C_pow_right, smeval_C_mul, X_sub_C_dvd_sub_C_eval, WeierstrassCurve.Ξ¨_three, prime_X_sub_C, Lagrange.iterate_derivative_interpolate, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, C_sub, roots_X_pow_char_sub_C_pow, Bivariate.swap_C_C, isCompact_image_comap_of_monic, iterate_derivative_eq_sum, quadratic_dvd_of_aeval_eq_zero_im_ne_zero, algEquivAevalXAddC_symm_apply, isMaximal_comap_C_of_isJacobsonRing, nextCoeff_X_sub_C, natDegree_C_mul_X_pow, dvd_mul_leadingCoeff_inv, RatFunc.algebraMap_C, C_mul_X_pow_eq_self, degree_X_sub_C_le, PowerSeries.trunc_C, degree_C_mul_X_le, expand_zero, quotient_mk_comp_C_isIntegral_of_isJacobsonRing, eraseLead_C_mul_X_pow, Monic.natSepDegree_eq_one_iff, trailingDegree_C, X_pow_sub_C_irreducible_of_prime, roots_multiset_prod_X_sub_C, homogenize_C_mul, contract_C, Matrix.charpoly_fin_two, evalβ‚‚_mul_C', separable_prod_X_sub_C_iff, resultant_C_left, natDegree_mul_C_of_isUnit, dickson_add_two, exists_eq_pow_rootMultiplicity_mul_and_not_dvd, Bivariate.swap_map_C, Monic.eq_X_add_C, WeierstrassCurve.Affine.CoordinateRing.mk_Ξ¨_sq, mapRingHom_comp_C, eq_C_of_degree_le_zero, contentIdeal_C, eval_C_X_evalβ‚‚_map_C_X, supNorm_C, matPolyEquiv_map_C, card_roots_X_pow_sub_C, derivative_sq, leadingCoeff_C_mul_X_pow, mem_roots_sub_C, RatFunc.liftRingHom_C, isMaximal_comap_C_of_isMaximal, not_isUnit_X_add_C, degree_cubic, natSepDegree_C_mul, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul, resultant_X_add_C_left, gal_X_sub_C_isSolvable, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_eq₁, IsMonicOfDegree.aeval_add, natDegree_multiset_prod_X_sub_C_eq_card, C_dvd_iff_dvd_coeff, Splits.C_mul_X_pow, exists_eq_X_add_C_of_natDegree_le_one, Matrix.charpoly_coeff_eq_prod_coeff_of_le, AdjoinRoot.Polynomial.quotQuotEquivComm_mk, RatFunc.denom_div, opRingEquiv_symm_C_mul_X_pow, iterate_derivative_prod_X_sub_C, signVariations_eraseLead_mul_X_sub_C, dvd_content_iff_C_dvd, coeff_C_succ, separable_C, instIsLocalHomRingHomC, cfc_eval_C, mahlerMeasure_X_sub_C, minpoly.add_algebraMap, not_ker_le_map_C_of_surjective_of_weaklyQuasiFiniteAt, Ideal.isPrime_map_C_of_isPrime, MvPolynomial.finSuccEquiv_comp_C_eq_C, MulSemiringAction.charpoly_eq, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial_slope, isMonicOfDegree_one_iff, root_X_pow_sub_C_pow, Mathlib.Tactic.ComputeDegree.natDegree_C_le, C_mul_dvd, MvPolynomial.finSuccEquiv_eq, C_comp, div_C, aroots_quadratic_eq_pair_iff_of_ne_zero, comp_one, Ideal.mem_map_C_iff, sumIDeriv_X, dvd_C_mul_X_sub_one_pow_add_one, rootSet_C, matPolyEquiv_symm_C, Bivariate.equivMvPolynomial_C_X, isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C, natDegree_mul_C_eq_of_mul_ne_zero, ofMultiset_apply, Cubic.prod_X_sub_C_eq, rootMultiplicity_eq_multiplicity, derivative_evalβ‚‚_C, multiset_prod_X_sub_C_nextCoeff, C_div, Lagrange.nodal_eq_mul_nodal_erase, divX_C_mul_X_pow, MvPolynomial.prod_X_add_C_coeff, WeierstrassCurve.ψ_three, Ideal.polynomialQuotientEquivQuotientPolynomial_symm_mk, derivative_pow, C_ofNat, reverse_add_C, isSplittingField_C, AlgebraicClosure.Monics.map_eq_prod, isLocalization, image_comap_C_basicOpen, dickson_one_one_eq_chebyshev_T, leadingCoeff_mul_C_of_isUnit, not_isUnit_X_sub_C, MvPolynomial.finSuccEquiv_X_succ, card_support_eq_two, eq_mul_leadingCoeff_of_monic_of_dvd_of_natDegree_le, chebyshev_T_eq_dickson_one_one, iterate_derivative_C_mul, reflect_C_mul_X_pow, card_support_eq_one, coe_expand, aroots_C_mul_X_pow, Matrix.charpoly_sub_diagonal_degree_lt, leadingCoeff_C_mul_X, eraseLead_C, Splits.X_sub_C, isUnit_primPart_C, C_leadingCoeff_mul_prod_multiset_X_sub_C, minpoly.eq_X_sub_C', Monic.comp_X_add_C, divX_C, StandardEtalePresentation.toPresentation_Οƒ', Monic.C_dvd_iff_isUnit, monic_mul_C_of_leadingCoeff_mul_eq_one, natSepDegree_C, IsIntegrallyClosed.eq_map_mul_C_of_dvd, monic_mul_leadingCoeff_inv, eq_X_sub_C_of_splits_of_single_root, card_support_C_mul_X_pow_le_one, discr_C, support_C_mul_X_pow, MvPolynomial.prod_C_add_X_eq_sum_esymm, modByMonic_X_sub_C_eq_C_eval, denomsClearable_C_mul_X_pow, binomial_eq_binomial, iterate_derivative_X_pow_eq_C_mul, derivative_X_pow, MvPolynomial.finSuccEquiv_apply, degree_C_mul, gaussNorm_C, Splits.eq_prod_roots_of_monic, isNilpotent_C_mul_pow_X_of_isNilpotent, leadingCoeff_X_sub_C, expand_eq_C, RatFunc.num_div_dvd', WeierstrassCurve.Ξ¦_two, aeval_C, taylor_monomial, Lagrange.interpolate_apply, IsPurelyInseparable.minpoly_eq_X_pow_sub_C, C_mul, natDegree_X_sub_C_le, splits_X_sub_C_mul_iff, dickson_of_two_le, Matrix.coeff_det_one_add_X_smul_one, degree_add_degree_leadingCoeff_inv, trinomial_def, X_sub_C_scaleRoots, resultant_C_zero_left, C_eq_or_isOpenQuotientMap_eval, sum_taylor_eq, isNilpotent_C_iff, disc_C, hasseDeriv_C, natDegree_linear_le, derivation_C, minpoly_algEquiv_toLinearMap, natDegree_det_X_add_C_le, eval_C_X_comp_evalβ‚‚_map_C_X, AdjoinRoot.algHom_subsingleton, mod_X_sub_C_eq_C_eval, StandardEtalePresentation.aeval_val_equivMvPolynomial, smul_C, AdjoinRoot.Polynomial.quotQuotEquivComm_symm_mk_mk, LinearMap.charpoly_sub_smul, Bivariate.swap_C, natSepDegree_X_sub_C, coe_normUnit, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, degree_le_zero_iff, IsAdjoinRoot.algebraMap_apply, spectralValue_X_sub_C, StandardEtalePair.aeval_X_g_mul_mk_X, roots_C_mul_X_sub_C, WeierstrassCurve.Affine.CoordinateRing.mk_Οˆβ‚‚_sq, rootMultiplicity_le_iff, eraseLead_mul_eq_mul_eraseLead_of_nextCoeff_zero, modByMonic_X, IsPurelyInseparable.minpoly_eq_X_sub_C_pow, X_pow_sub_C_irreducible_of_prime_pow, integralNormalization_mul_C_leadingCoeff, roots_quadratic_eq_pair_iff_of_ne_zero', iterate_derivative_X_sub_pow_self, X_dvd_sub_C, eval_mul_X_sub_C, minpolyDiv_spec, reverse_C, Splits.C_mul, Monic.eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible, reflect_C, evalβ‚‚_C, comp_zero, reflect_C_mul, Matrix.charpoly_inv, natDegree_sub_C, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, hasseDeriv_natDegree_eq_C, as_sum_range_C_mul_X_pow, Submodule.IsPrincipal.contentIdeal_generator_dvd, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_mk, derivative_C_mul_X_pow, signVariations_X_sub_C_mul_eraseLead_le, support_binomial, derivative_C, roots_X_pow_char_sub_C, degree_mul_C_of_isUnit, AdjoinRoot.minpoly_powerBasis_gen, map_under_lt_comap_of_quasiFiniteAt, dickson_two_one_eq_chebyshev_U, C_mul_comp, bernoulli_one, StandardEtalePresentation.toPresentation_val, Ideal.isDomain_map_C_quotient, natDegree_mul_C_le, Chebyshev.C_eq_two_mul_T_comp_half_mul_X, monomial_zero_left, natDegree_mul_C, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, WeierstrassCurve.Ο†_four, rootMultiplicity_X_sub_C_self, splits_X_sub_C, algEquivCMulXAddC_symm_apply, Chebyshev.T_eq_half_mul_C_comp_two_mul_X, opRingEquiv_symm_C, IsAlgClosed.roots_eq_zero_iff, natDegree_cubic, degree_leadingCoeff_inv, IsMonicOfDegree.aeval_sub, toFinsupp_C_mul_X_pow, logMahlerMeasure_const, natDegree_C_mul_of_isUnit, hermite_zero, dickson_two, succ_signVariations_X_sub_C_mul_monomial, derivative_X_add_C_sq, comp_eq_sum_left, rootMultiplicity_X_sub_C, IsLocalization.adjoin_inv, dvd_comp_X_sub_C_iff, evalEval_map_C, pow_mul_divByMonic_rootMultiplicity_eq, algEquivAevalXAddC_apply, leadingCoeff_C, cauchyBound_X_add_C, degree_cubic_le, WeierstrassCurve.Ξ¨_four, toLaurent_C_mul_eq, X_sub_C_mul_removeFactor, aevalTower_comp_C, logMahlerMeasure_C_mul_X_add_C, Cubic.eq_prod_three_roots, Multiset.prod_X_add_C_eq_sum_esymm, coeff_C_zero, exists_prod_multiset_X_sub_C_mul, degree_linear_le, Matrix.charmatrix_apply, derivative_X_add_C_pow, homogenize_C, content_C, splits_iff_exists_multiset', toFinsupp_C_mul_X, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, dvd_iff_isRoot, qsmul_eq_C_mul, Multiset.prod_X_add_C_coeff', degree_linear_lt_degree_C_mul_X_sq, cauchyBound_X_sub_C, splits_of_exists_multiset, map_C, C_neg, isNilpotent_pow_X_mul_C_of_isNilpotent, prod_X_sub_C_coeff_card_pred, MvPolynomial.optionEquivLeft_symm_C_X, not_irreducible_C, degree_quadratic_lt_degree_C_mul_X_cb, coeff_C_mul_X_pow, WeierstrassCurve.Ο†_two, degree_C_mul_X, comp_X_add_C_eq_zero_iff, resultant_X_sub_C_left, scaleRoots_C, degree_mul_C, div_C_mul, resultant_C_mul_left, StandardEtalePresentation.toPresentation_relation, opRingEquiv_op_C_mul_X_pow, Ideal.polynomialQuotientEquivQuotientPolynomial_map_mk, roots_X_add_C, Ideal.quotient_mk_maps_eq, mul_star_dvd_of_aeval_eq_zero_im_ne_zero, base_mul_mem_lifts, separable_C_mul_X_pow_add_C_mul_X_add_C, Matrix.IsHermitian.charpoly_eq, taylor_X, multiset_prod_X_sub_C_coeff_card_pred, separable_X_sub_C, finiteMultiplicity_X_sub_C, WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq, leadingCoeff_X_add_C, degree_sum_fin_lt, exists_C_coeff_notMem, ringHom_ext'_iff, irreducible_X_sub_C, Monic.as_sum, preimage_eval_singleton, Cubic.C_mul_prod_X_sub_C_eq, toLaurent_C, eq_leadingCoeff_mul_of_monic_of_dvd_of_natDegree_le, irreducible_C_mul_X_add_C, succ_signVariations_le_X_sub_C_mul, Splits.C, reverse_C_add, natDegree_linear, autAdjoinRootXPowSubC_root, toLaurent_C_mul_X_pow, Ideal.isPrime_map_C_iff_isPrime, Matrix.charpoly_diagonal, degree_add_C, toAddCircle_C_eq_smul_fourier_zero, evalEval_C, natDegree_pow_X_add_C, natDegree_eq_zero, Monic.natSepDegree_eq_one_iff_of_irreducible, IsUnitTrinomial.irreducible_aux1, roots_C_mul_X_add_C_of_IsUnit, mirror_C, MvPolynomial.optionEquivLeft_symm_C_C, Cubic.of_c_eq_zero, matPolyEquiv_eq_X_pow_sub_C, coeff_divByMonic_X_sub_C, Matrix.derivative_det_one_add_X_smul_aux, degree_C_mul_X_pow, C_pow, C_add, zero_notMem_multiset_map_X_add_C, mod_def, leadingCoeff_divByMonic_X_sub_C, pairwise_coprime_X_sub_C, derivative_X_sub_C, aroots_C, minpoly.eq_X_sub_C, roots_C, Matrix.charmatrix_diagonal, Lagrange.nodal_erase_eq_nodal_div, monic_prod_X_sub_C, natDegree_cubic_le, WeierstrassCurve.ψ_four, Bivariate.equivMvPolynomial_C_C, WeierstrassCurve.Ξ¨_odd, natDegree_quadratic, natDegree_C_mul_X_pow_le, card_roots_sub_C, resultant_C_mul_right, degree_linear, taylor_C, derivative_apply, C_injective, nextCoeff_C_mul, self_sub_C_mul_X_pow, monomial_comp, comap_C_surjective, natDegree_add_C, eval_C_mul, isCoprime_X_sub_C_of_isUnit_sub, irreducible_X_pow_sub_C_of_root_adjoin_eq_top, signVariations_C_mul, Lagrange.interpolate_singleton, C_content_dvd, coeff_X_add_C_pow, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, degree_linear_lt, PowerSeries.trunc_C_mul, coeff_det_X_add_C_zero, PrimeSpectrum.isConstructible_comap_C, derivative_C_mul_X_sq, Lagrange.nodal_eq, derivativeFinsupp_C, card_support_trinomial, taylor_one, X_pow_sub_C_irreducible_iff_of_prime, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal, AdjoinRoot.mk_C, roots_X_pow_char_pow_sub_C, RatFunc.algebraMap_comp_C, toMvPolynomial_C, exists_mul_add_mul_eq_C_resultant, Matrix.charpoly_of_card_eq_two, eval_multiset_prod_X_sub_C_derivative, toFinsupp_C, X_sub_C_pow_dvd_iff, isCyclic_tfae, roots_prod_X_sub_C, C_smul_derivation_apply, X_pow_mul_C, degree_sub_C, Multiset.prod_X_sub_C_coeff, degree_X_add_C, isMonicOfDegree_sub_add_two, algebraMap_eq, degree_C_le, comp_C_integral_of_surjective_of_isJacobsonRing, isIntegral_isLocalization_polynomial_quotient, Monic.eq_X_sub_C_pow_of_natSepDegree_eq_one_of_splits
X πŸ“–CompOp
903 mathmath: mul_div_eq_iff_isRoot, isUnit_C_add_X_mul_iff, natDegree_mul_X_pow, isMonicOfDegree_X_add_one, degreeLT.addLinearEquiv_symm_apply_inr, X_pow_mul_assoc_C, separable_X_add_C, monic_X_pow, leadingCoeff_mul_X_pow, eq_X_sub_C_of_separable_of_root_eq, derivative_X_sq, mirror_X, separable_X_pow_sub_C_unit, splits_iff_exists_multiset, Chebyshev.T_eq_X_mul_U_sub_U, polynomialFunctions.eq_adjoin_X, taylorWithin_succ, MvPolynomial.pUnitAlgEquiv_apply, algEquivCMulXAddC_apply, mul_divByMonic_eq_iff_isRoot, LaurentPolynomial.mk'_one_X_pow, monic_X_sub_C, coeff_X_pow_mul', one_add_X_pow_sub_X_pow, eq_cyclotomic_iff, ker_evalRingHom, StandardEtalePair.inv_aeval_X_g, evalβ‚‚_intCastRingHom_X, IsPurelyInseparable.minpoly_eq', LaurentPolynomial.mk'_mul_T, expand_eq_sum, root_X_sub_C, X_pow_sub_C_splits_of_isPrimitiveRoot, Matrix.pow_eq_aeval_mod_charpoly, resultant_X_add_C_right, pow_rootMultiplicity_dvd, X_pow_sub_C_eq_prod, rootMultiplicity_eq_rootMultiplicity, ascPochhammer_one, expNegInvGlue.hasDerivAt_polynomial_eval_inv_mul, support_trinomial, divX_X_pow, KaehlerDifferential.polynomialEquiv_symm, cyclotomic_six, rootMultiplicity_eq_natTrailingDegree, Chebyshev.one_sub_X_sq_mul_derivative_derivative_U_eq_poly_in_U, Cubic.of_a_eq_zero', prod_X_sub_C_nextCoeff, leadingCoeff_quadratic, natDegree_X, idealX_span, Multiset.prod_X_sub_X_eq_sum_esymm, eraseLead_X_pow, support_C_mul_X, aroots_X_sub_C, degree_quadratic_lt, WeierstrassCurve.Affine.CoordinateRing.basis_one, cyclotomic_dvd_geom_sum_of_dvd, C_mul_X_eq_monomial, eval_det_add_X_smul, prod_multiset_X_sub_C_of_monic_of_roots_card_eq, X_mem_lifts, IsMonicOfDegree.natDegree_sub_X_pow, derivative_comp_one_sub_X, monic_X_pow_add_C, monic_multisetProd_X_sub_C, smeval_mul_X, isCoprime_of_is_root_of_eval_derivative_ne_zero, descPochhammer_succ_comp_X_sub_one, leadingCoeff_det_X_one_add_C, quotientSpanXSubCAlgEquiv_symm_apply, X_pow_sub_C_irreducible_iff_of_odd, coeff_one_add_X_pow, zero_notMem_multiset_map_X_sub_C, Irreducible.natSepDegree_eq_one_iff_of_monic', derivative_expand, X_pow_sub_C_irreducible_of_odd, StandardEtalePresentation.toPresentation_algebra_smul, sum_smul_minpolyDiv_eq_X_pow, monomial_one_one_eq_X, natDegree_mul_X, natDegree_X_pow_sub_C, Monic.natSepDegree_eq_one_iff_of_irreducible', isNilpotent_X_mul_iff, roots_C_mul_X_pow, IsDistinguishedAt.map_eq_X_pow, dickson_two_zero, LaurentPolynomial.mk'_one_X, evalβ‚‚_mul_X, iterate_derivative_eq_factorial_smul_sum, iterate_derivative_X_add_pow, Chebyshev.S_eq_U_comp_half_mul_X, evalβ‚‚_X_pow, aroots_quadratic_eq_pair_iff_of_ne_zero', derivative_X, comp_neg_X_eq_zero_iff, eq_prod_roots_of_splits, eq_prod_roots_of_monic_of_splits_id, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, WeierstrassCurve.Affine.Y_sub_negPolynomial, MvPolynomial.optionEquivLeft_apply, minpoly_algHom_toLinearMap, chebyshev_U_eq_dickson_two_one, Derivation.mapCoeffs_X, Lagrange.interpolate_eq_nodalWeight_mul_nodal_div_X_sub_C, Chebyshev.C_one, LinearMap.charpoly_nilpotent_tfae, WeierstrassCurve.Affine.CoordinateRing.coe_basis, natSepDegree_X_sub_C_pow, isMonicOfDegree_two_iff', aroots_X, Multiset.prod_X_add_C_coeff, Monic.eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one, eraseLead_add_C_mul_X_pow, minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C, isMonicOfDegree_X_sub_one, degreeLT.basis_val, toContinuousMapOn_X_eq_restrict_id, reverse_mul_X_pow, ConjRootClass.minpoly.map_eq_prod, Chebyshev.S_add_one, matPolyEquiv_diagonal_X, coeff_divByMonic_X_sub_C_rec, gal_X_pow_isSolvable, Subfield.splits_bot, monic_X_pow_add, degree_lt_degree_mul_X, leadingCoeff_X_pow_add_C, smeval_X_pow, Matrix.charmatrix_apply_eq, Lagrange.nodal_insert_eq_nodal, mapAlgHom_eq_evalβ‚‚AlgHom'_CAlgHom, Matrix.charpoly_natCast, coeff_mul_X_zero, eval_divByMonic_eq_trailingCoeff_comp, X_pow_eq_monomial, X_pow_sub_C_irreducible_iff_forall_prime_of_odd, toAddCircle_X_pow_eq_fourier, descPochhammer_one, as_sum_range_C_mul_X_pow', Matrix.derivative_det_one_add_X_smul, rootMultiplicity_X_sub_C_pow, resultant_X_sub_C_right, iterate_derivative_mul_X, Chebyshev.S_eq_X_mul_S_add_C, update_eq_add_sub_coeff, monic_finprod_X_sub_C, Real.Polynomial.isRoot_cos_pi_div_five, Chebyshev.S_comp_two_mul_X, WeierstrassCurve.Affine.C_addPolynomial, natDegree_finset_prod_X_sub_C_eq_card, support_C_mul_X', prod_cyclotomic_eq_X_pow_sub_one, iterate_derivative_X, Matrix.charpoly_mul_comm_of_le, Module.AEval'.X_smul_of, pow_rootMultiplicity_not_dvd, divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative, aeval_X_pow, Chebyshev.S_eq, coeff_mul_X_pow, resultant_X_pow_right, Bivariate.swap_apply, eval_X, dvd_comp_X_add_C_iff, separable_X_pow_sub_C, X_comp, Monic.eq_X_pow_iff_natDegree_le_natTrailingDegree, dvd_comp_C_mul_X_add_C_iff, X_pow_smul_rTensor_monomial, X_pow_sub_one_splits, isMonicOfDegree_add_add_two, degree_X_pow_add_C, Matrix.det_one_add_smul, Monic.comp_X_sub_C, degree_X_sub_C, iterate_derivative_X_sub_pow, support_trinomial', isSplittingField_X_pow_sub_C_of_root_adjoin_eq_top, PowerSeries.IsWeierstrassFactorization.isWeierstrassDivision, expand_eq_comp_X_pow, exists_finset_of_splits, Chebyshev.T_two, ascPochhammer_succ_comp_X_add_one, supNorm_X, Matrix.charpoly_of_upperTriangular, Chebyshev.T_add_one, gal_X_pow_sub_C_isSolvable, Lagrange.interpolate_eq_sum, coeff_X_pow_mul, FiniteField.roots_X_pow_card_sub_X, X_mul_C, coeff_C_mul_X, leadingCoeff_cubic, eval_X_pow, natDegree_eq_one, Chebyshev.C_eq_S_sub_X_mul_S, minpoly.sub_algebraMap, WeierstrassCurve.Ο†_three, X_pow_mul_assoc, degreeLT.addLinearEquiv_apply_fst, coeff_X_pow, derivative_X_sub_C_sq, Matrix.charpoly_sub_scalar, MvPolynomial.optionEquivRight_X_none, aeval_X_left_apply, FiniteField.instIsSplittingFieldExtensionHSubPolynomialHPowNatXCard, cyclotomic_two, Chebyshev.U_two, degree_C_lt_degree_C_mul_X, Splits.X_pow, roots_X_pow_char_pow_sub_C_pow, isRegular_X, Multiset.prod_X_sub_C_dvd_iff_le_roots, Module.AEval'.of_symm_X_smul, sum_X_index, Matrix.IsHermitian.charpoly_cfc_eq, mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero, Chebyshev.U_eq, Chebyshev.S_sq_add_S_sq, nextCoeff_C_mul_X_add_C, X_pow_sub_one_dvd_prod_cyclotomic, prod_multiset_root_eq_finset_root, iterate_derivative_derivative_mul_X_sq, X_pow_sub_C_separable_iff, aeval_homogenize_X_one, IsPurelyInseparable.minpoly_eq, coeff_X_sub_C_mul, Cubic.of_a_eq_zero, comp_C_mul_X_eq_zero_iff, degree_quadratic, evalEval_X, monic_X_pow_sub_C, leadingCoeff_linear, rootMultiplicity_eq_natFind_of_ne_zero, isMonicOfDegree_two_iff, ascPochhammer_mul, C_mul_X_pow_eq_monomial, nextCoeff_X_add_C, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, eq_X_add_C_of_degree_le_one, cyclotomic'_one, isUnit_iff', logMahlerMeasure_X_sub_C, MvPolynomial.optionEquivLeft_X_none, trailingDegree_C_mul_X_pow, Monic.quotient_isIntegralElem, X_pow_sub_one_eq_prod, prod_multiset_X_sub_C_dvd, degree_cubic_lt, AdjoinRoot.mul_div_root_cancel, eq_X_add_C_of_natDegree_le_one, minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow, Cubic.of_b_eq_zero, natTrailingDegree_mul_X_pow, derivative_X_add_C, hermite_succ, descPochhammer_succ_right, Chebyshev.U_sub_one, Real.fibRec_charPoly_eq, Matrix.charpoly_zero, hermite_eq_iterate, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial, support_binomial', cyclotomic_eq_prod_X_sub_primitiveRoots, X_add_C_scaleRoots, Splits.comp_X_sub_C, aevalTower_X, transcendental_X, natDegree_C_mul_X, coeff_mul_X_sub_C, gal_X_pow_sub_one_isSolvable, natDegree_X_add_C, aeval_X_left, Chebyshev.U_one, degreeLT.addLinearEquiv_apply_snd, natSepDegree_C_mul_X_sub_C_pow, X_sub_C_mul_divByMonic_eq_sub_modByMonic, IsNilpotent.charpoly_eq_X_pow_finrank, roots_C_mul_X_sub_C_of_IsUnit, PowerSeries.trunc_X_of, derivative_X_pow_succ, degree_X_pow_le, bernsteinPolynomial.flip', natSepDegree_X, monic_X_add_C, logMahlerMeasure_X_add_C, toContinuousMap_X_eq_id, WeierstrassCurve.Affine.addPolynomial_slope, rootMultiplicity_eq_nat_find_of_nonzero, roots_quadratic_eq_pair_iff_of_ne_zero, derivative_X_sub_C_pow, IsMonicOfDegree.exists_natDegree_lt, eraseLead_C_mul_X, ker_constantCoeff, X_pow_sub_C_irreducible_iff_of_prime_pow, Lagrange.basis_eq_prod_sub_inv_mul_nodal_div, IsAdjoinRoot.map_X, Monic.eq_X_pow_iff_natTrailingDegree_eq_natDegree, polynomialFunctions.starClosure_eq_adjoin_X, IsRoot.mul_div_eq, sum_C_mul_X_pow_eq, LinearMap.pow_eq_aeval_mod_charpoly, PowerSeries.normalized_count_X_eq_of_coe, Module.AEval'.X_pow_smul_of, as_sum_support_C_mul_X_pow, toFinsupp_X_pow, Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T, degree_quadratic_le, eq_quadratic_of_degree_le_two, WeierstrassCurve.Ο†_one, reflect_one, content_X_mul, MulSemiringAction.charpoly_eq_prod_smul, card_support_eq, reflect_monomial, leadingCoeff_pow_X_add_C, coeff_mul_X, degree_X_le, X_pow_sub_X_sub_one_irreducible, roots_C_mul_X_add_C, LinearMap.charpoly_eq_X_pow_iff, leadingCoeff_X_pow_sub_C, LaurentPolynomial.mk'_eq, separable_X, Bivariate.equivMvPolynomial_symm_X_0, minpoly.eq_X_sub_C_of_algebraMap_inj, taylor_apply, WeierstrassCurve.Affine.C_addPolynomial_slope, iterate_derivative_comp_one_sub_X, Splits.eq_prod_roots, div_wf_lemma, eq_X_add_C_of_degree_eq_one, prod_cyclotomic'_eq_X_pow_sub_one, mahlerMeasure_C_mul_X_add_C, Splits.X, evalβ‚‚_C_X, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, IsCyclotomicExtension.isSplittingField_X_pow_sub_one, X_mul_divX_add, card_support_binomial, separable_C_mul_X_pow_add_C_mul_X_add_C', IsPrimitiveRoot.minpoly_sub_one_eq_cyclotomic_comp, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, Splits.comp_X_add_C, separable_X_pow_sub_C', IsCyclotomicExtension.splits_X_pow_sub_one, opRingEquiv_op_X, coe_X, Chebyshev.S_sub_one, Splits.eq_X_sub_C_of_single_root, coeff_det_X_add_C_card, bernsteinPolynomial.flip, quotientSpanXSubCAlgEquiv_mk, map_X, cyclotomic_prime_pow_eq_geom_sum, smeval_X_pow_mul, aeval_X_left_eq_map, Lagrange.X_sub_C_dvd_nodal, smeval_X, roots_X_sub_C, mkDerivationEquiv_symm_apply, natDegree_quadratic_le, Bivariate.swap_Y, rootSet_C_mul_X_pow, monomial_mul_X, iterate_derivative_X_pow_eq_natCast_mul, le_rootMultiplicity_iff, smul_X, coeff_X_one, Cubic.of_b_eq_zero', WeierstrassCurve.Affine.derivative_addPolynomial_slope, support_C_mul_X_pow', rootMultiplicity_mul_X_sub_C_pow, RatFunc.algebraMap_X, degreeLT.addLinearEquiv_apply, support_X, reflect_one_X, card_support_eq', eval_unique, Finset.prod_X_add_C_coeff, Matrix.charpoly_one, divX_mul_X_add, Subfield.roots_X_pow_char_sub_X_bot, natSepDegree_X_pow_char_pow_sub_C, LaurentPolynomial.algebraMap_X_pow, homogenize_X_pow, Matrix.det_one_add_X_smul, FiniteField.isSplittingField_of_nat_card_eq, coeff_X_of_ne_one, Module.AEval.X_pow_smul_of, degree_X_pow_sub_C, Chebyshev.T_eq, descPochhammer_eq_ascPochhammer, leadingCoeff_X, roots_X, Irreducible.natSepDegree_eq_one_iff_of_monic, natDegree_X_pow_add_C, Chebyshev.C_eq, mahlerMeasure_X_add_C, taylor_X_pow, reverse_X_pow_mul, comp_C_mul_X_coeff, cyclotomic_prime_pow_mul_X_pow_sub_one, coeff_X_zero, resultant_X_sub_C_pow_left, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, bernsteinPolynomial.variance, toLaurent_X_pow, derivative_C_mul_X, Bivariate.swap_X, eval_iterate_derivative_rootMultiplicity, iterate_derivative_derivative_mul_X, Chebyshev.add_one_mul_self_mul_T_eq_poly_in_T, bernsteinPolynomial.sum_smul, Splits.X_add_C, bernoulli_eq_sub_sum, descPochhammer_succ_left, logMahlerMeasure_X, natTrailingDegree_X_le, comp_neg_X_leadingCoeff_eq, degree_C_mul_X_pow_le, separable_prod_X_sub_C_iff', le_trailingDegree_C_mul_X_pow, algEquivAevalNegX_symm_apply, descPochhammer_mul, AdjoinRoot.root_isInv, FiniteField.splits_X_pow_nat_card_sub_X, eq_prod_roots_of_splits_id, natDegree_X_sub_C, Bivariate.equivMvPolynomial_symm_X_1, iterate_derivative_X_pow_eq_smul, Matrix.matPolyEquiv_charmatrix, card_support_eq_three, Chebyshev.U_eq_X_mul_U_add_T, resultant_X_sub_C_pow_right, X_sub_C_dvd_sub_C_eval, degreeLT.addLinearEquiv_apply', WeierstrassCurve.Affine.Y_sub_polynomialY, prime_X_sub_C, mul_comp_neg_X, Matrix.charmatrix_natCast, hilbertPoly_X_pow_succ, Lagrange.iterate_derivative_interpolate, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, roots_X_pow_char_sub_C_pow, RatFunc.num_X, leadingCoeff_mul_X, iterate_derivative_eq_sum, quadratic_dvd_of_aeval_eq_zero_im_ne_zero, algEquivAevalXAddC_symm_apply, nextCoeff_X_sub_C, natDegree_C_mul_X_pow, C_mul_X_pow_eq_self, leadingCoeff_X_pow, degree_X_sub_C_le, smeval_X_mul, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, degree_C_mul_X_le, mul_X_pow_comp, reverse_mul_X, cyclotomic.dvd_X_pow_sub_one, eraseLead_C_mul_X_pow, Monic.natSepDegree_eq_one_iff, X_pow_sub_C_irreducible_of_prime, roots_multiset_prod_X_sub_C, bernoulli_comp_one_add_X, X_pow_dvd_iff, Matrix.charpoly_fin_two, separable_prod_X_sub_C_iff, dickson_add_two, comp_X, exists_eq_pow_rootMultiplicity_mul_and_not_dvd, Monic.eq_X_add_C, expand_X, WeierstrassCurve.Ξ¦_ofNat, eval_C_X_evalβ‚‚_map_C_X, eraseLead_X, Chebyshev.C_sub_one, card_roots_X_pow_sub_C, reverse_X_mul, X_pow_sub_one_separable_iff, leadingCoeff_C_mul_X_pow, Differential.mapCoeffs_X, WeierstrassCurve.Ξ¦_three, not_isUnit_X_add_C, Chebyshev.U_add_two, degree_cubic, LinearMap.isNilpotent_iff_charpoly, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, dickson_one_one_charP, degree_X_pow, resultant_X_add_C_left, gal_X_sub_C_isSolvable, hilbertPoly_mul_one_sub_succ, Bivariate.equivMvPolynomial_X, Module.AEval.of_symm_X_smul, FiniteField.isSplittingField_of_card_eq, IsMonicOfDegree.aeval_add, cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt, natDegree_multiset_prod_X_sub_C_eq_card, dickson_one_one_zmod_p, Splits.C_mul_X_pow, exists_eq_X_add_C_of_natDegree_le_one, Matrix.charpoly_coeff_eq_prod_coeff_of_le, opRingEquiv_symm_C_mul_X_pow, WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq, iterate_derivative_prod_X_sub_C, commute_X, monic_geom_sum_X, signVariations_eraseLead_mul_X_sub_C, X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, mahlerMeasure_X_sub_C, minpoly.add_algebraMap, degreeLT.addLinearEquiv_symm_apply, MulSemiringAction.charpoly_eq, isMonicOfDegree_one_iff, root_X_pow_sub_C_pow, natTrailingDegree_X, bernsteinPolynomial.sum_mul_smul, natDegree_X_pow_mul, WeierstrassCurve.Ξ¦_four, MvPolynomial.finSuccEquiv_eq, eval_mul_X_pow, Chebyshev.C_add_one, factorial_mul_shiftedLegendre_eq, Chebyshev.one_sub_X_sq_mul_derivative_derivative_T_eq_poly_in_T, natDegree_X_pow_le, aroots_quadratic_eq_pair_iff_of_ne_zero, sumIDeriv_X, coeff_X_pow_self, dvd_C_mul_X_sub_one_pow_add_one, Bivariate.equivMvPolynomial_C_X, isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C, PolyEquivTensor.toFunBilinear_apply_apply, ofMultiset_apply, Cubic.prod_X_sub_C_eq, toFinsupp_X, algHom_ext_iff, Chebyshev.T_neg_two, rootMultiplicity_eq_multiplicity, X_mul, Module.AEval.X_smul_of, multiset_prod_X_sub_C_nextCoeff, Chebyshev.S_two, Lagrange.nodal_eq_mul_nodal_erase, natDegree_X_pow, divX_C_mul_X_pow, MvPolynomial.prod_X_add_C_coeff, X_pow_mul_monomial, mem_closure_X_union_C, reverse_add_C, AlgebraicClosure.Monics.map_eq_prod, degree_X, cyclotomic_one, Chebyshev.C_neg_one, coeff_X_mul_zero, mkDerivation_X, dickson_one_one_eq_chebyshev_T, FiniteField.X_pow_card_sub_X_natDegree_eq, isRegular_X_pow, prod_cyclotomic_eq_geom_sum, derivation_ext_iff, not_isUnit_X_sub_C, FiniteField.splits_X_pow_card_sub_X, card_support_eq_two, chebyshev_T_eq_dickson_one_one, reflect_C_mul_X_pow, card_support_eq_one, PolyEquivTensor.invFun_monomial, coe_expand, aroots_C_mul_X_pow, Matrix.charpoly_sub_diagonal_degree_lt, leadingCoeff_C_mul_X, degreeLT.addLinearEquiv_symm_apply', Splits.X_sub_C, iterate_derivative_mul_X_pow, IsAdjoinRootMonic.modByMonicHom_root_pow, C_leadingCoeff_mul_prod_multiset_X_sub_C, minpoly.eq_X_sub_C', Monic.comp_X_add_C, StandardEtalePresentation.toPresentation_Οƒ', cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, coeff_X_add_one_pow, mul_X_add_natCast_comp, eq_X_sub_C_of_splits_of_single_root, content_X, card_support_C_mul_X_pow_le_one, monomial_mul_X_pow, support_C_mul_X_pow, MvPolynomial.prod_C_add_X_eq_sum_esymm, modByMonic_X_sub_C_eq_C_eval, denomsClearable_C_mul_X_pow, binomial_eq_binomial, iterate_derivative_X_pow_eq_C_mul, Matrix.charpoly_vecMulVec, Chebyshev.T_one, derivative_X_pow, MvPolynomial.optionEquivRight_apply, MvPolynomial.finSuccEquiv_apply, X_dvd_iff, X_mul_monomial, evalβ‚‚_X, Splits.eq_prod_roots_of_monic, AdjoinRoot.mk_X, isNilpotent_C_mul_pow_X_of_isNilpotent, leadingCoeff_X_sub_C, WeierstrassCurve.Ξ¦_two, Chebyshev.C_comp_two_mul_X, KaehlerDifferential.polynomial_D_apply, evalβ‚‚_X_mul, X_pow_mem_lifts, taylor_monomial, IsPurelyInseparable.minpoly_eq_X_pow_sub_C, LinearMap.charpoly_one, natDegree_X_sub_C_le, splits_X_sub_C_mul_iff, toMvPolynomial_X, FiniteField.minpoly_frobeniusAlgHom, dickson_of_two_le, Matrix.charmatrix_one, Matrix.coeff_det_one_add_X_smul_one, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eq_poly_in_T, Chebyshev.T_neg_one, Chebyshev.U_add_one, trinomial_def, X_sub_C_scaleRoots, polyEquivTensor_apply, X_pow_sub_X_sub_one_irreducible_rat, sum_taylor_eq, cyclotomic'_two, X_mem_nonzeroDivisors, RatFunc.liftRingHom_X, natDegree_linear_le, minpoly_algEquiv_toLinearMap, natDegree_det_X_add_C_le, eval_C_X_comp_evalβ‚‚_map_C_X, AdjoinRoot.algHom_subsingleton, mod_X_sub_C_eq_C_eval, minpoly.zero, Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T, minpoly.one, degree_comp_neg_X, geom_sum_X_comp_X_add_one_eq_sum, LinearMap.charpoly_sub_smul, minpoly.neg, natSepDegree_X_sub_C, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, aroots_X_pow, Chebyshev.T_sub_one, support_X_pow, spectralValue_X_sub_C, StandardEtalePair.aeval_X_g_mul_mk_X, roots_C_mul_X_sub_C, monomial_one_right_eq_X_pow, rootMultiplicity_le_iff, eraseLead_mul_eq_mul_eraseLead_of_nextCoeff_zero, natDegree_X_le, modByMonic_X, IsPurelyInseparable.minpoly_eq_X_sub_C_pow, X_pow_sub_C_irreducible_of_prime_pow, roots_quadratic_eq_pair_iff_of_ne_zero', PowerSeries.IsWeierstrassDivision.isWeierstrassFactorization, iterate_derivative_X_sub_pow_self, X_dvd_sub_C, degreeLT_eq_span_X_pow, eval_mul_X_sub_C, minpolyDiv_spec, isNilpotent_mul_X_iff, Monic.eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible, reflect_C, IsAdjoinRootMonic.modByMonicHom_root, dvd_comp_neg_X_iff, algEquivAevalNegX_apply, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, as_sum_range_C_mul_X_pow, degree_mul_X, derivative_C_mul_X_pow, signVariations_X_sub_C_mul_eraseLead_le, support_binomial, roots_X_pow_char_sub_C, dickson_two_one_eq_chebyshev_U, natTrailingDegree_X_pow, mul_X_comp, splits_X, bernoulli_one, StandardEtalePresentation.toPresentation_val, Differential.implicitDeriv_X, Chebyshev.U_sub_two, leadingCoeff_X_pow_sub_one, Chebyshev.C_eq_two_mul_T_comp_half_mul_X, FiniteField.X_pow_card_pow_sub_X_natDegree_eq, WeierstrassCurve.Ο†_four, rootMultiplicity_X_sub_C_self, splits_X_sub_C, algEquivCMulXAddC_symm_apply, Chebyshev.T_eq_half_mul_C_comp_two_mul_X, natDegree_cubic, irreducible_X, IsMonicOfDegree.aeval_sub, not_isUnit_X_pow_sub_one, toFinsupp_C_mul_X_pow, dickson_two, succ_signVariations_X_sub_C_mul_monomial, derivative_X_add_C_sq, cyclotomic_three, rootMultiplicity_X_sub_C, prime_X, Matrix.charpoly_mul_comm', IsLocalization.adjoin_inv, dvd_comp_X_sub_C_iff, pow_mul_divByMonic_rootMultiplicity_eq, Chebyshev.C_sub_two, algEquivAevalXAddC_apply, eval_mul_X, cauchyBound_X_add_C, degree_cubic_le, cyclotomic_comp_X_add_one_isEisensteinAt, leadingCoeff_X_pow_add_one, matPolyEquiv_symm_X, X_sub_C_mul_removeFactor, logMahlerMeasure_C_mul_X_add_C, not_isUnit_X, Cubic.eq_prod_three_roots, FiniteField.isSplittingField_sub, Multiset.prod_X_add_C_eq_sum_esymm, exists_prod_multiset_X_sub_C_mul, degree_linear_le, Matrix.charmatrix_apply, scaleRoots_zero, derivative_X_add_C_pow, cyclotomic_prime, mul_X_sub_intCast_comp, Chebyshev.T_sub_two, splits_iff_exists_multiset', toFinsupp_C_mul_X, Matrix.charmatrix_ofNat, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, dvd_iff_isRoot, Chebyshev.T_eq_X_mul_T_sub_pol_U, Multiset.prod_X_add_C_coeff', splits_X_pow, degree_linear_lt_degree_C_mul_X_sq, LinearMap.charpoly_zero, cauchyBound_X_sub_C, splits_of_exists_multiset, rootSet_X_pow, isNilpotent_pow_X_mul_C_of_isNilpotent, prod_X_sub_C_coeff_card_pred, degree_quadratic_lt_degree_C_mul_X_cb, Chebyshev.S_add_two, coeff_C_mul_X_pow, Chebyshev.C_add_two, WeierstrassCurve.Ο†_two, degree_C_mul_X, homogenize_X, MvPolynomial.finSuccEquiv_X_zero, comp_X_add_C_eq_zero_iff, resultant_X_sub_C_left, hasseDeriv_X, spectralValue_eq_zero_iff, toLaurent_X, toAddCircle_X_eq_fourier_one, LaurentPolynomial.isLocalization, coeff_mul_X_pow', Lagrange.nodal_subgroup_eq_X_pow_card_sub_one, Chebyshev.T_add_two, StandardEtalePresentation.toPresentation_relation, roots_X_pow, opRingEquiv_op_C_mul_X_pow, roots_X_add_C, hilbertPoly_mul_one_sub_pow_add, mul_star_dvd_of_aeval_eq_zero_im_ne_zero, Splits.comp_neg_X, residueFieldMapCAlgEquiv_symm_X, X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, separable_C_mul_X_pow_add_C_mul_X_add_C, Matrix.IsHermitian.charpoly_eq, taylor_X, multiset_prod_X_sub_C_coeff_card_pred, separable_X_sub_C, finiteMultiplicity_X_sub_C, MvPolynomial.optionEquivLeft_symm_X, leadingCoeff_X_add_C, degree_sum_fin_lt, ringHom_ext'_iff, irreducible_X_sub_C, Monic.as_sum, degreeLE_eq_span_X_pow, dickson_one, Cubic.C_mul_prod_X_sub_C_eq, X_pow_comp, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eq_poly_in_U, coeff_X, bernoulli_comp_one_sub_X, irreducible_C_mul_X_add_C, smul_X_eq_monomial, commute_X_pow, Chebyshev.C_two, resultant_X_pow_left, succ_signVariations_le_X_sub_C_mul, cauchyBound_X, cfc_eval_X, le_trailingDegree_X_pow, reverse_C_add, normUnit_X, natDegree_linear, autAdjoinRootXPowSubC_root, toLaurent_C_mul_X_pow, natDegree_X_mul, Matrix.charpoly_diagonal, degree_mul_X_pow, algHom_ext'_iff, natDegree_pow_X_add_C, Monic.natSepDegree_eq_one_iff_of_irreducible, IsUnitTrinomial.irreducible_aux1, coeff_X_mul, roots_C_mul_X_add_C_of_IsUnit, bernoulli_comp_neg_X, matPolyEquiv_eq_X_pow_sub_C, cyclotomic_eq_X_pow_sub_one_div, spectralValue_X_pow, coeff_divByMonic_X_sub_C, Matrix.derivative_det_one_add_X_smul_aux, degree_C_mul_X_pow, zero_notMem_multiset_map_X_add_C, Matrix.charpoly_ofNat, leadingCoeff_divByMonic_X_sub_C, pairwise_coprime_X_sub_C, derivative_X_sub_C, Chebyshev.T_eq_U_sub_X_mul_U, comp_neg_X_comp_neg_X, natSepDegree_X_pow, Ideal.evalβ‚‚_C_mk_eq_zero, WeierstrassCurve.Ξ¦_one, isMonicOfDegree_X_pow, minpoly.eq_X_sub_C, cyclotomic_prime_mul_X_sub_one, ascPochhammer_succ_left, Chebyshev.C_neg_two, Matrix.charmatrix_diagonal, Lagrange.nodal_erase_eq_nodal_div, monic_prod_X_sub_C, natDegree_cubic_le, adjoin_X, natDegree_quadratic, natDegree_C_mul_X_pow_le, IsTranscendenceBasis.polynomial, Chebyshev.S_one, degree_linear, derivative_apply, PowerSeries.trunc_X, aeval_X, self_sub_C_mul_X_pow, le_trailingDegree_X, isCoprime_X_sub_C_of_isUnit_sub, irreducible_X_pow_sub_C_of_root_adjoin_eq_top, isMonicOfDegree_X, neg_one_pow_mul_shiftedLegendre_comp_one_sub_X_eq, content_X_pow, monic_X, opRingEquiv_symm_X, trailingDegree_X_pow, Chebyshev.S_sub_two, trailingDegree_X, galois_poly_separable, coeff_X_add_C_pow, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, degree_linear_lt, ascPochhammer_succ_right, X_eq_normalize, Chebyshev.add_one_mul_T_eq_poly_in_U, support_X_empty, coeff_det_X_add_C_zero, derivative_C_mul_X_sq, Lagrange.nodal_eq, card_support_trinomial, X_pow_sub_C_irreducible_iff_of_prime, derivativeFinsupp_X, roots_X_pow_char_pow_sub_C, evalβ‚‚_algebraMap_X, Matrix.charpoly_of_card_eq_two, eval_multiset_prod_X_sub_C_derivative, smeval_mul_X_pow, X_sub_C_pow_dvd_iff, Matrix.charmatrix_zero, isCyclic_tfae, roots_prod_X_sub_C, X_pow_mul_C, gal_X_isSolvable, Multiset.prod_X_sub_C_coeff, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, degree_X_add_C, eval_geom_sum, isMonicOfDegree_sub_add_two, hermite_one, cyclotomic'_eq_X_pow_sub_one_div, X_pow_mul, Monic.neg_one_pow_natDegree_mul_comp_neg_X, GaloisField.splits_zmod_X_pow_sub_X, monic_X_pow_sub, Monic.eq_X_sub_C_pow_of_natSepDegree_eq_one_of_splits, Matrix.isNilpotent_charpoly_sub_pow_of_isNilpotent
coeff πŸ“–CompOp
449 mathmath: units_coeff_zero_smul, coeff_update_ne, WeierstrassCurve.coeff_Ξ¨β‚‚Sq, MonicDegreeEq.monic, eq_C_of_derivative_eq_zero, coeff_add_eq_left_of_lt, mem_image_comap_C_basicOpen, coeff_X_pow_mul', coeff_derivative, coeff_natTrailingDegree_eq_zero, natDegree_le_iff_coeff_eq_zero, MvPolynomial.mem_image_support_coeff_finSuccEquiv, resultant_one_right, coeff_one, mem_reesAlgebra_iff_support, WeierstrassCurve.coeff_preΞ¨', Mathlib.Tactic.ComputeDegree.coeff_intCast_ite, IsUnitTrinomial.coeff_isUnit, Matrix.coeff_charpoly_mem_ideal_pow, PowerSeries.coeff_trunc, exists_eq_supNorm, MonicDegreeEq.degree, coeff_mul_natTrailingDegree_add_natTrailingDegree, resultant_add_left_deg, Ideal.coeff_zero_mem_comap_of_root_mem_of_eval_mem, Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly, IsMonicOfDegree.coeff_eq, coeff_zero_of_isScalarTower, coeff_one_add_X_pow, coeff_map, eq_C_of_degree_eq_zero, coeff_pow_eq_ite_of_natDegree_le_of_le, nextCoeff_of_natDegree_pos, coeff_sub_eq_left_of_lt, isMonicOfDegree_iff, Cubic.coeff_eq_b, coeff_shiftedLegendre, coeff_zero_eq_eval_zero, iterate_derivative_eq_factorial_smul_sum, MvPolynomial.totalDegree_coeff_finSuccEquiv_add_le, resultant_zero_right, Multiset.prod_X_add_C_coeff, Cubic.coeff_eq_c, coeff_natDegree, coeff_hermite_succ_zero, coeff_hermite_succ_succ, coeff_taylor_natDegree, coeff_divByMonic_X_sub_C_rec, roots_degree_eq_one, coeff_natTrailingDegree_pred_eq_zero, Matrix.trace_eq_neg_charpoly_coeff, content_eq_gcd_range_of_lt, coeff_minpolyDiv_sub_pow_mem_span, coeff_mul_X_zero, minpoly.coeff_zero_eq_zero, UniversalCoprimeFactorizationRing.homEquiv_comp_snd, le_gaussNorm, as_sum_range_C_mul_X_pow', coeff_eq_zero_of_lt_natTrailingDegree, MvPolynomial.degreeOf_coeff_finSuccEquiv, natTrailingDegree_ne_zero, update_eq_add_sub_coeff, logMahlerMeasure_of_degree_eq_one, Lagrange.coeff_eq_sum, integralNormalization_coeff_natDegree, constantCoeff_apply, trinomial_trailing_coeff', coeff_mul_X_pow, coe_def, coeff_ofFinsupp, coeff_mul_ofNat, resultant_X_pow_right, ext_iff, finite_range_coeff, coeff_C_ne_zero, coeff_list_sum_map, disc_of_degree_eq_two, coeff_erase, IsAdjoinRootMonic.basis_repr, LinearMap.polyCharpoly_coeff_isHomogeneous, IsSepClosed.roots_eq_zero_iff, Submodule.IsPrincipal.contentIdeal_generator_dvd_coeff, WeierstrassCurve.coeff_preΞ¨, prod_roots_eq_coeff_zero_of_monic_of_splits, coeff_X_pow_mul, trinomial_leading_coeff', coeff_C_mul_X, Cubic.coeff_eq_zero, Chebyshev.coeff_eq_iff_of_forall_abs_le_one, coeff_X_pow, coeff_isUnit_isNilpotent_of_isUnit, isUnitTrinomial_iff, eraseLead_coeff, coeff_mapAlgHom_apply, coeff_le_of_roots_le, exists_eq_gaussNorm, matPolyEquiv_symm_apply_coeff, coeff_X_sub_C_mul, UniversalFactorizationRing.jacobian_resentation, coeff_zero_eq_zero_of_zero_isRoot, PowerBasis.leftMulMatrix, eq_X_add_C_of_degree_le_one, coeff_injective, Splits.coeff_zero_eq_prod_roots_of_monic, eq_X_add_C_of_natDegree_le_one, coeff_zero_eq_leadingCoeff_mul_prod_roots_of_splits, coeff_update_apply, IsLocalization.integerNormalization_coeff, MonicDegreeEq.freeMonic_coe, span_coeff_minpolyDiv, Cubic.coeff_eq_d, resultant_C_right, coeff_mul_X_sub_C, disc_of_degree_eq_three, exists_monic_aeval_eq_zero_forall_mem_pow_of_isIntegral, MvPolynomial.finSuccEquiv_coeff_coeff, UniversalCoprimeFactorizationRing.homEquiv_comp_fst, eq_C_of_natDegree_le_zero, Differential.coeff_mapCoeffs, coeff_C_mul, coeff_monomial_of_ne, Matrix.charpoly.univ_coeff_evalβ‚‚Hom, hilbertPoly_succ, constantCoeff_coe, ext_iff_natDegree_le, as_sum_support_C_mul_X_pow, eq_quadratic_of_degree_le_two, le_supNorm, divX_eq_zero_iff, MulSemiringAction.smul_coeff_charpoly, coeff_map_eq_comp, coeff_mul_X, coeff_zero_prod, coeff_mul, coeff_sub_eq_neg_right_of_lt, coeff_scaleRoots, eq_X_add_C_of_degree_eq_one, coeff_mem_coeffs, natCast_coeff_zero, eq_C_of_natDegree_eq_zero, mem_span_C_coeff, X_mul_divX_add, MonicDegreeEq.coeff_of_ge, MvPolynomial.optionEquivLeft_coeff_coeff, coeff_pow_mul_natDegree, as_sum_range, coeff_natCast_ite, coeff_det_X_add_C_card, coeff_ofSubring, coeff_minpolyDiv_mem_adjoin, nextCoeff_eq_zero, WeierstrassCurve.coeff_Ξ¦, coeff_X_one, integralNormalization_coeff_degree, ite_le_natDegree_coeff, coeff_natCast_mul, IsIntegral.coeff, Finset.prod_X_add_C_coeff, divX_mul_X_add, coeff_add_eq_right_of_lt, comp_eq_zero_iff, coeff_monomial, UniversalFactorizationRing.monicDegreeEq_coe, coeff_hermite_explicit, coeff_X_of_ne_one, MvPolynomial.support_coeff_finSuccEquiv, taylor_coeff_zero, mul_eq_sum_sum, LinearMap.polyCharpolyAux_eval_eq_toMatrix_charpoly_coeff, isUnit_iff_coeff_isUnit_isNilpotent, coeff_hermite_self, coeff_pow_of_natDegree_le, sum_eq_of_subset, eq_C_coeff_zero_iff_natDegree_eq_zero, comp_C_mul_X_coeff, natDegree_add_coeff_mul, coeff_X_zero, coeff_reflect, coeff_add, isIntegral_coeff_of_factors, lcoeff_apply, coeff_toSubring, hasseDeriv_coeff, coeff_natTrailingDegree_eq_zero_of_trailingDegree_lt, coeff_mul_C, Matrix.coeff_charpolyRev_eq_neg_trace, coeff_natDegree_succ_eq_zero, coeff_C, cyclotomic_coeff_zero, coeff_hermite_of_even_add, resultant_succ_left_deg, coeff_monomial_zero_mul, sylvester_zero_left_deg, finset_sum_coeff, MvPolynomial.mem_support_coeff_optionEquivLeft, coeff_sum, iterate_derivative_eq_sum, PolynomialModule.smul_apply, Ideal.exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff, prodXSubSMul.coeff, coeff_mul_monomial_zero, coeff_mem_pow_of_mem_adjoin_C_mul_X, coeff_mul_add_eq_of_natDegree_le, X_pow_dvd_iff, IsRoot.dvd_coeff_zero, MvPolynomial.totalDegree_coeff_optionEquivLeft_add_le, resultant_C_left, Monic.eq_X_add_C, eq_C_of_degree_le_zero, notMem_support_iff, resultant_zero_left, PolynomialModule.smul_single_apply, MvPolynomial.optionEquivLeft_coeff_some_coeff_none, coeff_contract, supNorm_def', IsLocalization.scaleRoots_commonDenom_mem_lifts, coeff_scaleRoots_natDegree, coeff_ofNat_succ, isEisensteinAt_iff, Cubic.equiv_symm_apply_b, coeff_monomial_same, AlgebraicClosure.toSplittingField_coeff, C_dvd_iff_dvd_coeff, Matrix.charpoly.univ_coeff_isHomogeneous, trinomial_middle_coeff, Matrix.charpoly_coeff_eq_prod_coeff_of_le, num_dvd_of_is_root, coeff_smul, coeff_C_succ, sum_sq_norm_coeff_eq_circleAverage, MonicDegreeEq.map_coe, LinearMap.det_eq_sign_charpoly_coeff, coeff_ofNat_zero, WeierstrassCurve.coeff_preΞ¨β‚„, exists_leadingCoeff_pow_smul_mem_radical_conductor, as_sum_range', isNilpotent_iff, coeff_divModByMonicAux_mem_span_pow_mul_span, MvPolynomial.image_support_finSuccEquiv, Ideal.mem_map_C_iff, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_coeff_natDegree, coeff_X_pow_self, evalβ‚‚_at_zero, lifts_iff_coeff_lifts, coeff_iterate_derivative, coeff_eq_zero_of_lt_trailingDegree, MvPolynomial.prod_X_add_C_coeff, coeff_update_same, coeff_expand_mul, coeff_mul_intCast, LinearMap.polyCharpolyAux_coeff_eval, eval_eq_sum_range', smeval_at_zero, coeff_X_mul_zero, image_comap_C_basicOpen, coeff_zero_eq_aeval_zero, trailingDegree_ne_zero, coeff_sub, coeff_zero_multiset_prod, NumberField.Embeddings.coeff_bdd_of_norm_le, fourierCoeff_toAddCircle_natCast, spectralNorm.spectralNorm_eq_norm_coeff_zero_rpow, coeff_mem_radical_span_coeff_of_dvd, resultant_add_right_deg, coeff_inv_units, taylor_coeff_one, isNilpotent_tensor_residueField_iff, mem_map_range, Cubic.equiv_symm_apply_c, coeff_minpolyDiv, coeff_X_add_one_pow, matPolyEquiv_coeff_apply, coeff_opRingEquiv, sum_def, exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map, coeff_expand, X_dvd_iff, coeff_one_reverse, coeff_restriction, degree_le_iff_coeff_zero, PolyEquivTensor.toFunLinear_mul_tmul_mul_aux_2, dvd_coeff_zero_of_aeval_eq_prime_smul_of_minpoly_isEisensteinAt, content_dvd_coeff, toFinsupp_apply, integralNormalization_coeff_mul_leadingCoeff_pow, coeff_ofNat_mul, Matrix.coeff_det_one_add_X_smul_one, trailingCoeff_eq_coeff_zero, zero_isRoot_iff_coeff_zero_eq_zero, aeval_eq_sum_range, sum_over_range, MonicDegreeEq.mk_coe, coeff_list_sum, sum_fin, degree_lt_iff_coeff_zero, mahlerMeasure_of_degree_eq_one, coeff_hermite_of_odd_add, IsEisensteinAt.mem, Matrix.matrixOfPolynomials_blockTriangular, MonicDegreeEq.natDegree, coeff_toSubring', degree_le_zero_iff, coeff_eq_zero_of_natDegree_lt, integralNormalization_coeff_degree_ne, isIntegral_iff_isIntegral_coeff, Splits.coeff_zero_eq_leadingCoeff_mul_prod_roots, Monic.coeff_natDegree, Algebra.mem_ideal_map_adjoin, coeff_bdd_of_roots_le, eraseLead_coeff_natDegree, Ideal.exists_coeff_ne_zero_mem_comap_of_root_mem, coeff_zero, coeff_mul_natCast, X_dvd_sub_C, Matrix.det_matrixOfPolynomials, discr_of_degree_eq_two, coeff_neg, sum_over_range', coeff_homogenize, Derivation.mapCoeffs_apply, as_sum_range_C_mul_X_pow, mem_reesAlgebra_iff, MvPolynomial.mem_support_coeff_finSuccEquiv, exists_integer_of_is_root_of_monic, PolyEquivTensor.toFunLinear_mul_tmul_mul_aux_1, intCast_coeff_zero, sum_modByMonic_coeff, coeff_eq_esymm_roots_of_card, eval_eq_sum_range, isWeaklyEisensteinAt_iff, coeff_hermite, isGreatest_supNorm, aeval_eq_sum_range', coeff_update, erase_same, taylor_coeff, spectralValue_le_one_iff, UniversalFactorizationRing.factor₁_mul_factorβ‚‚, integralNormalization_coeff, IsAlgClosed.roots_eq_zero_iff, coeff_eq_esymm_roots_of_splits, UniversalCoprimeFactorizationRing.factor₁_mul_factorβ‚‚, Monic.not_irreducible_iff_exists_add_mul_eq_coeff, AdjoinRoot.powerBasisAux'_repr_apply_to_fun, as_sum_support, coeff_expand_mul', coeff_mirror, LinearMap.polyCharpoly_coeff_eq_zero_iff_of_basis, erase_ne, coeff_divX, coeff_inj, coeff_zero_eq_aeval_zero', coeff_hermite_of_lt, mem_coeffs_iff, evalβ‚‚_eq_sum_range, mul_coeff_zero, WeierstrassCurve.coeff_Ψ₃, Cubic.equiv_symm_apply_d, coeff_C_zero, coeff_restriction', isUnitTrinomial_iff', ext_iff_degree_le, IsIntegral.coeff_of_isFractionRing, Multiset.prod_X_add_C_coeff', IsLocalization.integerNormalization_spec, Module.Basis.traceDual_powerBasis_eq, prod_X_sub_C_coeff_card_pred, resultant_one_left, coeff_mul_monomial, coeff_C_mul_X_pow, Cubic.equiv_symm_apply_a, isIntegral_coeff_of_dvd, coeff_zero_reverse, Chebyshev.coeff_le_of_forall_abs_le_one, coeff_bernoulli, supNorm_eq_iSup, ofFn_coeff_eq_val_of_lt, coeff_mul_X_pow', coeff_mul_mirror, MvPolynomial.coeff_eval_eq_eval_coeff, evalβ‚‚_eq_sum_range', eraseLead_coeff_of_ne, Ideal.coeff_zero_mem_comap_of_root_mem, multiset_prod_X_sub_C_coeff_card_pred, IsIntegral.coeff_of_exists_smul_mem_lifts, exists_C_coeff_notMem, IsAlmostIntegral.coeff, Monic.as_sum, matPolyEquiv_coeff_apply_aux_2, norm_coeff_le_choose_mul_mahlerMeasure, WeierstrassCurve.coeff_Ξ¨Sq, spectralValueTerms_of_lt_natDegree, coeff_X, natDegree_lt_coeff_mul, coeff_reverse, resultant_X_pow_left, coeff_monomial_succ, integralNormalization_coeff_ne_natDegree, coeff_intCast_mul, Ideal.exists_coeff_ne_zero_mem_comap_of_non_zero_divisor_root_mem, coeff_comp_degree_mul_degree, Cubic.coeff_eq_a, coeff_prod_of_natDegree_le, coeff_X_mul, coeff_divByMonic_X_sub_C, ofFn_coeff_eq_zero_of_ge, MvPolynomial.IsHomogeneous.finSuccEquiv_coeff_isHomogeneous, fourierCoeff_toAddCircle, coeff_multiset_prod_of_natDegree_le, IsWeaklyEisensteinAt.mem, coeff_one_zero, coeff_mem_contentIdeal, Matrix.eval_matrixOfPolynomials_eq_vandermonde_mul_matrixOfPolynomials, coeff_mul_degree_add_degree, mul_coeff_one, content_eq_gcd_range_succ, UniversalCoprimeFactorizationRing.isCoprime_factor₁_factorβ‚‚, Matrix.charpoly.univ_coeff_card, Matrix.det_eq_sign_charpoly_coeff, coeff_coe, discr_of_degree_eq_three, Module.End.eigenspace_aeval_polynomial_degree_1, inv_eq_of_aeval_divX_ne_zero, exists_monic_aeval_eq_zero_forall_mem_of_mem_map, resultant_zero_left_deg, mem_map_rangeS, degreeLT.basis_repr, resultant_zero_right_deg, Valuation.coeff_zero_minpoly, IsEisensteinAt.notMem, coeff_preHilbertPoly_self, MvPolynomial.IsHomogeneous.coeff_isHomogeneous_of_optionEquivLeft_symm, IsEisensteinAt.coeff_mem, MvPolynomial.totalDegree_coeff_optionEquivLeft_le, coeff_monomial_mul, LinearMap.polyCharpoly_coeff_eval, coeff_X_add_C_pow, coeff_natDegree_eq_zero_of_degree_lt, coeff_list_prod_of_natDegree_le, coeff_det_X_add_C_zero, coeff_eq_zero_of_degree_lt, inv_eq_of_root_of_coeff_zero_ne_zero, LinearMap.exists_monic_and_coeff_mem_pow_and_aeval_eq_zero_of_range_le_smul, coeff_zero_eq_prod_roots_of_monic_of_splits, Multiset.prod_X_sub_C_coeff, coeff_freeMonic, monomial_add_erase, MvPolynomial.coe_mapEquivMonic_comp, Mathlib.Tactic.ComputeDegree.coeff_smul
coeffs πŸ“–CompOp
22 mathmath: monic_restriction, coeffs_monomial, evalβ‚‚_restriction, contentIdeal_def, restriction_one, degree_restriction, coeffs_empty_iff, restriction_zero, coeff_mem_coeffs, map_restriction, coeffs_one, coeff_restriction, coeffs_nonempty_iff, natDegree_restriction, IntermediateField.adjoin_minpoly_coeff_of_exists_primitive_element, mem_coeffs_iff, coeff_restriction', support_restriction, coeffs_zero, coeffs_ofSubring, lifts_iff_coeffs_subset_range, toSubring_one
commRing πŸ“–CompOp
423 mathmath: PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_apply, Lagrange.interpolate_one, RatFunc.mk_def_of_ne, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_symm_apply, RatFunc.ofFractionRing_mk', Lagrange.interpolate_eq_of_values_eq_on, RatFunc.mk_coe_def, splits_iff_exists_multiset, RatFunc.toFractionRing_injective, one_add_X_pow_sub_X_pow, eq_cyclotomic_iff, Monic.free_quotient, StandardEtalePair.inv_aeval_X_g, Lagrange.eval_interpolate_not_at_node', Differential.implicitDeriv_C, WeierstrassCurve.Affine.CoordinateRing.smul, X_pow_sub_C_eq_prod, IsAdjoinRoot.mem_ker_map, isJacobsonRing_polynomial_iff_isJacobsonRing, isIntegral_coeff_prod, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_symm_mk, RatFunc.num_div_dvd, KaehlerDifferential.polynomialEquiv_symm, RatFunc.liftMonoidWithZeroHom_apply_ofFractionRing_mk, finrank_quotient_span_eq_natDegree_norm, prod_X_sub_C_nextCoeff, idealX_span, Multiset.prod_X_sub_X_eq_sum_esymm, Lagrange.derivative_nodal, IsPrimitiveRoot.minpoly_dvd_pow_mod, fiberEquivQuotient_tmul, WeierstrassCurve.Affine.CoordinateRing.basis_one, sum_bernoulli, eval_det_add_X_smul, RatFunc.smul_def, prod_multiset_X_sub_C_of_monic_of_roots_card_eq, dvd_iff_content_dvd_content_and_primPart_dvd_primPart, LaurentSeries.LaurentSeriesRingEquiv_def, monic_multisetProd_X_sub_C, PolynomialModule.aeval_equivPolynomial, leadingCoeff_det_X_one_add_C, quotientSpanXSubCAlgEquiv_symm_apply, sum_smul_minpolyDiv_eq_X_pow, RatFunc.denom_mul_dvd, Ideal.quotient_map_C_eq_zero, RatFunc.map_apply_ofFractionRing_mk, PowerBasis.quotientEquivQuotientMinpolyMap_apply, RatFunc.mk_smul, Lagrange.eval_interpolate_not_at_node, eq_prod_roots_of_splits, eq_prod_roots_of_monic_of_splits_id, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, KaehlerDifferential.polynomialEquiv_D, Lagrange.interpolate_eq_nodalWeight_mul_nodal_div_X_sub_C, abc, finrank_quotient_span_eq_natDegree', WeierstrassCurve.Affine.CoordinateRing.coe_basis, Lagrange.interpolate_eq_sum_interpolate_insert_sdiff, WeierstrassCurve.Affine.Point.toClass_zero, ConjRootClass.minpoly.map_eq_prod, RatFunc.liftOn_ofFractionRing_mk, exists_monic_irreducible_factor, FunctionField.ringOfIntegers.instIsIntegralClosureSubtypeMemSubalgebraPolynomial, Matrix.derivative_det_one_add_X_smul, monic_finprod_X_sub_C, natDegree_finset_prod_X_sub_C_eq_card, prod_cyclotomic_eq_X_pow_sub_one, instIsAlgebraicPolynomialOfNoZeroDivisors_1, AdjoinRoot.quotEquivQuotMap_symm_apply_mk, pow_rootMultiplicity_not_dvd, AdjoinRoot.evalEval_apply, instIsIntegralPolynomial, height_eq_height_add_one, Matrix.minpoly_dvd_charpoly, Lagrange.eq_interpolate_iff, Ideal.injective_quotient_le_comap_map, dvd_comp_X_add_C_iff, dvd_comp_C_mul_X_add_C_iff, valuation_of_mk, instIsPushoutFractionRingPolynomial_1, Matrix.det_one_add_smul, WeierstrassCurve.Affine.CoordinateRing.instIsScalarTowerPolynomial, Monic.quotient_isIntegral, IsAdjoinRootMonic.basis_repr, exists_finset_of_splits, Matrix.charpoly_of_upperTriangular, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, Lagrange.interpolate_eq_sum, KaehlerDifferential.polynomialEquiv_comp_D, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, RatFunc.mk_eq_localization_mk, factor_dvd_of_natDegree_ne_zero, AdjoinRoot.mk_eq_mk, PowerSeries.intValuation_eq_of_coe, RatFunc.mk_def, isAlt_wronskianBilin, Multiset.prod_X_sub_C_dvd_iff_le_roots, divRadical_dvd_derivative, leadingCoeff_mul_prod_normalizedFactors, RatFunc.mk_eq_div', RatFunc.ofFractionRing_div, Matrix.IsHermitian.charpoly_cfc_eq, X_pow_sub_one_dvd_prod_cyclotomic, prod_multiset_root_eq_finset_root, dvd_C_mul, RatFunc.toFractionRing_smul, WeierstrassCurve.Affine.CoordinateRing.mk_ψ, modByMonic_eq_zero_iff_quotient_eq_zero, comap_taylorEquiv_degreeLT, FunctionField.classNumber_eq_one_iff, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, Monic.quotient_isIntegralElem, X_pow_sub_one_eq_prod, prod_multiset_X_sub_C_dvd, RatFunc.ofFractionRing_one, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_neg_mul, minpoly.IsIntegrallyClosed.isIntegral_iff_leadingCoeff_dvd, cyclotomic_eq_prod_X_sub_primitiveRoots, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_add_eq, AdjoinRoot.mk_leftInverse, finrank_quotient_span_eq_natDegree, height_map_C, modByMonicHom_apply, minpoly.dvd_iff, RatFunc.smul_eq_C_mul, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, Differential.coeff_mapCoeffs, Lagrange.degree_interpolate_erase_lt, RatFunc.ofFractionRing_zero, hilbertPoly_succ, RatFunc.ofFractionRing_add, factor_dvd_of_degree_ne_zero, PowerSeries.normalized_count_X_eq_of_coe, RatFunc.num_dvd, MulSemiringAction.charpoly_eq_prod_smul, AdjoinRoot.mk_eq_zero, Lagrange.degree_interpolate_lt, exists_dvd_map_of_isAlgebraic, rank_polynomial_polynomial, AdjoinRoot.quotEquivQuotMap_apply, IsAdjoinRootMonic.modByMonicHom_map, Splits.eq_prod_roots, LinearMap.minpoly_dvd_charpoly, PowerSeries.IsWeierstrassDivisorAt.mod'_mk_eq_mod, FunctionField.ringOfIntegers.instIsDomainSubtypeMemSubalgebraPolynomial, prod_cyclotomic'_eq_X_pow_sub_one, not_quasiFiniteAt, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, gal_prod_isSolvable, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, RatFunc.num_inv_dvd, coeff_det_X_add_C_card, quotientSpanXSubCAlgEquiv_mk, cyclotomic_prime_pow_eq_geom_sum, Lagrange.X_sub_C_dvd_nodal, Irreducible.exists_dvd_monic_irreducible_of_isIntegral, separable_prod, le_rootMultiplicity_iff, RatFunc.ofFractionRing_comp_algebraMap, FunctionField.ringOfIntegers.instIsIntegrallyClosedSubtypeMemSubalgebraPolynomial, minpoly.ker_aeval_eq_span_minpoly, Lagrange.eq_interpolate, IsPrimitiveRoot.minpoly_dvd_expand, minpoly.isRadical, Matrix.det_one_add_X_smul, IsPrimitiveRoot.minpoly_dvd_mod_p, RatFunc.smul_eq_C_smul, RatFunc.valuation_eq_LaurentSeries_valuation, Differential.mapCoeffs_monomial, PolynomialModule.comp_apply, Differential.mapCoeffs_C, bernsteinPolynomial.variance, RatFunc.instIsScalarTowerOfIsDomainOfPolynomial, WeierstrassCurve.Affine.CoordinateRing.map_mk, bernsteinPolynomial.sum_smul, bernoulli_eq_sub_sum, prod_mahlerMeasure_eq_mahlerMeasure_prod, separable_prod_X_sub_C_iff', LaurentSeries.coe_X_compare, RatFunc.liftRingHom_ofFractionRing_algebraMap, eq_prod_roots_of_splits_id, AdjoinRoot.modByMonicHom_mk, RatFunc.one_def, WeierstrassCurve.Affine.CoordinateRing.mk_Ο†, RatFunc.div_smul, X_sub_C_dvd_sub_C_eval, Lagrange.iterate_derivative_interpolate, AlgebraicClosure.Monics.splits_finsetProd, RatFunc.inv_def, RatFunc.faithfulSMul, instIsIntegrallyClosedPolynomialOfIsDomain, quadratic_dvd_of_aeval_eq_zero_im_ne_zero, wronskianBilin_apply, Differential.deriv_aeval_eq_implicitDeriv, WeierstrassCurve.Affine.CoordinateRing.instIsDomain, RatFunc.instIsScalarTowerPolynomial, quotient_mk_comp_C_isIntegral_of_isJacobsonRing, primPart_dvd, roots_multiset_prod_X_sub_C, AdjoinRoot.powerBasisAux'_repr_symm_apply, instIsAlgebraicPolynomialOfNoZeroDivisors, RatFunc.ofFractionRing_smul, separable_prod_X_sub_C_iff, PolynomialModule.equivPolynomial_single, AdjoinRoot.quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, WeierstrassCurve.Affine.CoordinateRing.mk_Ξ¨_sq, minpoly.dvd_map_of_isScalarTower, Splits.dvd_iff_roots_le_roots, minpoly.isIntegrallyClosed_dvd_iff, natDegree_radical_le, Algebra.Norm.Transitivity.eval_zero_comp_det, Algebra.IsUnramifiedAt.not_minpoly_sq_dvd, Differential.mapCoeffs_X, Monic.finite_quotient, RatFunc.zero_def, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul, Bivariate.pderiv_zero_equivMvPolynomial, RatFunc.ofFractionRing_injective, natDegree_multiset_prod_X_sub_C_eq_card, AlgebraicClosure.toSplittingField_coeff, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, Matrix.charpoly_coeff_eq_prod_coeff_of_le, AdjoinRoot.Polynomial.quotQuotEquivComm_mk, WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq, bernsteinPolynomial.linearIndependent_aux, iterate_derivative_prod_X_sub_C, eval_det, dvd_content_iff_C_dvd, IsArtinianRing.instDecompositionMonoidPolynomial, RatFunc.ofFractionRing_sub, X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, RatFunc.v_def, divRadical_dvd_wronskian_right, PolynomialModule.equivPolynomialSelf_apply_eq, MulSemiringAction.charpoly_eq, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial_slope, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal', IsPrimitive.Int.dvd_iff_map_cast_dvd_map_cast, RatFunc.ofFractionRing_neg, bernsteinPolynomial.sum_mul_smul, LaurentSeries.powerSeries_ext_subring, C_mul_dvd, RatFunc.liftAlgHom_apply_ofFractionRing_mk, mem_iff_annIdealGenerator_dvd, FunctionField.ringOfIntegers.instIsDedekindDomainSubtypeMemSubalgebraPolynomialOfIsSeparableRatFunc, IsAdjoinRootMonic.map_modByMonicHom, IntermediateField.isSplittingField_iSup, dvd_C_mul_X_sub_one_pow_add_one, RatFunc.denom_div_dvd, ofMultiset_apply, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, Lagrange.degree_interpolate_le, bernoulli_def, LaurentSeries.powerSeriesRingEquiv_coe_apply, multiset_prod_X_sub_C_nextCoeff, RatFunc.instIsScalarTowerOfPolynomial, Bivariate.Polynomial.Bivariate.pderiv_zero_equivMvPolynomial, IsPrimitive.dvd_primPart_iff_dvd, WeierstrassCurve.Affine.CoordinateRing.map_injective, Ideal.polynomialQuotientEquivQuotientPolynomial_symm_mk, IsDistinguishedAt.algEquivQuotient_symm_apply, AlgebraicClosure.Monics.map_eq_prod, minpoly.dvd_map_of_isScalarTower', factor_dvd_of_not_isUnit, FunctionField.ringOfIntegers.algebraMap_injective, prod_cyclotomic_eq_geom_sum, RatFunc.denom_inv_dvd, roots_prod, WeierstrassCurve.Affine.Point.toClass_some, Matrix.charpoly_sub_diagonal_degree_lt, IsAdjoinRootMonic.modByMonicHom_root_pow, C_leadingCoeff_mul_prod_multiset_X_sub_C, RatFunc.liftRingHom_apply_ofFractionRing_mk, RatFunc.num_mul_dvd, WeierstrassCurve.Affine.Point.toClass_injective, Lagrange.interpolate_eq_add_interpolate_erase, Splits.eq_prod_roots_of_monic, RatFunc.num_div_dvd', KaehlerDifferential.polynomial_D_apply, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, Lagrange.interpolate_apply, Lagrange.interpolate_eq_iff_values_eq_on, minpoly.isIntegrallyClosed_dvd, mem_ker_modByMonic, Matrix.coeff_det_one_add_X_smul_one, RatFunc.mk_def_of_mem, resultant_prod_right, FunctionField.ringOfIntegers.instIsFractionRingSubtypeMemSubalgebraPolynomial, sum_taylor_eq, mem_normalizedFactors_iff, Differential.deriv_aeval_eq, Ideal.factors_span_eq, natDegree_det_X_add_C_le, splits_prod_iff, instIsPushoutFractionRingPolynomial, AdjoinRoot.Polynomial.quotQuotEquivComm_symm_mk_mk, LaurentSeries.valuation_compare, RatFunc.ofFractionRing_inv, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, StandardEtalePair.aeval_X_g_mul_mk_X, isIntegral_iff_isIntegral_coeff, isJacobsonRing_polynomial_of_isJacobsonRing, LaurentSeries.tendsto_valuation, WeierstrassCurve.Affine.CoordinateRing.mk_Οˆβ‚‚_sq, rootMultiplicity_le_iff, WeierstrassCurve.Affine.CoordinateRing.basis_zero, Lagrange.interpolate_empty, RatFunc.neg_def, Splits.dvd_of_roots_le_roots, Lagrange.eq_interpolate_of_eval_eq, IsAdjoinRootMonic.modByMonicHom_root, RatFunc.ofFractionRing_eq, dvd_comp_neg_X_iff, resultant_prod_left, RatFunc.mk_zero, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_mk, FunctionField.ringOfIntegers.instIsNoetherianPolynomialSubtypeMemSubalgebraOfIsSeparableRatFunc, Lagrange.sum_basis, IsAdjoinRoot.map_eq_zero_iff, Algebra.Norm.Transitivity.eval_zero_det_det, AdjoinRoot.quotEquivQuotMap_symm_apply, Lagrange.eval_interpolate_at_node, Ideal.isDomain_map_C_quotient, Differential.implicitDeriv_X, minpoly.dvd, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, Lagrange.interpolate_poly_eq_self, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, instIsJacobsonRing, AdjoinRoot.powerBasisAux'_repr_apply_to_fun, RatFunc.mk_one', dvd_comp_X_sub_C_iff, RatFunc.liftOn_def, PowerSeries.IsWeierstrassDivisorAt.mk_mod'_eq_self, RatFunc.isScalarTower_liftAlgebra, separable_prod', exists_prod_multiset_X_sub_C_mul, divRadical_dvd_wronskian_left, RatFunc.sub_def, WeierstrassCurve.Affine.Point.toClass_eq_zero, LaurentSeries.ratfuncAdicComplRingEquiv_apply, Monic.dvd_iff_fraction_map_dvd_fraction_map, RatFunc.div_def, dvd_iff_isRoot, RatFunc.add_def, splits_of_exists_multiset, RatFunc.denom_add_dvd, rootSet_prod, prod_X_sub_C_coeff_card_pred, bernsteinPolynomial.sum, Ideal.polynomialQuotientEquivQuotientPolynomial_map_mk, roots_multiset_prod, Ideal.quotient_mk_maps_eq, RatFunc.toFractionRingRingEquiv_symm_eq, bernsteinPolynomial.linearIndependent, mul_star_dvd_of_aeval_eq_zero_im_ne_zero, residueFieldMapCAlgEquiv_symm_X, X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, Matrix.IsHermitian.charpoly_eq, multiset_prod_X_sub_C_coeff_card_pred, WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq, Algebra.FormallySmooth.polynomial, RatFunc.toFractionRingRingEquiv_apply, LaurentSeries.mem_integers_of_powerSeries, IsPrimitiveRoot.minpoly_dvd_cyclotomic, exists_primitive_lcm_of_isPrimitive, instFiniteDimensionalQuotientPolynomialIdealSpanSingletonSetSmithCoeffs, RatFunc.denom_dvd, not_weaklyQuasiFiniteAt, WeierstrassCurve.Affine.CoordinateRing.map_smul, Matrix.charpoly_diagonal, ker_modByMonicHom, map_dvd_map', RatFunc.mul_def, cyclotomic_eq_X_pow_sub_one_div, Matrix.derivative_det_one_add_X_smul_aux, coe_taylorEquiv, IsAdjoinRootMonic.liftPolyβ‚—_apply, IsDistinguishedAt.algEquivQuotient_apply, irreducible_iff_lt_natDegree_lt, monic_prod_X_sub_C, residueFieldMapCAlgEquiv_algebraMap, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_mk_of, RatFunc.toFractionRingAlgEquiv_apply, RatFunc.laurentAux_ofFractionRing_mk, IsTranscendenceBasis.polynomial, Algebra.IsAlgebraic.rank_fractionRing_polynomial, isRoot_of_isRoot_iff_dvd_derivative_mul, taylorLinearEquiv_apply_coe, WeierstrassCurve.Affine.CoordinateRing.basis_apply, WeierstrassCurve.Affine.Point.toClass_apply, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, Matrix.BlockTriangular.charpoly, IsPrimitive.dvd_iff_fraction_map_dvd_fraction_map, IsAlgClosed.dvd_iff_roots_le_roots, residueFieldMapCAlgEquiv_symm_C, Lagrange.interpolate_singleton, C_content_dvd, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, coeff_det_X_add_C_zero, Lagrange.nodal_eq, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal, RatFunc.ofFractionRing_algebraMap, eval_multiset_prod_X_sub_C_derivative, FixedPoints.minpoly.of_evalβ‚‚, X_sub_C_pow_dvd_iff, FunctionField.ringOfIntegers.not_isField, roots_prod_X_sub_C, AdjoinRoot.evalEval_mk, map_taylorEquiv_degreeLT, Multiset.prod_X_sub_C_coeff, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, degree_radical_le, valuation_X_eq_neg_one, cyclotomic'_eq_X_pow_sub_one_div, trdeg_of_isDomain, RatFunc.ofFractionRing_mul, isIntegral_isLocalization_polynomial_quotient, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply, RatFunc.toFractionRing_eq
commSemiring πŸ“–CompOp
303 mathmath: RatFunc.instFaithfulSMulPolynomialLaurentSeries, coeff_prod_mem_ideal_pow_tsub, degree_normalize, minpoly.prime_of_isIntegrallyClosed, RatFunc.mk_def_of_ne, RatFunc.ofFractionRing_mk', Derivation.apply_eval_eq, coe_normUnit_of_ne_zero, RatFunc.mk_coe_def, roots_normalize, MvPolynomial.pUnitAlgEquiv_apply, eval_multiset_prod, LaurentPolynomial.mk'_one_X_pow, RatFunc.num_div, mem_image_comap_C_basicOpen, evalβ‚‚_finset_prod, ringKrullDim_succ_le_ringKrullDim_polynomial, evalβ‚‚_multiset_prod, algebraMap_pi_eq_aeval, LaurentPolynomial.mk'_mul_T, AlgebraicGeometry.Polynomial.isOpenMap_comap_C, Differential.implicitDeriv_C, WeierstrassCurve.Affine.CoordinateRing.smul, leadingCoeff_multiset_prod', RatFunc.num_div_dvd, eval_prod, ChevalleyThm.chevalley_polynomialC, WeierstrassCurve.Affine.CoordinateRing.basis_one, eval_det_add_X_smul, instIsScalarTowerPolynomial_1, isCoprime_of_is_root_of_eval_derivative_ne_zero, leadingCoeff_det_X_one_add_C, LaurentPolynomial.mk'_one_X, RatFunc.laurent_algebraMap, degree_gcd_le_left, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, MvPolynomial.optionEquivLeft_apply, prime_C_iff, Derivation.mapCoeffs_X, WeierstrassCurve.Affine.CoordinateRing.coe_basis, Multiset.prod_X_add_C_coeff, matPolyEquiv_map_smul, RatFunc.laurent_div, MvPolynomial.optionEquivRight_C, UniversalCoprimeFactorizationRing.homEquiv_comp_snd, Matrix.derivative_det_one_add_X_smul, Monic.prime_of_degree_eq_one, mem_iff_eq_smul_annIdealGenerator, RatFunc.liftMonoidWithZeroHom_apply_div', RatFunc.coe_X, RatFunc.isCoprime_num_denom, FunctionField.inftyValuation.polynomial, derivative'_apply, Bivariate.aveal_eq_map_swap, Bivariate.swap_apply, RatFunc.coe_coe, natDegree_prod', natDegree_prod, instIsPushoutFractionRingPolynomial_1, Matrix.det_one_add_smul, WeierstrassCurve.Affine.CoordinateRing.instIsScalarTowerPolynomial, LaurentSeries.inducing_coe, Submodule.IsPrincipal.contentIdeal_le_span_iff_dvd, Splits.multisetProd, LaurentSeries.continuous_coe, Monic.normalize_eq_self, RatFunc.map_apply, KaehlerDifferential.polynomialEquiv_comp_D, algebraMap_def, Derivation.mapCoeffs_C, fermatLastTheoremWith'_polynomial, RatFunc.mk_eq_mk', MvPolynomial.optionEquivRight_X_none, RatFunc.mk_def, monic_multiset_prod_of_monic, leadingCoeff_mul_prod_normalizedFactors, RatFunc.mk_eq_div', Monic.irreducible_iff_lt_natDegree_lt, aeval_homogenize_X_one, instIsPushoutPolynomial_1, RatFunc.instIsFractionRingPolynomial, MvPolynomial.optionEquivRight_symm_apply, leadingCoeff_normalize, FunctionField.algebraMap_injective, mkDerivation_one_eq_derivative', natDegree_prod_le, exists_image_comap_of_monic, RatFunc.numDenom_div, IsUnit.scaleRoots_dvd_iff, UniversalCoprimeFactorizationRing.homEquiv_comp_fst, Derivation.mapCoeffs_monomial, evalEval_multiset_prod, Differential.coeff_mapCoeffs, LaurentSeries.exists_ratFunc_val_lt, RatFunc.num_algebraMap, MvPolynomial.optionEquivRight_X_some, PowerSeries.normalized_count_X_eq_of_coe, splits_prod, isOpen_image_comap_of_monic, RatFunc.liftMonoidWithZeroHom_apply_div, RatFunc.num_dvd, AlgebraicGeometry.Polynomial.imageOfDf_eq_comap_C_compl_zeroLocus, rank_polynomial_polynomial, multiset_prod_comp, RatFunc.laurentAux_div, coeff_zero_prod, LaurentPolynomial.mk'_eq, RatFunc.mk_eq_div, evalEvalRingHom_apply, instIsScalarTowerPolynomial, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, isCoprime_expand, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, RatFunc.liftOn_div, evalEval_prod, isOpenMap_comap_C, coeff_det_X_add_C_card, mkDerivationEquiv_symm_apply, isUnit_resultant_iff_isCoprime, RatFunc.ofFractionRing_comp_algebraMap, RatFunc.algebraMap_X, algebraMap_pi_self_eq_eval, Finset.prod_X_add_C_coeff, cyclotomic.isCoprime_rat, LaurentPolynomial.algebraMap_X_pow, prime_of_degree_eq_one, Matrix.det_one_add_X_smul, degree_multiset_prod_of_monic, minpoly.prime, RatFunc.smul_eq_C_smul, RatFunc.valuation_eq_LaurentSeries_valuation, Differential.mapCoeffs_monomial, mkDerivationEquiv_apply, RatFunc.map_apply_div, leadingCoeff_prod, LaurentPolynomial.algebraMap_eq_toLaurent, Differential.mapCoeffs_C, RatFunc.liftRingHom_apply_div', RatFunc.liftRingHom_ofFractionRing_algebraMap, RatFunc.laurentAux_algebraMap, RatFunc.algebraMap_apply_div, RatFunc.div_smul, natDegree_multiset_prod, prime_X_sub_C, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, pow_sub_dvd_iterate_derivative_pow, RatFunc.liftRingHom_apply_div, isCompact_image_comap_of_monic, RatFunc.faithfulSMul, Differential.deriv_aeval_eq_implicitDeriv, RatFunc.algebraMap_C, RatFunc.instIsScalarTowerPolynomial, map_prod, natDegree_radical_le, monic_prod_of_monic, Differential.mapCoeffs_X, RatFunc.liftAlgHom_apply_div, Bivariate.pderiv_zero_equivMvPolynomial, one_lt_rootMultiplicity_iff_isRoot_gcd, homogenize_finsetProd, natSepDegree_mul_eq_iff, RatFunc.denom_div, WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq, instIsPushoutPolynomial, RatFunc.intDegree_polynomial, degree_prod_le, div_eq_quo_add_rem_div, degree_prod, LaurentSeries.LaurentSeries_coe, MvPolynomial.finSuccEquiv_eq, separable_def, Monic.nextCoeff_multiset_prod, RatFunc.denom_div_dvd, RatFunc.rank_ratFunc_ratFunc, normalize_eq_self_iff_monic, MvPolynomial.prod_X_add_C_coeff, Bivariate.Polynomial.Bivariate.pderiv_zero_equivMvPolynomial, derivative_prod, isLocalization, scaleRoots_dvd_iff, image_comap_C_basicOpen, mkDerivation_X, FunctionField.ringOfIntegers.algebraMap_injective, derivation_ext_iff, degree_multiset_prod_le, coeff_zero_multiset_prod, degree_prod_of_monic, Separable.isCoprime, ringKrullDim_le, mkDerivation_one_eq_derivative, algebraMap_hahnSeries_apply, cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, Monic.C_dvd_iff_isUnit, MvPolynomial.prod_C_add_X_eq_sum_esymm, RatFunc.liftOn'_div, MvPolynomial.optionEquivRight_apply, MvPolynomial.finSuccEquiv_apply, RatFunc.num_div_dvd', Matrix.coeff_det_one_add_X_smul_one, RatFunc.mk_def_of_mem, algebraMap_hahnSeries_injective, derivative_prod_finset, mem_normalizedFactors_iff, LaurentSeries.valuation_coe_ratFunc, Differential.deriv_aeval_eq, Ideal.factors_span_eq, derivation_C, natDegree_det_X_add_C_le, eval_C_X_comp_evalβ‚‚_map_C_X, prod_comp, instIsPushoutFractionRingPolynomial, uniqueFactorizationMonoid, coe_normUnit, RatFunc.algebraMap_apply, instFaithfulSMulPolynomial, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, Derivation.compAEval_eq, RatFunc.mk_one, RatFunc.algebraMap_injective, WeierstrassCurve.Affine.CoordinateRing.basis_zero, LaurentSeries.coe_range_dense, RatFunc.finrank_ratFunc_ratFunc, MvPolynomial.polynomial_eval_evalβ‚‚, RatFunc.ofFractionRing_eq, PrimeSpectrum.range_comap_algebraMap_localization_compl_eq_range_comap_quotientMk, Derivation.mapCoeffs_apply, RatFunc.denom_algebraMap, Submodule.IsPrincipal.contentIdeal_generator_dvd, RatFunc.liftRingHom_comp_algebraMap, isRoot_prod, RatFunc.num_mul_eq_mul_denom_iff, leadingCoeff_multiset_prod, Differential.implicitDeriv_X, RatFunc.liftAlgHom_apply_div', exists_irreducible_of_natDegree_ne_zero, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, RatFunc.liftRingHom_algebraMap, RatFunc.mk_one', prime_X, RatFunc.isScalarTower_liftAlgebra, isCoprime_map, Derivation.apply_aeval_eq', exists_irreducible_of_natDegree_pos, Multiset.prod_X_add_C_eq_sum_esymm, natDegree_multiset_prod', natDegree_prod_of_monic, splits_iff_exists_multiset', Multiset.prod_X_add_C_coeff', RatFunc.num_div_denom, natDegree_multiset_prod_le, LaurentPolynomial.isLocalization, map_multiset_prod, ringKrullDim_of_isNoetherianRing, leadingCoeff_prod', RatFunc.toFractionRingRingEquiv_symm_eq, degree_multiset_prod, RatFunc.aeval_X_left_eq_algebraMap, residueFieldMapCAlgEquiv_symm_X, PowerSeries.algebraMap_apply', RatFunc.algebraMap_monomial, RatFunc.denom_dvd, natDegree_multiset_prod_of_monic, WeierstrassCurve.Affine.CoordinateRing.map_smul, normUnit_X, matPolyEquiv_smul_one, monic_normalize, coeff_prod_of_natDegree_le, MvPolynomial.aeval_natDegree_le, Derivation.compAEval_apply, resultant_eq_zero_iff, Matrix.derivative_det_one_add_X_smul_aux, pairwise_coprime_X_sub_C, Ideal.evalβ‚‚_C_mk_eq_zero, coeff_multiset_prod_of_natDegree_le, Monic.nextCoeff_prod, UniversalCoprimeFactorizationRing.isCoprime_factor₁_factorβ‚‚, residueFieldMapCAlgEquiv_algebraMap, isCoprime_iff_aeval_ne_zero, Algebra.IsAlgebraic.rank_fractionRing_polynomial, WeierstrassCurve.Affine.CoordinateRing.basis_apply, wfDvdMonoid, Splits.prod, normalizedFactors_cyclotomic_card, RatFunc.map_apply_div_ne_zero, comap_C_surjective, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, isCoprime_X_sub_C_of_isUnit_sub, mkDerivation_apply, isCoprime_iff_aeval_ne_zero_of_isAlgClosed, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, X_eq_normalize, coeff_det_X_add_C_zero, map_normalize, RatFunc.algebraMap_comp_C, RatFunc.ofFractionRing_algebraMap, exists_irreducible_of_degree_pos, C_smul_derivation_apply, monic_finprod_of_monic, degree_radical_le, degree_gcd_le_right, Derivation.apply_aeval_eq, RatFunc.toFractionRing_eq
distribMulAction πŸ“–CompOpβ€”
distribSMul πŸ“–CompOp
1 mathmath: WeierstrassCurve.Affine.CoordinateRing.instIsScalarTowerPolynomial
erase πŸ“–CompOp
14 mathmath: update_zero_eq_erase, coeff_erase, degree_erase_lt, ofFinsupp_erase, erase_same, erase_ne, erase_mem_lifts, support_erase, toFinsupp_erase, degree_erase_le, erase_monomial, erase_def, erase_zero, monomial_add_erase
inhabited πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
299 mathmath: IsMonicOfDegree.add_left, isUnit_C_add_X_mul_iff, isMonicOfDegree_X_add_one, IsAdjoinRoot.repr_add_sub_repr_add_repr_mem_span, separable_X_add_C, coeff_add_eq_left_of_lt, algEquivCMulXAddC_apply, one_add_X_pow_sub_X_pow, resultant_X_add_C_right, rootMultiplicity_eq_rootMultiplicity, support_trinomial, cyclotomic_six, rootMultiplicity_eq_natTrailingDegree, derivative_mul, Chebyshev.one_sub_X_sq_mul_derivative_derivative_U_eq_poly_in_U, Cubic.of_a_eq_zero', Monic.add_of_left, opRingEquiv_op_monomial, natDegree_add_le_iff_right, leadingCoeff_quadratic, degree_quadratic_lt, eval_det_add_X_smul, WeierstrassCurve.Οˆβ‚‚_sq, monic_X_pow_add_C, descPochhammer_succ_comp_X_sub_one, leadingCoeff_det_X_one_add_C, coeff_one_add_X_pow, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, iterate_derivative_X_add_pow, aroots_quadratic_eq_pair_iff_of_ne_zero', isMonicOfDegree_two_iff', leadingCoeff_opRingEquiv, Multiset.prod_X_add_C_coeff, natDegree_C_add, eraseLead_add_C_mul_X_pow, monic_X_pow_add, leadingCoeff_X_pow_add_C, degree_add_eq_right_of_degree_lt, eval_divByMonic_eq_trailingCoeff_comp, add_mod, Matrix.derivative_det_one_add_X_smul, iterate_derivative_mul_X, Chebyshev.S_eq_X_mul_S_add_C, update_eq_add_sub_coeff, WeierstrassCurve.Affine.C_addPolynomial, sumIDeriv_eq_self_add, divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative, dvd_comp_X_add_C_iff, dvd_comp_C_mul_X_add_C_iff, mapEquiv_symm_apply, evalβ‚‚_list_sum, isMonicOfDegree_add_add_two, degree_X_pow_add_C, Matrix.det_one_add_smul, coeff_list_sum_map, Lagrange.basisDivisor_add_symm, support_trinomial', ascPochhammer_succ_comp_X_add_one, wronskian_add_right, leadingCoeff_cubic, natDegree_eq_one, minpoly.sub_algebraMap, Matrix.charpoly_sub_scalar, opRingEquiv_op_C, cyclotomic_two, Chebyshev.S_sq_add_S_sq, nextCoeff_C_mul_X_add_C, iterate_derivative_derivative_mul_X_sq, Cubic.of_a_eq_zero, degree_quadratic, leadingCoeff_linear, isMonicOfDegree_two_iff, ascPochhammer_mul, nextCoeff_X_add_C, eq_X_add_C_of_degree_le_one, homogenize_add, RatFunc.num_denom_add, degree_cubic_lt, eq_X_add_C_of_natDegree_le_one, Cubic.of_b_eq_zero, derivative_X_add_C, Real.fibRec_charPoly_eq, support_binomial', X_add_C_scaleRoots, natDegree_X_add_C, ofFinsupp_add, monic_X_add_C, logMahlerMeasure_X_add_C, reflect_add, roots_quadratic_eq_pair_iff_of_ne_zero, IsMonicOfDegree.exists_natDegree_lt, Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T, degree_quadratic_le, eq_quadratic_of_degree_le_two, natDegree_add_eq_left_of_degree_lt, natDegree_list_sum_le, leadingCoeff_pow_X_add_C, contract_add, roots_C_mul_X_add_C, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, taylor_apply, map_add, rootMultiplicity_add, eq_X_add_C_of_degree_eq_one, mahlerMeasure_C_mul_X_add_C, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, natDegree_add_eq_left_of_natDegree_lt, X_mul_divX_add, card_support_binomial, separable_C_mul_X_pow_add_C_mul_X_add_C', IsPrimitiveRoot.minpoly_sub_one_eq_cyclotomic_comp, Splits.comp_X_add_C, natDegree_add_le_of_degree_le, opRingEquiv_op_X, coeff_det_X_add_C_card, natDegree_add_eq_right_of_natDegree_lt, divX_add, natDegree_quadratic_le, natDegree_add_le_iff_left, Cubic.of_b_eq_zero', WeierstrassCurve.Affine.derivative_addPolynomial_slope, coe_add, separable_def', Finset.prod_X_add_C_coeff, divX_mul_X_add, coeff_add_eq_right_of_lt, Matrix.det_one_add_X_smul, hilbertPoly_add_left, degree_add_eq_left_of_degree_lt, leadingCoeff_add_of_degree_eq, descPochhammer_eq_ascPochhammer, eraseLead_add_of_degree_lt_right, support_add, natDegree_X_pow_add_C, mahlerMeasure_X_add_C, taylor_X_pow, Mathlib.Tactic.ComputeDegree.coeff_add_of_eq, coeff_add, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, iterate_derivative_derivative_mul_X, Chebyshev.add_one_mul_self_mul_T_eq_poly_in_T, Splits.X_add_C, PowerSeries.IsWeierstrassDivisorAt.mod_add, eraseLead_add_of_degree_lt_left, eraseLead_add_monomial_natDegree_leadingCoeff, degree_list_sum_le_of_forall_degree_le, card_support_eq_three, Chebyshev.U_eq_X_mul_U_add_T, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, quadratic_dvd_of_aeval_eq_zero_im_ne_zero, PolyEquivTensor.invFun_add, bernoulli_comp_one_add_X, Matrix.charpoly_fin_two, resultant_add_mul_right, Monic.eq_X_add_C, degree_add_le_of_le, RatFunc.intDegree_add, add_comp, not_isUnit_X_add_C, degree_cubic, monomial_add, resultant_X_add_C_left, IsMonicOfDegree.aeval_add, cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt, exists_eq_X_add_C_of_natDegree_le_one, opRingEquiv_symm_C_mul_X_pow, opRingEquiv_symm_monomial, degreeLT.addLinearEquiv_symm_apply, isMonicOfDegree_one_iff, support_opRingEquiv, eval_listSum, aroots_quadratic_eq_pair_iff_of_ne_zero, sumIDeriv_X, dvd_C_mul_X_sub_one_pow_add_one, MvPolynomial.prod_X_add_C_coeff, sum_add_index, evalEval_add, Ideal.polynomialQuotientEquivQuotientPolynomial_symm_mk, reverse_add_C, wronskian_add_left, PowerSeries.IsWeierstrassDivisionAt.add, Monic.add_of_right, card_support_eq_two, PowerSeries.add_weierstrassMod, natDegree_add_eq_right_of_degree_lt, degreeLT.addLinearEquiv_symm_apply', Monic.comp_X_add_C, coeff_X_add_one_pow, mul_X_add_natCast_comp, MvPolynomial.prod_C_add_X_eq_sum_esymm, coeff_opRingEquiv, binomial_eq_binomial, Lagrange.interpolate_eq_add_interpolate_erase, toFinsuppIso_apply, eval_add, taylor_monomial, Matrix.coeff_det_one_add_X_smul_one, leadingCoeff_add_of_degree_lt, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eq_poly_in_T, trinomial_def, Chebyshev.C_mul_C, cyclotomic'_two, natDegree_linear_le, coeff_list_sum, natDegree_det_X_add_C_le, modByMonic_add_div, StandardEtalePair.cond, toFinsupp_add, geom_sum_X_comp_X_add_one_eq_sum, LinearMap.charpoly_sub_smul, Chebyshev.T_mul_T, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, PowerSeries.trunc_succ, degree_add_le, roots_quadratic_eq_pair_iff_of_ne_zero', support_binomial, derivative_bernoulli_add_one, sylvesterMap_apply_coe, WeierstrassCurve.Ο†_four, opRingEquiv_symm_C, resultant_add_mul_left, natDegree_cubic, derivative_X_add_C_sq, cyclotomic_three, dvd_comp_X_sub_C_iff, algEquivAevalXAddC_apply, smeval_add, toFinsuppIso_symm_apply, cauchyBound_X_add_C, degree_cubic_le, cyclotomic_comp_X_add_one_isEisensteinAt, leadingCoeff_X_pow_add_one, logMahlerMeasure_C_mul_X_add_C, Multiset.prod_X_add_C_eq_sum_esymm, degree_linear_le, derivative_X_add_C_pow, natDegree_opRingEquiv, degree_add_le_of_degree_le, splits_iff_exists_multiset', Multiset.prod_X_add_C_coeff', degree_linear_lt_degree_C_mul_X_sq, degree_quadratic_lt_degree_C_mul_X_cb, add_modByMonic, comp_X_add_C_eq_zero_iff, opRingEquiv_op_C_mul_X_pow, Ideal.polynomialQuotientEquivQuotientPolynomial_map_mk, roots_X_add_C, IsMonicOfDegree.add_right, separable_C_mul_X_pow_add_C_mul_X_add_C, taylor_X, eraseLead_add_of_natDegree_lt_left, natDegree_add_le_of_le, leadingCoeff_X_add_C, Monic.as_sum, mapEquiv_apply, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eq_poly_in_U, irreducible_C_mul_X_add_C, reverse_C_add, degree_add_eq_of_leadingCoeff_add_ne_zero, natDegree_linear, degree_add_C, natDegree_pow_X_add_C, IsUnitTrinomial.irreducible_aux1, roots_C_mul_X_add_C_of_IsUnit, bernoulli_comp_neg_X, Matrix.derivative_det_one_add_X_smul_aux, C_add, zero_notMem_multiset_map_X_add_C, bernsteinPolynomial.derivative_succ_aux, ascPochhammer_succ_left, natDegree_cubic_le, eraseLead_add_of_natDegree_lt_right, WeierstrassCurve.Ξ¨_odd, natDegree_quadratic, aeval_add, degree_linear, natDegree_add_C, DenomsClearable.add, opRingEquiv_symm_X, degree_list_sum_le, coeff_X_add_C_pow, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, degree_linear_lt, ascPochhammer_succ_right, Chebyshev.add_one_mul_T_eq_poly_in_U, coeff_det_X_add_C_zero, card_support_trinomial, leadingCoeff_add_of_degree_lt', IsMonicOfDegree.of_dvd_sub, exists_mul_add_mul_eq_C_resultant, Matrix.charpoly_of_card_eq_two, X_sub_C_pow_dvd_iff, add_scaleRoots_of_natDegree_eq, derivative_add, degree_X_add_C, evalβ‚‚_add, monomial_add_erase, isMonicOfDegree_sub_add_two, natDegree_add_le
instDecidableEq πŸ“–CompOp
14 mathmath: splits_of_splits_gcd_right, splits_of_splits_gcd_left, length_coeffList_eq_ite, PowerSeries.normalized_count_X_eq_of_coe, isRoot_gcd_iff_isRoot_left_right, cardPowDegree_apply, gcd_map, rootMultiplicity_eq_multiplicity, root_gcd_iff_root_left_right, degreeLT_eq_span_X_pow, evalβ‚‚_gcd_eq_zero, degreeLE_eq_span_X_pow, eval_gcd_eq_zero, normalizedFactors_cyclotomic_card
instIntCast πŸ“–CompOp
27 mathmath: derivative_intCast_mul, Mathlib.Tactic.ComputeDegree.coeff_intCast_ite, Chebyshev.one_sub_X_sq_mul_derivative_derivative_U_eq_poly_in_U, Chebyshev.T_derivative_eq_U, evalEval_intCast, C_eq_intCast, Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T, Mathlib.Tactic.ComputeDegree.natDegree_intCast_le, intCast_comp, map_intCast, Chebyshev.add_one_mul_self_mul_T_eq_poly_in_T, degree_intCast_le, intCast_inj, eval_intCast, Chebyshev.one_sub_X_sq_mul_derivative_derivative_T_eq_poly_in_T, coeff_mul_intCast, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eq_poly_in_T, intCast_coeff_zero, natDegree_intCast, iterate_derivative_intCast_mul, toFinsupp_intCast, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eq_poly_in_U, coeff_intCast_mul, natTrailingDegree_intCast, ofFinsupp_intCast, Chebyshev.add_one_mul_T_eq_poly_in_U, derivative_intCast
instMul πŸ“–CompOp
696 mathmath: mul_div_eq_iff_isRoot, units_coeff_zero_smul, isUnit_C_add_X_mul_iff, natDegree_mul_X_pow, natDegree_mul_leadingCoeff_inv, degreeLT.addLinearEquiv_symm_apply_inr, isLeftCancelMulZero_iff, X_pow_mul_assoc_C, leadingCoeff_mul_X_pow, degree_mul_le, mul_divByMonic_cancel_left, eq_X_sub_C_of_separable_of_root_eq, derivative_X_sq, IsWeaklyEisensteinAt.mul, smeval_monomial_mul, splits_iff_exists_multiset, Chebyshev.T_eq_X_mul_U_sub_U, IsDistinguishedAt.mul, IsSplittingField.mul, algEquivCMulXAddC_apply, mul_divByMonic_eq_iff_isRoot, RatFunc.num_div, coeff_X_pow_mul', eq_cyclotomic_iff, StandardEtalePair.inv_aeval_X_g, expand_eq_sum, AdjoinRoot.minpoly_root, derivative_intCast_mul, expNegInvGlue.hasDerivAt_polynomial_eval_inv_mul, derivative_C_mul, support_trinomial, PowerSeries.weierstrassDistinguished_mul, derivative_mul, div_def, Chebyshev.one_sub_X_sq_mul_derivative_derivative_U_eq_poly_in_U, Cubic.of_a_eq_zero', WeierstrassCurve.Ξ¨Sq_even, coeff_mul_natTrailingDegree_add_natTrailingDegree, opRingEquiv_op_monomial, Monic.leadingCoeff_C_mul, leadingCoeff_quadratic, Multiset.prod_X_sub_X_eq_sum_esymm, coeffList_C_mul, support_C_mul_X, nnqsmul_eq_C_mul, leadingCoeff_C_mul_of_isUnit, fiberEquivQuotient_tmul, taylor_mul, degree_quadratic_lt, C_mul_X_eq_monomial, logMahlerMeasure_C_mul, map_mul, WeierstrassCurve.Οˆβ‚‚_sq, smeval_mul_X, derivative_expand, derivative_pow_succ, StandardEtalePresentation.toPresentation_algebra_smul, RatFunc.denom_mul_dvd, natDegree_mul_X, minpoly.eq_of_irreducible, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, isNilpotent_X_mul_iff, roots_C_mul_X_pow, evalβ‚‚_mul_X, iterate_derivative_eq_factorial_smul_sum, WeierstrassCurve.Ξ¨Sq_odd, Chebyshev.S_eq_U_comp_half_mul_X, degree_C_mul_of_isUnit, aroots_quadratic_eq_pair_iff_of_ne_zero', degree_mul_leadingCoeff_inv, eq_prod_roots_of_splits, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, chebyshev_U_eq_dickson_two_one, Lagrange.interpolate_eq_nodalWeight_mul_nodal_div_X_sub_C, abc, cyclotomic_expand_eq_cyclotomic_mul, Lagrange.interpolate_eq_sum_interpolate_insert_sdiff, isMonicOfDegree_two_iff', leadingCoeff_opRingEquiv, C_mul', eraseLead_add_C_mul_X_pow, matPolyEquiv_map_smul, natDegree_mul_mirror, reverse_mul_X_pow, Chebyshev.S_add_one, Chebyshev.T_derivative_eq_U, roots_C_mul, leadingCoeff_mul, degree_list_prod, degree_lt_degree_mul_X, Lagrange.nodal_insert_eq_nodal, mapAlgHom_eq_evalβ‚‚AlgHom'_CAlgHom, root_mul_right_of_isRoot, instIsRightCancelMulZeroOfIsCancelAdd, map_list_prod, coeff_mul_X_zero, natDegree_mul, monomial_mul_C, UniversalCoprimeFactorizationRing.homEquiv_comp_snd, as_sum_range_C_mul_X_pow', iterate_derivative_mul_X, Chebyshev.S_eq_X_mul_S_add_C, update_eq_add_sub_coeff, degree_C_mul_of_mul_ne_zero, Chebyshev.S_comp_two_mul_X, WeierstrassCurve.Affine.C_addPolynomial, support_C_mul_X', Mathlib.Tactic.ComputeDegree.coeff_mul_add_of_le_natDegree_of_eq_ite, degree_list_prod_le, Matrix.charpoly_mul_comm_of_le, divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative, Chebyshev.S_eq, coeff_mul_X_pow, coeff_mul_ofNat, WeierstrassCurve.preΞ¨_odd, logMahlerMeasure_mul_eq_add_logMahelerMeasure, dvd_comp_C_mul_X_add_C_iff, mapEquiv_symm_apply, isRightCancelMulZero_iff, isMonicOfDegree_add_add_two, evalβ‚‚_mul', support_trinomial', exists_finset_of_splits, Chebyshev.T_two, WeierstrassCurve.Ξ¨Sq_ofNat, Chebyshev.T_add_one, irreducible_mul_leadingCoeff_inv, evalβ‚‚_list_prod, natCast_mul, Lagrange.interpolate_eq_sum, logMahlerMeasure_mul_eq_add_logMahlerMeasure, coeff_X_pow_mul, X_mul_C, coeff_C_mul_X, leadingCoeff_cubic, natDegree_eq_one, isCancelMulZero_iff, Chebyshev.C_eq_S_sub_X_mul_S, WeierstrassCurve.Ο†_three, X_pow_mul_assoc, rootMultiplicity_mul, derivative_X_sub_C_sq, smul_eq_C_mul, opRingEquiv_op_C, Chebyshev.U_two, degree_C_lt_degree_C_mul_X, aroots_C_mul, isRegular_X, leadingCoeff_mul_prod_normalizedFactors, Separable.unit_mul, Chebyshev.U_eq, Separable.mul_unit, Chebyshev.S_sq_add_S_sq, nextCoeff_C_mul_X_add_C, dvd_C_mul, iterate_derivative_derivative_mul_X_sq, reverse_mul_of_domain, nextCoeff_mul_C, coeff_X_sub_C_mul, Cubic.of_a_eq_zero, comp_C_mul_X_eq_zero_iff, degree_quadratic, leadingCoeff_linear, isMonicOfDegree_two_iff, ascPochhammer_mul, C_mul_X_pow_eq_monomial, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, PowerSeries.trunc_mul_C, eq_X_add_C_of_degree_le_one, WeierstrassCurve.preΞ¨'_even, RatFunc.num_denom_add, IsPrimitive.mul, natDegree_mul_leadingCoeff_self_inv, trailingDegree_C_mul_X_pow, degree_cubic_lt, AdjoinRoot.mul_div_root_cancel, eq_X_add_C_of_natDegree_le_one, Cubic.of_b_eq_zero, natTrailingDegree_mul_X_pow, hermite_succ, descPochhammer_succ_right, Chebyshev.U_sub_one, mul_scaleRoots_of_noZeroDivisors, PolyEquivTensor.toFunLinear_mul_tmul_mul, hermite_eq_iterate, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial, support_binomial', iterate_derivative_natCast_mul, WeierstrassCurve.Ξ¨_ofNat, natDegree_C_mul_X, degree_mul_le_of_le, coeff_mul_X_sub_C, RatFunc.numDenom_div, UniversalCoprimeFactorizationRing.homEquiv_comp_fst, Chebyshev.U_one, natSepDegree_C_mul_X_sub_C_pow, X_sub_C_mul_divByMonic_eq_sub_modByMonic, roots_C_mul_X_sub_C_of_IsUnit, derivative_X_pow_succ, WeierstrassCurve.Affine.addPolynomial_slope, coeff_C_mul, roots_quadratic_eq_pair_iff_of_ne_zero, derivative_X_sub_C_pow, natDegree_C_mul_eq_of_mul_eq_one, list_prod_comp, eraseLead_C_mul_X, Matrix.charpoly_fromBlocks_zero₂₁, Lagrange.basis_eq_prod_sub_inv_mul_nodal_div, IsRoot.mul_div_eq, sum_C_mul_X_pow_eq, natTrailingDegree_mul_mirror, as_sum_support_C_mul_X_pow, Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T, degree_quadratic_le, eq_quadratic_of_degree_le_two, content_X_mul, card_support_eq, coeff_mul_X, coeff_mul, roots_C_mul_X_add_C, natDegree_C_mul_le, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, noZeroDivisors_iff, natDegree_C_mul_of_mul_ne_zero, WeierstrassCurve.Affine.C_addPolynomial_slope, natDegree_mul', iterate_derivative_comp_one_sub_X, Splits.eq_prod_roots, div_wf_lemma, derivative_natCast_mul, eq_X_add_C_of_degree_eq_one, sup_ker_aeval_eq_ker_aeval_mul_of_coprime, mahlerMeasure_C_mul_X_add_C, smeval_mul, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, X_mul_divX_add, card_support_binomial, separable_C_mul_X_pow_add_C_mul_X_add_C', C_mul_monomial, monic_C_mul_of_mul_leadingCoeff_eq_one, opRingEquiv_op_X, natDegree_mul_C_eq_of_mul_eq_one, Chebyshev.S_sub_one, content_C_mul, Splits.eq_X_sub_C_of_single_root, modByMonic_eq_sub_mul_div, Monic.nextCoeff_mul, smeval_X_pow_mul, eval_mul, Monic.isRegular, IsMonicOfDegree.mul, eval_list_prod, WeierstrassCurve.C_Ξ¨β‚‚Sq, natDegree_quadratic_le, rootSet_C_mul_X_pow, monomial_mul_X, iterate_derivative_X_pow_eq_natCast_mul, Cubic.of_b_eq_zero', WeierstrassCurve.Affine.derivative_addPolynomial_slope, support_C_mul_X_pow', eq_C_content_mul_primPart, rootMultiplicity_mul_X_sub_C_pow, card_support_eq', coeff_natCast_mul, separable_def', divX_mul_X_add, card_support_mul_le, le_trailingDegree_mul, RatFunc.num_denom_mul, Matrix.det_one_add_X_smul, resultant_mul_left, Chebyshev.T_eq, content_mul_aux, mul_eq_sum_sum, divX_C_mul, Chebyshev.C_eq, degree_mul_leadingCoeff_self_inv, WeierstrassCurve.ψ_even, reverse_X_pow_mul, degree_le_mul_left, mahlerMeasure_mul, comp_C_mul_X_coeff, cyclotomic_prime_pow_mul_X_pow_sub_one, natDegree_add_coeff_mul, evalRingHom_mapMatrix_comp_compRingEquiv, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, bernsteinPolynomial.variance, derivative_C_mul_X, iterate_derivative_derivative_mul_X, Chebyshev.add_one_mul_self_mul_T_eq_poly_in_T, descPochhammer_succ_left, degree_C_mul_X_pow_le, le_trailingDegree_C_mul_X_pow, Monic.mul_right_eq_zero_iff, descPochhammer_mul, AdjoinRoot.root_isInv, hasseDeriv_mul, self_mul_modByMonic, coeff_mul_C, eq_prod_roots_of_splits_id, natDegree_C_mul, card_support_eq_three, Chebyshev.U_eq_X_mul_U_add_T, aeval_mul, smeval_C_mul, mul_comp_neg_X, coeff_monomial_zero_mul, Lagrange.iterate_derivative_interpolate, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, splits_mul_iff, leadingCoeff_mul_X, iterate_derivative_eq_sum, quadratic_dvd_of_aeval_eq_zero_im_ne_zero, natDegree_C_mul_X_pow, dvd_mul_leadingCoeff_inv, C_mul_X_pow_eq_self, instIsCancelMulZeroOfIsCancelAdd, smeval_X_mul, mirror_mul_of_domain, degree_C_mul_X_le, mul_X_pow_comp, coeff_mul_monomial_zero, reverse_mul_X, mul_self_modByMonic, eraseLead_C_mul_X_pow, coeff_mul_add_eq_of_natDegree_le, homogenize_C_mul, Matrix.charpoly_fin_two, evalβ‚‚_mul_C', resultant_add_mul_right, natDegree_mul_C_of_isUnit, dickson_add_two, exists_eq_pow_rootMultiplicity_mul_and_not_dvd, derivative_comp, IsMonicOfDegree.eq_isMonicOfDegree_one_or_two_mul, WeierstrassCurve.Ξ¦_ofNat, toFinsupp_mul, degree_mul', Chebyshev.C_sub_one, evalβ‚‚_mul, RatFunc.intDegree_add, reverse_X_mul, mul_scaleRoots, derivative_sq, leadingCoeff_C_mul_X_pow, WeierstrassCurve.Ξ¦_three, Chebyshev.U_add_two, degree_cubic, natSepDegree_C_mul, WeierstrassCurve.preΞ¨'_odd, hilbertPoly_mul_one_sub_succ, Gal.mul_splits_in_splittingField_of_mul, natSepDegree_mul_eq_iff, Splits.C_mul_X_pow, exists_eq_X_add_C_of_natDegree_le_one, RatFunc.denom_div, opRingEquiv_symm_C_mul_X_pow, iterate_derivative_prod_X_sub_C, commute_X, signVariations_eraseLead_mul_X_sub_C, opRingEquiv_symm_monomial, X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, reflect_mul, degreeLT.addLinearEquiv_symm_apply, WeierstrassCurve.ψ_odd, WeierstrassCurve.Ξ¨_even, support_opRingEquiv, natDegree_X_pow_mul, WeierstrassCurve.Ξ¦_four, C_mul_dvd, eval_mul_X_pow, Chebyshev.C_add_one, factorial_mul_shiftedLegendre_eq, Chebyshev.one_sub_X_sq_mul_derivative_derivative_T_eq_poly_in_T, div_C, aroots_quadratic_eq_pair_iff_of_ne_zero, dvd_C_mul_X_sub_one_pow_add_one, natDegree_mul_C_eq_of_mul_ne_zero, Cubic.prod_X_sub_C_eq, Chebyshev.T_neg_two, X_mul, derivative_evalβ‚‚_C, splits_of_splits_mul, eval_natCast_mul, Lagrange.nodal_eq_mul_nodal_erase, divX_C_mul_X_pow, X_pow_mul_monomial, Ideal.polynomialQuotientEquivQuotientPolynomial_symm_mk, coeff_mul_intCast, derivative_pow, reverse_add_C, derivative_prod, coeff_X_mul_zero, leadingCoeff_monic_mul, dickson_one_one_eq_chebyshev_T, leadingCoeff_mul_C_of_isUnit, isRegular_X_pow, card_support_eq_two, eq_mul_leadingCoeff_of_monic_of_dvd_of_natDegree_le, Matrix.charpoly_fromBlocks_zero₁₂, chebyshev_T_eq_dickson_one_one, iterate_derivative_C_mul, reflect_C_mul_X_pow, card_support_eq_one, Monic.degree_mul, roots_mul, aroots_C_mul_X_pow, leadingCoeff_C_mul_X, degreeLT.addLinearEquiv_symm_apply', coe_mul, iterate_derivative_mul_X_pow, C_leadingCoeff_mul_prod_multiset_X_sub_C, RatFunc.mk_eq_mk, sup_ker_aeval_le_ker_aeval_mul, splits_mul, reverse_mul, RatFunc.num_mul_dvd, StandardEtalePresentation.toPresentation_Οƒ', roots_list_prod, monic_mul_C_of_leadingCoeff_mul_eq_one, IsIntegrallyClosed.eq_map_mul_C_of_dvd, mul_X_add_natCast_comp, monic_mul_leadingCoeff_inv, eq_X_sub_C_of_splits_of_single_root, card_support_C_mul_X_pow_le_one, monomial_mul_X_pow, support_C_mul_X_pow, MvPolynomial.prod_C_add_X_eq_sum_esymm, denomsClearable_C_mul_X_pow, coeff_opRingEquiv, binomial_eq_binomial, iterate_derivative_X_pow_eq_C_mul, instIsLeftCancelMulZeroOfIsCancelAdd, derivative_X_pow, leadingCoeff_mul', degree_C_mul, X_mul_monomial, Lagrange.interpolate_eq_add_interpolate_erase, mul_mod, toFinsuppIso_apply, isNilpotent_C_mul_pow_X_of_isNilpotent, RatFunc.num_div_dvd', WeierstrassCurve.Ξ¦_two, IsMonicOfDegree.eq_isMonicOfDegree_two_mul_isMonicOfDegree, Chebyshev.C_comp_two_mul_X, PolyEquivTensor.toFunLinear_mul_tmul_mul_aux_2, instNoZeroDivisors, evalβ‚‚_X_mul, taylor_monomial, Lagrange.interpolate_apply, C_mul, splits_X_sub_C_mul_iff, coeff_ofNat_mul, RatFunc.natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree, dickson_of_two_le, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eq_poly_in_T, Chebyshev.U_add_one, trinomial_def, Chebyshev.C_mul_C, sum_taylor_eq, derivative_prod_finset, gal_mul_isSolvable, IsMonicOfDegree.eq_isMonicOfDegree_one_mul_isMonicOfDegree, natDegree_linear_le, root_mul_left_of_isRoot, modByMonic_add_div, AdjoinRoot.algHom_subsingleton, StandardEtalePair.cond, Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T, root_mul, geom_sum_X_comp_X_add_one_eq_sum, LinearMap.charpoly_prodMap, minpoly.neg, Chebyshev.T_mul_T, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, Chebyshev.T_sub_one, StandardEtalePair.aeval_X_g_mul_mk_X, roots_C_mul_X_sub_C, evalβ‚‚_mul_eq_zero_of_right, ofFinsupp_mul, eraseLead_mul_eq_mul_eraseLead_of_nextCoeff_zero, integralNormalization_mul_C_leadingCoeff, bernsteinPolynomial.derivative_succ, roots_quadratic_eq_pair_iff_of_ne_zero', coeff_mul_natCast, eval_mul_X_sub_C, minpolyDiv_spec, isNilpotent_mul_X_iff, Splits.C_mul, reflect_C, reflect_C_mul, Matrix.charpoly_inv, leadingCoeff_mul_monic, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, as_sum_range_C_mul_X_pow, content_mul, degree_mul_X, derivative_C_mul_X_pow, signVariations_X_sub_C_mul_eraseLead_le, support_binomial, degree_mul_C_of_isUnit, AdjoinRoot.minpoly_powerBasis_gen, derivative_bernoulli_add_one, dickson_two_one_eq_chebyshev_U, C_mul_comp, mul_X_comp, RatFunc.num_mul_eq_mul_denom_iff, StandardEtalePresentation.toPresentation_val, sylvesterMap_apply_coe, natDegree_mul_C_le, natTrailingDegree_mul, contentIdeal_mul_eq_top_of_contentIdeal_eq_top, Chebyshev.U_sub_two, Monic.natDegree_mul, Chebyshev.C_eq_two_mul_T_comp_half_mul_X, natDegree_mul_C, rootMultiplicity_mul', WeierstrassCurve.Ο†_four, natDegree_mul_le_of_le, algEquivCMulXAddC_symm_apply, Chebyshev.T_eq_half_mul_C_comp_two_mul_X, opRingEquiv_symm_C, UniversalFactorizationRing.factor₁_mul_factorβ‚‚, resultant_add_mul_left, natDegree_cubic, UniversalCoprimeFactorizationRing.factor₁_mul_factorβ‚‚, toFinsupp_C_mul_X_pow, mul_comp, natDegree_C_mul_of_isUnit, dickson_two, succ_signVariations_X_sub_C_mul_monomial, derivative_X_add_C_sq, natSepDegree_mul_of_isCoprime, comp_eq_sum_left, Monic.mul_natDegree_lt_iff, Monic.natDegree_mul_comm, Matrix.charpoly_mul_comm', IsLocalization.adjoin_inv, Monic.mul_left_eq_zero_iff, aroots_mul, MvPolynomial.universalFactorizationMap_freeMonic, natDegree_mul_le, pow_mul_divByMonic_rootMultiplicity_eq, Chebyshev.C_sub_two, contract_mul_expand, eval_mul_X, toFinsuppIso_symm_apply, degree_cubic_le, WeierstrassCurve.Ξ¨_four, mul_coeff_zero, evalEval_list_prod, toLaurent_C_mul_eq, X_sub_C_mul_removeFactor, logMahlerMeasure_C_mul_X_add_C, Cubic.eq_prod_three_roots, Multiset.prod_X_add_C_eq_sum_esymm, exists_prod_multiset_X_sub_C_mul, degree_linear_le, derivative_X_add_C_pow, natDegree_opRingEquiv, mul_X_sub_intCast_comp, resultant_mul_right, Chebyshev.T_sub_two, splits_iff_exists_multiset', toFinsupp_C_mul_X, isUnitTrinomial_iff', iterate_derivative_mul, Chebyshev.T_eq_X_mul_T_sub_pol_U, qsmul_eq_C_mul, Gal.restrictProd_injective, degree_linear_lt_degree_C_mul_X_sq, splits_of_exists_multiset, RatFunc.denom_add_dvd, iterate_derivative_intCast_mul, isNilpotent_pow_X_mul_C_of_isNilpotent, coeff_mul_monomial, degree_quadratic_lt_degree_C_mul_X_cb, Chebyshev.S_add_two, coeff_C_mul_X_pow, Chebyshev.C_add_two, WeierstrassCurve.Ο†_two, evalβ‚‚_mul_eq_zero_of_left, degree_C_mul_X, PowerSeries.IsWeierstrassFactorizationAt.mul, derivative_bernoulli, natSepDegree_mul, coeff_mul_X_pow', coeff_mul_mirror, degree_mul_C, div_C_mul, resultant_C_mul_left, Chebyshev.T_add_two, StandardEtalePresentation.toPresentation_relation, opRingEquiv_op_C_mul_X_pow, Ideal.polynomialQuotientEquivQuotientPolynomial_map_mk, contentIdeal_mul_le_mul_contentIdeal, WeierstrassCurve.Ξ¨Sq_four, natCast_mul_comp, hilbertPoly_mul_one_sub_pow_add, mul_star_dvd_of_aeval_eq_zero_im_ne_zero, bernsteinPolynomial.derivative_zero, splits_of_splits_mul', base_mul_mem_lifts, le_rootMultiplicity_mul, X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, separable_C_mul_X_pow_add_C_mul_X_add_C, degree_sum_fin_lt, Monic.mul, Monic.as_sum, trailingDegree_mul', mapEquiv_apply, Cubic.C_mul_prod_X_sub_C_eq, eq_leadingCoeff_mul_of_monic_of_dvd_of_natDegree_le, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eq_poly_in_U, bernoulli_comp_one_sub_X, natDegree_lt_coeff_mul, isUnit_leadingCoeff_mul_right_eq_zero_iff, irreducible_C_mul_X_add_C, commute_X_pow, succ_signVariations_le_X_sub_C_mul, IsMonicOfDegree.of_dvd_add, reverse_C_add, natDegree_linear, toLaurent_C_mul_X_pow, isUnit_leadingCoeff_mul_left_eq_zero_iff, coeff_intCast_mul, natDegree_X_mul, Splits.mul, degree_mul_X_pow, le_natTrailingDegree_mul, IsUnitTrinomial.irreducible_aux1, coeff_X_mul, roots_C_mul_X_add_C_of_IsUnit, mul_modByMonic, degree_C_mul_X_pow, mod_def, Separable.mul, Monic.degree_mul_comm, primPart_mul, bernsteinPolynomial.derivative_succ_aux, mul_contentIdeal_le_radical_contentIdeal_mul, Chebyshev.T_eq_U_sub_X_mul_U, cyclotomic_prime_mul_X_sub_one, ascPochhammer_succ_left, natDegree_cubic_le, coeff_mul_degree_add_degree, mul_coeff_one, WeierstrassCurve.ψ_four, WeierstrassCurve.Ξ¨_odd, natDegree_quadratic, natDegree_C_mul_X_pow_le, mul_scaleRoots', isRoot_of_isRoot_iff_dvd_derivative_mul, resultant_C_mul_right, homogenize_mul, degree_linear, evalβ‚‚_list_prod_noncomm, derivative_apply, nextCoeff_C_mul, self_sub_C_mul_X_pow, monomial_comp, eval_C_mul, natTrailingDegree_mul', neg_one_pow_mul_shiftedLegendre_comp_one_sub_X_eq, monomial_mul_monomial, signVariations_C_mul, opRingEquiv_symm_X, coeff_monomial_mul, reflect_mul_induction, Chebyshev.S_sub_two, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, degree_linear_lt, WeierstrassCurve.preΞ¨_even, coeff_list_prod_of_natDegree_le, ascPochhammer_succ_right, PowerSeries.trunc_C_mul, Chebyshev.add_one_mul_T_eq_poly_in_U, evalEval_mul, evalβ‚‚_mul_noncomm, natDegree_list_prod_le, derivative_C_mul_X_sq, card_support_trinomial, trailingCoeff_mul, Splits.listProd, IsMonicOfDegree.of_dvd_sub, exists_mul_add_mul_eq_C_resultant, Matrix.charpoly_of_card_eq_two, smeval_mul_X_pow, trailingDegree_mul, X_pow_mul_C, RatFunc.num_denom_neg, degree_mul, isMonicOfDegree_sub_add_two, X_pow_mul, Monic.neg_one_pow_natDegree_mul_comp_neg_X, Monic.natDegree_mul'
instNSMul πŸ“–CompOp
21 mathmath: one_add_X_pow_sub_X_pow, iterate_derivative_eq_factorial_smul_sum, iterate_derivative_X_add_pow, iterate_derivative_mul_X, Real.Polynomial.isRoot_cos_pi_div_five, iterate_derivative_X_sub_pow, ascPochhammer_succ_comp_X_add_one, natCast_mul, iterate_derivative_derivative_mul_X_sq, toFinsupp_nsmul, exists_iterate_derivative_eq_factorial_smul, bernsteinPolynomial.variance, iterate_derivative_derivative_mul_X, bernsteinPolynomial.sum_smul, bernoulli_eq_sub_sum, bernoulli_comp_one_add_X, bernsteinPolynomial.sum_mul_smul, iterate_derivative_mul_X_pow, iterate_derivative_mul, bernoulli_comp_neg_X, ofFinsupp_nsmul
instNatCast πŸ“–CompOp
84 mathmath: Chebyshev.one_sub_X_sq_mul_derivative_derivative_U_eq_poly_in_U, WeierstrassCurve.Οˆβ‚‚_sq, descPochhammer_succ_comp_X_sub_one, derivative_expand, chebyshev_U_eq_dickson_two_one, Matrix.charpoly_natCast, Chebyshev.S_eq_X_mul_S_add_C, Chebyshev.S_comp_two_mul_X, ofFinsupp_natCast, Chebyshev.T_two, Chebyshev.T_add_one, natCast_mul, Chebyshev.C_eq_S_sub_X_mul_S, C_eq_natCast, Chebyshev.U_two, Chebyshev.U_eq, evalβ‚‚_natCast, eval_natCast, ascPochhammer_mul, descPochhammer_succ_right, Chebyshev.U_sub_one, iterate_derivative_natCast_mul, Chebyshev.U_one, smeval_natCast, Mathlib.Tactic.ComputeDegree.natDegree_natCast_le, natTrailingDegree_natCast, derivative_natCast_mul, natCast_coeff_zero, coeff_natCast_ite, WeierstrassCurve.C_Ξ¨β‚‚Sq, iterate_derivative_X_pow_eq_natCast_mul, coeff_natCast_mul, Chebyshev.T_eq, descPochhammer_eq_ascPochhammer, bernsteinPolynomial.variance, descPochhammer_mul, toFinsupp_natCast, Matrix.charmatrix_natCast, Lagrange.iterate_derivative_interpolate, Chebyshev.U_add_two, natCast_inj, iterate_derivative_prod_X_sub_C, factorial_mul_shiftedLegendre_eq, Chebyshev.T_neg_two, eval_natCast_mul, dickson_one_one_eq_chebyshev_T, chebyshev_T_eq_dickson_one_one, mul_X_add_natCast_comp, natDegree_natCast, Chebyshev.C_comp_two_mul_X, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eq_poly_in_T, Chebyshev.U_add_one, ofNat_comp, natCast_comp, geom_sum_X_comp_X_add_one_eq_sum, Chebyshev.T_mul_T, Chebyshev.T_sub_one, bernsteinPolynomial.derivative_succ, coeff_mul_natCast, iterate_derivative_X_sub_pow_self, Chebyshev.C_zero, dickson_zero, derivative_bernoulli_add_one, Chebyshev.U_sub_two, Chebyshev.C_eq_two_mul_T_comp_half_mul_X, Chebyshev.T_eq_half_mul_C_comp_two_mul_X, dickson_two, mul_X_sub_intCast_comp, Chebyshev.T_sub_two, derivative_natCast, derivative_bernoulli, Chebyshev.T_add_two, natCast_mul_comp, bernsteinPolynomial.derivative_zero, map_natCast, aeval_natCast, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eq_poly_in_U, evalEval_natCast, Chebyshev.C_two, bernsteinPolynomial.derivative_succ_aux, Chebyshev.C_neg_two, WeierstrassCurve.Ξ¨_odd, ascPochhammer_succ_right, degree_natCast_le
instNeg πŸ“–CompOp
78 mathmath: Multiset.prod_X_sub_X_eq_sum_esymm, derivative_comp_one_sub_X, splits_neg_iff, mirror_neg, comp_neg_X_eq_zero_iff, Chebyshev.S_neg_sub_two, Matrix.charmatrix_apply_ne, natDegree_neg_le_of_le, support_neg, wronskian_neg_right, WeierstrassCurve.Ξ¨_neg, WeierstrassCurve.Affine.addPolynomial_slope, WeierstrassCurve.Affine.C_addPolynomial_slope, iterate_derivative_comp_one_sub_X, wronskian_neg_eq, Matrix.charmatrix_fromBlocks, degree_neg_le_of_le, Chebyshev.U_neg_sub_one, WeierstrassCurve.Affine.derivative_addPolynomial_slope, WeierstrassCurve.Affine.addPolynomial_eq, neg_modByMonic, comp_neg_X_leadingCoeff_eq, algEquivAevalNegX_symm_apply, mul_comp_neg_X, neg_cancelLeads, Chebyshev.S_neg_two, Chebyshev.U_neg, Chebyshev.S_neg, ofFinsupp_neg, reflect_neg, WeierstrassCurve.ψ_neg, monomial_neg, natTrailingDegree_neg, aeval_neg, degree_neg, coe_neg, evalEval_neg, WeierstrassCurve.preΞ¨_neg, iterate_derivative_neg, degree_comp_neg_X, minpoly.neg, reverse_neg, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, toFinsupp_neg, aroots_neg, evalβ‚‚_neg, coeffList_neg, coeff_neg, derivative_neg, dvd_comp_neg_X_iff, Matrix.charpoly_inv, algEquivAevalNegX_apply, roots_neg, signVariations_neg, eval_neg, map_neg, Chebyshev.U_neg_two, Chebyshev.S_neg_sub_one, natDegree_neg, C_neg, neg_comp, bernsteinPolynomial.derivative_zero, Splits.comp_neg_X, bernoulli_comp_one_sub_X, Splits.neg, smeval_neg, wronskian_neg_left, trailingDegree_neg, bernoulli_comp_neg_X, comp_neg_X_comp_neg_X, WeierstrassCurve.Ξ¨_odd, leadingCoeff_neg, neg_one_pow_mul_shiftedLegendre_comp_one_sub_X_eq, homogenize_neg, Chebyshev.U_neg_sub_two, RatFunc.num_denom_neg, rootSet_neg, Monic.neg_one_pow_natDegree_mul_comp_neg_X
instOne πŸ“–CompOp
242 mathmath: logMahlerMeasure_one, Lagrange.interpolate_one, coe_eq_one_iff, primPart_zero, LaurentPolynomial.mk'_one_X_pow, map_one, one_add_X_pow_sub_X_pow, eq_cyclotomic_iff, StandardEtalePair.inv_aeval_X_g, splits_X_pow_sub_one_of_X_pow_sub_C, resultant_one_right, coeff_one, cyclotomic_six, Chebyshev.one_sub_X_sq_mul_derivative_derivative_U_eq_poly_in_U, Multiset.prod_X_sub_X_eq_sum_esymm, RatFunc.num_one, leadingCoeff_one, C_1, derivative_comp_one_sub_X, contentIdeal_one, descPochhammer_succ_comp_X_sub_one, leadingCoeff_det_X_one_add_C, RatFunc.denom_one, coeff_one_add_X_pow, irreducible_of_monic, StandardEtalePresentation.toPresentation_algebra_smul, LaurentPolynomial.mk'_one_X, eq_one_of_roots_le, WeierstrassCurve.Ξ¨Sq_odd, derivative_X, evalβ‚‚_one, coe_one, restriction_one, degree_list_prod, modByMonic_one, map_list_prod, Lagrange.basis_singleton, Matrix.derivative_det_one_add_X_smul, integralNormalization_C, prod_cyclotomic_eq_X_pow_sub_one, degree_list_prod_le, Monic.natDegree_eq_zero, WeierstrassCurve.Affine.polynomial_eq, WeierstrassCurve.preΞ¨'_one, WeierstrassCurve.preΞ¨_odd, one_scaleRoots, WeierstrassCurve.Ξ¨_one, Lagrange.nodal_empty, Matrix.det_one_add_smul, Lagrange.basisDivisor_add_symm, Chebyshev.T_two, ascPochhammer_succ_comp_X_add_one, WeierstrassCurve.Ξ¨Sq_ofNat, evalβ‚‚_list_prod, aeval_one, cyclotomic_two, Chebyshev.U_two, Chebyshev.S_sq_add_S_sq, X_pow_sub_one_dvd_prod_cyclotomic, aeval_homogenize_X_one, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, cyclotomic'_one, X_pow_sub_one_eq_prod, mkDerivation_one_eq_derivative', derivative_X_add_C, Real.fibRec_charPoly_eq, RatFunc.ofFractionRing_one, hermite_eq_iterate, WeierstrassCurve.Ξ¨_ofNat, splits_one, gal_X_pow_sub_one_isSolvable, bernsteinPolynomial.flip', ofFinsupp_eq_one, list_prod_comp, Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T, reflect_one, bernoulli_zero, X_pow_sub_X_sub_one_irreducible, iterate_derivative_comp_one_sub_X, prod_cyclotomic'_eq_X_pow_sub_one, IsCyclotomicExtension.isSplittingField_X_pow_sub_one, Lagrange.basis_empty, IsPrimitiveRoot.minpoly_sub_one_eq_cyclotomic_comp, Monic.isUnit_iff, ofFinsupp_one, Monic.natDegree_eq_zero_iff_eq_one, IsCyclotomicExtension.splits_X_pow_sub_one, Chebyshev.U_zero, natTrailingDegree_one, bernsteinPolynomial.flip, eval_list_prod, FixedPoints.minpoly.irreducible_aux, reflect_one_X, separable_def', Matrix.charpoly_one, Matrix.det_one_add_X_smul, descPochhammer_eq_ascPochhammer, toFinsupp_one, cyclotomic_prime_pow_mul_X_pow_sub_one, separable_one, bernsteinPolynomial.variance, cauchyBound_one, Chebyshev.add_one_mul_self_mul_T_eq_poly_in_T, descPochhammer_succ_left, AdjoinRoot.root_isInv, monomial_zero_one, RatFunc.one_def, isMonicOfDegree_zero_iff, cyclotomic_zero, cyclotomic.dvd_X_pow_sub_one, Chebyshev.S_neg_two, Chebyshev.S_zero, bernoulli_comp_one_add_X, WeierstrassCurve.Ξ¦_ofNat, degree_one_le, minpoly.subsingleton, X_pow_sub_one_separable_iff, WeierstrassCurve.ψ_one, RatFunc.denom_X, content_one, WeierstrassCurve.preΞ¨'_odd, hilbertPoly_mul_one_sub_succ, cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt, smeval_one, natDegree_one, degree_one, ascPochhammer_zero, X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, factorial_mul_shiftedLegendre_eq, Chebyshev.one_sub_X_sq_mul_derivative_derivative_T_eq_poly_in_T, comp_one, coeffs_one, natSepDegree_one, dvd_C_mul_X_sub_one_pow_add_one, WeierstrassCurve.Ξ¨Sq_one, Chebyshev.T_neg_two, isPrimitive_one, Chebyshev.S_two, gal_one_isSolvable, toFinsupp_eq_one, Matrix.charpoly_isEmpty, cyclotomic_one, mahlerMeasure_one, PolyEquivTensor.invFun_monomial, one_comp, mkDerivation_one_eq_derivative, PolyEquivTensor.toFunLinear_one_tmul_one, StandardEtalePresentation.toPresentation_Οƒ', roots_list_prod, cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, coeff_X_add_one_pow, RatFunc.denom_C, LinearMap.charpoly_one, FiniteField.minpoly_frobeniusAlgHom, Matrix.charmatrix_one, Matrix.coeff_det_one_add_X_smul_one, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eq_poly_in_T, X_pow_sub_X_sub_one_irreducible_rat, trailingDegree_one, cyclotomic'_two, AdjoinRoot.algHom_subsingleton, toLaurent_one, Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T, minpoly.one, geom_sum_X_comp_X_add_one_eq_sum, minpoly.neg, RatFunc.algebraMap_apply, PowerSeries.trunc_one, roots_one, rootSet_one, StandardEtalePair.aeval_X_g_mul_mk_X, hasseDeriv_apply_one, RatFunc.mk_one, eval_one, derivativeFinsupp_one, Matrix.charpoly_inv, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, RatFunc.denom_algebraMap, Mathlib.Tactic.ComputeDegree.natDegree_one_le, derivative_bernoulli_add_one, Lagrange.sum_basis, StandardEtalePresentation.toPresentation_val, Chebyshev.T_zero, leadingCoeff_X_pow_sub_one, aroots_one, not_isUnit_X_pow_sub_one, cyclotomic_three, RatFunc.mk_one', Chebyshev.U_neg_two, IsLocalization.adjoin_inv, monic_one, cyclotomic_comp_X_add_one_isEisensteinAt, leadingCoeff_X_pow_add_one, evalEval_list_prod, Chebyshev.T_eq_X_mul_T_sub_pol_U, resultant_one_left, bernsteinPolynomial.sum, Lagrange.nodal_subgroup_eq_X_pow_card_sub_one, StandardEtalePresentation.toPresentation_relation, WeierstrassCurve.preΞ¨_two, Monic.eq_one_of_isUnit, eq_one_of_monic_natDegree_zero, hilbertPoly_mul_one_sub_pow_add, divX_one, X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, iterate_derivative_one, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eq_poly_in_U, bernoulli_comp_one_sub_X, matPolyEquiv_smul_one, WeierstrassCurve.preΞ¨_one, cyclotomic_eq_X_pow_sub_one_div, Matrix.derivative_det_one_add_X_smul_aux, bernsteinPolynomial.derivative_succ_aux, WeierstrassCurve.Ο†_zero, derivative_X_sub_C, coeff_one_zero, cyclotomic_prime_mul_X_sub_one, ascPochhammer_succ_left, WeierstrassCurve.Ξ¦_zero, trailingDegree_one_le, homogenize_one, derivative_one, evalβ‚‚_list_prod_noncomm, Monic.degree_le_zero_iff_eq_one, descPochhammer_zero, divByMonic_one, evalEval_one, neg_one_pow_mul_shiftedLegendre_comp_one_sub_X_eq, RatFunc.denom_zero, WeierstrassCurve.preΞ¨'_two, coeff_list_prod_of_natDegree_le, Chebyshev.add_one_mul_T_eq_poly_in_U, natDegree_list_prod_le, taylor_one, cyclotomic'_zero, derivativeFinsupp_X, Splits.listProd, Splits.one, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, cyclotomic'_eq_X_pow_sub_one_div, Monic.neg_one_pow_natDegree_mul_comp_neg_X, toSubring_one
instSub πŸ“–CompOp
443 mathmath: mul_div_eq_iff_isRoot, IsAdjoinRoot.repr_add_sub_repr_add_repr_mem_span, eq_X_sub_C_of_separable_of_root_eq, separable_X_pow_sub_C_unit, splits_iff_exists_multiset, Chebyshev.T_eq_X_mul_U_sub_U, reflect_sub, taylorWithin_succ, mul_divByMonic_eq_iff_isRoot, monic_X_sub_C, one_add_X_pow_sub_X_pow, eq_cyclotomic_iff, ker_evalRingHom, StandardEtalePair.inv_aeval_X_g, IsPurelyInseparable.minpoly_eq', root_X_sub_C, X_pow_sub_C_splits_of_isPrimitiveRoot, pow_rootMultiplicity_dvd, X_pow_sub_C_eq_prod, expNegInvGlue.hasDerivAt_polynomial_eval_inv_mul, cyclotomic_six, Chebyshev.one_sub_X_sq_mul_derivative_derivative_U_eq_poly_in_U, WeierstrassCurve.Ξ¨Sq_even, prod_X_sub_C_nextCoeff, mem_roots_sub_C', Multiset.prod_X_sub_X_eq_sum_esymm, exists_partition_polynomial, aroots_X_sub_C, natDegree_sub_le_iff_right, prod_multiset_X_sub_C_of_monic_of_roots_card_eq, IsMonicOfDegree.natDegree_sub_X_pow, derivative_comp_one_sub_X, monic_multisetProd_X_sub_C, isCoprime_of_is_root_of_eval_derivative_ne_zero, descPochhammer_succ_comp_X_sub_one, quotientSpanXSubCAlgEquiv_symm_apply, X_pow_sub_C_irreducible_iff_of_odd, zero_notMem_multiset_map_X_sub_C, card_roots_sub_C', Irreducible.natSepDegree_eq_one_iff_of_monic', X_pow_sub_C_irreducible_of_odd, StandardEtalePresentation.toPresentation_algebra_smul, coeff_sub_eq_left_of_lt, natDegree_X_pow_sub_C, Monic.natSepDegree_eq_one_iff_of_irreducible', WeierstrassCurve.Ξ¨Sq_odd, eq_prod_roots_of_splits, eq_prod_roots_of_monic_of_splits_id, WeierstrassCurve.Affine.Y_sub_negPolynomial, minpoly_algHom_toLinearMap, Lagrange.interpolate_eq_nodalWeight_mul_nodal_div_X_sub_C, natSepDegree_X_sub_C_pow, isMonicOfDegree_two_iff', exists_partition_polynomial_aux, IsMonicOfDegree.natDegree_sub_lt, Monic.eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one, minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C, natDegree_sub_eq_right_of_natDegree_lt, isMonicOfDegree_X_sub_one, ConjRootClass.minpoly.map_eq_prod, Chebyshev.S_add_one, coeff_divByMonic_X_sub_C_rec, Subfield.splits_bot, Matrix.charmatrix_apply_eq, Lagrange.nodal_insert_eq_nodal, Matrix.charpoly_natCast, eval_divByMonic_eq_trailingCoeff_comp, X_pow_sub_C_irreducible_iff_forall_prime_of_odd, rootMultiplicity_X_sub_C_pow, resultant_X_sub_C_right, monic_finprod_X_sub_C, Real.Polynomial.isRoot_cos_pi_div_five, WeierstrassCurve.Affine.C_addPolynomial, self_sub_monomial_natDegree_leadingCoeff, natDegree_finset_prod_X_sub_C_eq_card, prod_cyclotomic_eq_X_pow_sub_one, pow_rootMultiplicity_not_dvd, divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative, Chebyshev.S_eq, WeierstrassCurve.preΞ¨_odd, dvd_comp_X_add_C_iff, separable_X_pow_sub_C, dvd_comp_C_mul_X_add_C_iff, X_pow_sub_one_splits, Monic.comp_X_sub_C, degree_X_sub_C, iterate_derivative_X_sub_pow, isSplittingField_X_pow_sub_C_of_root_adjoin_eq_top, PowerSeries.IsWeierstrassFactorization.isWeierstrassDivision, exists_finset_of_splits, Chebyshev.T_two, ofFinsupp_sub, Matrix.charpoly_of_upperTriangular, Chebyshev.T_add_one, gal_X_pow_sub_C_isSolvable, Lagrange.interpolate_eq_sum, FiniteField.roots_X_pow_card_sub_X, Chebyshev.C_eq_S_sub_X_mul_S, WeierstrassCurve.Ο†_three, AdjoinRoot.mk_eq_mk, derivative_X_sub_C_sq, FiniteField.instIsSplittingFieldExtensionHSubPolynomialHPowNatXCard, Chebyshev.U_two, roots_X_pow_char_pow_sub_C_pow, Multiset.prod_X_sub_C_dvd_iff_le_roots, Matrix.IsHermitian.charpoly_cfc_eq, mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero, Chebyshev.U_eq, Chebyshev.S_sq_add_S_sq, X_pow_sub_one_dvd_prod_cyclotomic, prod_multiset_root_eq_finset_root, X_pow_sub_C_separable_iff, IsPurelyInseparable.minpoly_eq, coeff_X_sub_C_mul, monic_X_pow_sub_C, rootMultiplicity_eq_natFind_of_ne_zero, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, cyclotomic'_one, WeierstrassCurve.preΞ¨'_even, logMahlerMeasure_X_sub_C, X_pow_sub_one_eq_prod, prod_multiset_X_sub_C_dvd, AdjoinRoot.mul_div_root_cancel, minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow, hermite_succ, descPochhammer_succ_right, Chebyshev.U_sub_one, Real.fibRec_charPoly_eq, hermite_eq_iterate, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial, cyclotomic_eq_prod_X_sub_primitiveRoots, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_add_eq, Splits.comp_X_sub_C, coeff_mul_X_sub_C, smeval_sub, gal_X_pow_sub_one_isSolvable, natSepDegree_C_mul_X_sub_C_pow, X_sub_C_mul_divByMonic_eq_sub_modByMonic, roots_C_mul_X_sub_C_of_IsUnit, bernsteinPolynomial.flip', WeierstrassCurve.Affine.addPolynomial_slope, rootMultiplicity_eq_nat_find_of_nonzero, derivative_X_sub_C_pow, X_pow_sub_C_irreducible_iff_of_prime_pow, Lagrange.basis_eq_prod_sub_inv_mul_nodal_div, natDegree_sub_le_of_le, IsRoot.mul_div_eq, Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T, MulSemiringAction.charpoly_eq_prod_smul, X_pow_sub_X_sub_one_irreducible, leadingCoeff_X_pow_sub_C, coeff_sub_eq_neg_right_of_lt, minpoly.eq_X_sub_C_of_algebraMap_inj, WeierstrassCurve.Affine.C_addPolynomial_slope, iterate_derivative_comp_one_sub_X, Splits.eq_prod_roots, div_wf_lemma, exists_approx_polynomial_aux, prod_cyclotomic'_eq_X_pow_sub_one, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, IsCyclotomicExtension.isSplittingField_X_pow_sub_one, evalβ‚‚_sub, natDegree_sub_le_iff_left, separable_X_pow_sub_C', IsCyclotomicExtension.splits_X_pow_sub_one, Chebyshev.S_sub_one, Splits.eq_X_sub_C_of_single_root, bernsteinPolynomial.flip, modByMonic_eq_sub_mul_div, quotientSpanXSubCAlgEquiv_mk, Lagrange.X_sub_C_dvd_nodal, roots_X_sub_C, WeierstrassCurve.C_Ξ¨β‚‚Sq, le_rootMultiplicity_iff, WeierstrassCurve.Affine.derivative_addPolynomial_slope, rootMultiplicity_mul_X_sub_C_pow, Matrix.charpoly_one, Subfield.roots_X_pow_char_sub_X_bot, natSepDegree_X_pow_char_pow_sub_C, evalEval_sub, FiniteField.isSplittingField_of_nat_card_eq, degree_X_pow_sub_C, Chebyshev.T_eq, descPochhammer_eq_ascPochhammer, Irreducible.natSepDegree_eq_one_iff_of_monic, Chebyshev.C_eq, WeierstrassCurve.ψ_even, cyclotomic_prime_pow_mul_X_pow_sub_one, resultant_X_sub_C_pow_left, bernsteinPolynomial.variance, eval_iterate_derivative_rootMultiplicity, Chebyshev.add_one_mul_self_mul_T_eq_poly_in_T, sub_mod, bernoulli_eq_sub_sum, descPochhammer_succ_left, separable_prod_X_sub_C_iff', descPochhammer_mul, AdjoinRoot.root_isInv, FiniteField.splits_X_pow_nat_card_sub_X, eq_prod_roots_of_splits_id, natDegree_X_sub_C, Matrix.matPolyEquiv_charmatrix, resultant_X_sub_C_pow_right, X_sub_C_dvd_sub_C_eval, WeierstrassCurve.Affine.Y_sub_polynomialY, prime_X_sub_C, Matrix.charmatrix_natCast, Lagrange.iterate_derivative_interpolate, C_sub, roots_X_pow_char_sub_C_pow, quadratic_dvd_of_aeval_eq_zero_im_ne_zero, algEquivAevalXAddC_symm_apply, nextCoeff_X_sub_C, degree_X_sub_C_le, cyclotomic.dvd_X_pow_sub_one, Monic.natSepDegree_eq_one_iff, X_pow_sub_C_irreducible_of_prime, roots_multiset_prod_X_sub_C, Matrix.charpoly_fin_two, separable_prod_X_sub_C_iff, dickson_add_two, exists_eq_pow_rootMultiplicity_mul_and_not_dvd, leadingCoeff_sub_of_degree_lt, WeierstrassCurve.Ξ¦_ofNat, exists_approx_polynomial, Chebyshev.C_sub_one, card_roots_X_pow_sub_C, X_pow_sub_one_separable_iff, mem_roots_sub_C, WeierstrassCurve.Ξ¦_three, Chebyshev.U_add_two, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, WeierstrassCurve.preΞ¨'_odd, gal_X_sub_C_isSolvable, hilbertPoly_mul_one_sub_succ, FiniteField.isSplittingField_of_card_eq, natDegree_multiset_prod_X_sub_C_eq_card, Matrix.charpoly_coeff_eq_prod_coeff_of_le, iterate_derivative_prod_X_sub_C, signVariations_eraseLead_mul_X_sub_C, X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, natDegree_sub_eq_left_of_natDegree_lt, mahlerMeasure_X_sub_C, minpoly.add_algebraMap, MulSemiringAction.charpoly_eq, WeierstrassCurve.ψ_odd, root_X_pow_sub_C_pow, WeierstrassCurve.Ξ¨_even, natDegree_sub, WeierstrassCurve.Ξ¦_four, Chebyshev.C_add_one, factorial_mul_shiftedLegendre_eq, Chebyshev.one_sub_X_sq_mul_derivative_derivative_T_eq_poly_in_T, dvd_C_mul_X_sub_one_pow_add_one, Monic.sub_of_left, isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C, ofMultiset_apply, Cubic.prod_X_sub_C_eq, Chebyshev.T_neg_two, rootMultiplicity_eq_multiplicity, multiset_prod_X_sub_C_nextCoeff, Chebyshev.S_two, Lagrange.nodal_eq_mul_nodal_erase, AlgebraicClosure.Monics.map_eq_prod, cyclotomic_one, Monic.sub_of_right, FiniteField.X_pow_card_sub_X_natDegree_eq, not_isUnit_X_sub_C, FiniteField.splits_X_pow_card_sub_X, coeff_sub, degree_sub_le, Matrix.charpoly_sub_diagonal_degree_lt, Splits.X_sub_C, sub_modByMonic, C_leadingCoeff_mul_prod_multiset_X_sub_C, minpoly.eq_X_sub_C', leadingCoeff_sub_of_degree_eq, StandardEtalePresentation.toPresentation_Οƒ', cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, iterate_derivative_sub, eq_X_sub_C_of_splits_of_single_root, Mathlib.Tactic.ComputeDegree.coeff_sub_of_eq, modByMonic_X_sub_C_eq_C_eval, Matrix.charpoly_vecMulVec, coe_sub, Splits.eq_prod_roots_of_monic, leadingCoeff_X_sub_C, WeierstrassCurve.Ξ¦_two, IsPurelyInseparable.minpoly_eq_X_pow_sub_C, LinearMap.charpoly_one, natDegree_X_sub_C_le, splits_X_sub_C_mul_iff, FiniteField.minpoly_frobeniusAlgHom, dickson_of_two_le, Matrix.charmatrix_one, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eq_poly_in_T, Chebyshev.U_add_one, X_sub_C_scaleRoots, X_pow_sub_X_sub_one_irreducible_rat, sum_taylor_eq, degree_sub_eq_left_of_degree_lt, minpoly_algEquiv_toLinearMap, AdjoinRoot.algHom_subsingleton, mod_X_sub_C_eq_C_eval, Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T, minpoly.one, derivative_sub, natSepDegree_X_sub_C, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, Chebyshev.T_sub_one, spectralValue_X_sub_C, StandardEtalePair.aeval_X_g_mul_mk_X, map_sub, roots_C_mul_X_sub_C, rootMultiplicity_le_iff, eraseLead_mul_eq_mul_eraseLead_of_nextCoeff_zero, IsPurelyInseparable.minpoly_eq_X_sub_C_pow, X_pow_sub_C_irreducible_of_prime_pow, bernsteinPolynomial.derivative_succ, PowerSeries.IsWeierstrassDivision.isWeierstrassFactorization, iterate_derivative_X_sub_pow_self, X_dvd_sub_C, eval_mul_X_sub_C, minpolyDiv_spec, Monic.eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible, natDegree_sub_C, toFinsupp_sub, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, dickson_zero, signVariations_X_sub_C_mul_eraseLead_le, roots_X_pow_char_sub_C, bernoulli_one, degree_sub_lt, StandardEtalePresentation.toPresentation_val, Chebyshev.U_sub_two, leadingCoeff_X_pow_sub_one, homogenize_sub, FiniteField.X_pow_card_pow_sub_X_natDegree_eq, WeierstrassCurve.Ο†_four, rootMultiplicity_X_sub_C_self, splits_X_sub_C, algEquivCMulXAddC_symm_apply, IsMonicOfDegree.aeval_sub, not_isUnit_X_pow_sub_one, dickson_two, succ_signVariations_X_sub_C_mul_monomial, rootMultiplicity_X_sub_C, IsLocalization.adjoin_inv, dvd_comp_X_sub_C_iff, pow_mul_divByMonic_rootMultiplicity_eq, Chebyshev.C_sub_two, X_sub_C_mul_removeFactor, Cubic.eq_prod_three_roots, FiniteField.isSplittingField_sub, leadingCoeff_sub_of_degree_lt', exists_prod_multiset_X_sub_C_mul, Matrix.charmatrix_apply, mul_X_sub_intCast_comp, Chebyshev.T_sub_two, Matrix.charmatrix_ofNat, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, dvd_iff_isRoot, Chebyshev.T_eq_X_mul_T_sub_pol_U, cauchyBound_X_sub_C, splits_of_exists_multiset, prod_X_sub_C_coeff_card_pred, Chebyshev.S_add_two, Chebyshev.C_add_two, WeierstrassCurve.Ο†_two, resultant_X_sub_C_left, Lagrange.nodal_subgroup_eq_X_pow_card_sub_one, Chebyshev.T_add_two, StandardEtalePresentation.toPresentation_relation, hilbertPoly_mul_one_sub_pow_add, mul_star_dvd_of_aeval_eq_zero_im_ne_zero, X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, Matrix.IsHermitian.charpoly_eq, multiset_prod_X_sub_C_coeff_card_pred, separable_X_sub_C, finiteMultiplicity_X_sub_C, irreducible_X_sub_C, preimage_eval_singleton, IsMonicOfDegree.sub, Cubic.C_mul_prod_X_sub_C_eq, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eq_poly_in_U, bernoulli_comp_one_sub_X, eval_sub, Chebyshev.C_two, succ_signVariations_le_X_sub_C_mul, monomial_sub, PowerSeries.trunc_sub, IsMonicOfDegree.of_dvd_add, degree_sub_le_of_le, autAdjoinRootXPowSubC_root, Matrix.charpoly_diagonal, natDegree_sub_le, Monic.natSepDegree_eq_one_iff_of_irreducible, matPolyEquiv_eq_X_pow_sub_C, cyclotomic_eq_X_pow_sub_one_div, coeff_divByMonic_X_sub_C, Matrix.charpoly_ofNat, leadingCoeff_divByMonic_X_sub_C, bernsteinPolynomial.derivative_succ_aux, pairwise_coprime_X_sub_C, derivative_X_sub_C, Chebyshev.T_eq_U_sub_X_mul_U, minpoly.eq_X_sub_C, cyclotomic_prime_mul_X_sub_one, Chebyshev.C_neg_two, Matrix.charmatrix_diagonal, Lagrange.nodal_erase_eq_nodal_div, monic_prod_X_sub_C, WeierstrassCurve.Ξ¨_odd, aeval_sub, card_roots_sub_C, self_sub_C_mul_X_pow, isCoprime_X_sub_C_of_isUnit_sub, irreducible_X_pow_sub_C_of_root_adjoin_eq_top, neg_one_pow_mul_shiftedLegendre_comp_one_sub_X_eq, Chebyshev.S_sub_two, galois_poly_separable, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, WeierstrassCurve.preΞ¨_even, Chebyshev.add_one_mul_T_eq_poly_in_U, Lagrange.nodal_eq, X_pow_sub_C_irreducible_iff_of_prime, roots_X_pow_char_pow_sub_C, sub_comp, Matrix.charpoly_of_card_eq_two, eval_multiset_prod_X_sub_C_derivative, X_sub_C_pow_dvd_iff, isCyclic_tfae, roots_prod_X_sub_C, degree_sub_C, Multiset.prod_X_sub_C_coeff, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, isMonicOfDegree_sub_add_two, cyclotomic'_eq_X_pow_sub_one_div, degree_sub_eq_right_of_degree_lt, GaloisField.splits_zmod_X_pow_sub_X, monic_X_pow_sub, Monic.eq_X_sub_C_pow_of_natSepDegree_eq_one_of_splits, Matrix.isNilpotent_charpoly_sub_pow_of_isNilpotent
instZSMul πŸ“–CompOp
3 mathmath: toFinsupp_zsmul, ofFinsupp_zsmul, bernoulli_comp_neg_X
instZero πŸ“–CompOp
342 mathmath: isUnit_C_add_X_mul_iff, isLeftCancelMulZero_iff, eraseLead_monomial, primPart_zero, ofFn_zero, toLaurent_eq_zero, cardPowDegree_zero, ofFinsupp_zero, coeff_natTrailingDegree_eq_zero, divX_X_pow, degree_smul_of_smul_regular, iterate_derivative_zero, Mathlib.Tactic.ComputeDegree.degree_smul_le_of_le, wronskian_self_eq_zero, eraseLead_natDegree_lt_or_eraseLead_eq_zero, PowerSeries.trunc_X_pow_self_mul, eraseLead_X_pow, divByMonic_eq_of_not_monic, nnqsmul_eq_C_mul, PowerSeries.zero_weierstrassMod, homogenize_smul, sum_smul_index', derivative_pow_eq_zero, leadingCoeff_det_X_one_add_C, zero_notMem_multiset_map_X_sub_C, derivative_ofNat, derivative_smul, nextCoeffUp_zero, isNilpotent_X_mul_iff, natDegree_smul, comp_neg_X_eq_zero_iff, Mathlib.Tactic.ComputeDegree.natDegree_zero_le, resultant_zero_right, content_eq_zero_iff, C_mul', content_zero, hilbertPoly_eq_zero_of_le_rootMultiplicity_one, matPolyEquiv_diagonal_X, length_coeffList_eq_ite, evalβ‚‚_zero, supNorm_zero, zero_comp, modByMonic_one, instIsRightCancelMulZeroOfIsCancelAdd, divByMonic_eq_zero_iff, reverse_eq_zero, WeierstrassCurve.preΞ¨'_zero, coe_eq_zero_iff, Matrix.derivative_det_one_add_X_smul, roots_zero, rootMultiplicity_eq_zero_iff, monic_of_isUnit_leadingCoeff_inv_smul, iterate_derivative_X, AdjoinRoot.smul_mk, Lagrange.basisDivisor_self, WeierstrassCurve.Affine.polynomial_eq, natDegree_smul_of_smul_regular, leadingCoeff_zero, C_eq_zero, isRightCancelMulZero_iff, Gal.restrictDvd_def, evalβ‚‚_list_sum, Matrix.det_one_add_smul, coeff_list_sum_map, smul_monomial, gaussNorm_eq_zero_iff, splits_zero, C_0, sum_smul_index, isCancelMulZero_iff, matPolyEquiv_coeff_apply_aux_1, smul_eq_C_mul, isScalarTower, derivativeFinsupp_apply_toFun, zero_divByMonic, cauchyBound_smul, comp_C_mul_X_eq_zero_iff, modByMonic_eq_zero_iff_quotient_eq_zero, natSepDegree_zero, coeffs_empty_iff, IsFractionRing.integerNormalization_eq_zero_iff, gaussNorm_zero, signVariations_zero, not_monic_zero, denomsClearable_zero, isUnit_iff', Matrix.charmatrix_blockTriangular_iff, monomial_eq_zero_iff, mahlerMeasure_eq_zero_iff, smeval_smul, trailingDegree_zero, prodXSubSMul.smul, eq_zero_of_natDegree_lt_card_of_eval_eq_zero', Cubic.of_d_eq_zero, restriction_zero, toFinsupp_eq_zero, not_separable_zero, modByMonic_eq_zero_iff_dvd, RatFunc.ofFractionRing_zero, eraseLead_C_mul_X, IsSMulRegular.polynomial, natTrailingDegree_eq_zero, divX_eq_zero_iff, MulSemiringAction.charpoly_eq_prod_smul, taylor_eq_zero, natDegree_list_sum_le, eq_zero_of_eq_zero, natDegree_eq_support_max', derivativeFinsupp_apply_apply, noZeroDivisors_iff, notMem_nonZeroDivisors_iff, Splits.zero, MulSemiringAction.smul_charpoly, derivativeFinsupp_derivative, RatFunc.num_zero, hilbertPoly_zero_left, Matrix.GeneralLinearGroup.fixpointPolynomial_eq_zero_iff, Chebyshev.U_eq_zero_iff, PowerSeries.IsWeierstrassDivision.eq_zero, Mathlib.Tactic.ComputeDegree.natDegree_smul_le_of_le, zero_of_eval_zero, eq_zero_of_forall_eval_zero_of_natDegree_lt_card, rootSet_zero, Splits.def, smul_X, coe_smul, splits_iff, Lagrange.basisDivisor_eq_zero_iff, smul_eq_map, derivative_of_natDegree_zero, Matrix.det_one_add_X_smul, smul_eval_smul, comp_eq_zero_iff, iterate_derivative_C, toFn_zero, ofFn_zero', natDegree_zero, iterate_derivative_eq_zero, Monic.mul_right_eq_zero_iff, isCentralScalar, WeierstrassCurve.preΞ¨_zero, self_mul_modByMonic, degree_zero, eval_zero, wronskian_zero_left, degree_list_sum_le_of_forall_degree_le, div_eq_zero_iff, iterate_derivative_X_pow_eq_smul, WeierstrassCurve.ψ_zero, linearIndependent_powers_iff_aeval, modByMonic_zero, expand_eq_zero, Matrix.charmatrix_natCast, eraseLead_zero, eq_zero_of_degree_lt_of_eval_index_eq_zero, reflect_zero, Matrix.BlockTriangular.charmatrix, instIsCancelMulZeroOfIsCancelAdd, cardPowDegree_apply, dvd_derivative_iff, PowerSeries.weierstrassMod_zero_left, mul_self_modByMonic, eraseLead_C_mul_X_pow, ofFinsupp_smul, mirror_zero, RatFunc.num_eq_zero_iff, leadingCoeff_smul_of_smul_regular, eq_zero_of_natDegree_lt_card_of_eval_eq_zero, resultant_zero_left, eraseLead_X, trailingCoeff_zero, aroots_zero, Differential.mapCoeffs_X, RatFunc.zero_def, degree_smul_of_isRightRegular_leadingCoeff, derivativeFinsupp_map, minpoly.eq_zero, natSepDegree_mul_eq_iff, iterate_derivative_eq_zero_of_degree_lt, coeff_smul, support_smul, Splits.splits, eq_zero_of_hasseDeriv_eq_zero, degree_zero_le, eval_listSum, isNilpotent_monomial_iff, PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul, isNilpotent_iff, iterate_derivative_smul, natTrailingDegree_eq_support_min', card_support_eq_zero, FixedPoints.smul_polynomial, divX_zero, PolyEquivTensor.toFunBilinear_apply_apply, rootMultiplicity_eq_multiplicity, bernsteinPolynomial.eq_zero_of_lt, divX_C_mul_X_pow, WeierstrassCurve.Ξ¨_zero, WeierstrassCurve.Ξ¨Sq_zero, contentIdeal_eq_bot_iff, natDegree_smul_le, map_zero, coeffList_eq_nil, WeierstrassCurve.Affine.CoordinateRing.smul_basis_eq_zero, contentIdeal_zero, map_smul, mahlerMeasure_zero, eraseLead_C, degree_smul_le, cauchyBound_zero, divX_C, monomial_zero_right, divByMonic_zero, instIsLeftCancelMulZeroOfIsCancelAdd, Cubic.zero, isNilpotent_C_mul_pow_X_of_isNilpotent, IsCoprime.wronskian_eq_zero_iff, instNoZeroDivisors, Matrix.charmatrix_one, Matrix.coeff_det_one_add_X_smul_one, coeffList_zero, PolyEquivTensor.toFunBilinear_apply_eq_smul, isNilpotent_C_iff, hasseDeriv_C, coeff_list_sum, sum_zero_index, PowerSeries.IsWeierstrassDivisorAt.mod_zero, degree_map_eq_iff, toSubring_zero, smul_C, Chebyshev.U_neg_one, eq_zero_of_dvd_of_degree_lt, logMahlerMeasure_zero, toFinsupp_smul, hasseDeriv_apply_one, Lagrange.interpolate_empty, coeff_zero, derivativeFinsupp_one, isNilpotent_mul_X_iff, comp_zero, Cubic.of_d_eq_zero', RatFunc.mk_zero, isNilpotent_reflect_iff, derivative_C, eq_zero_of_dvd_of_natDegree_lt, support_eq_empty, aeval_zero, PowerSeries.IsWeierstrassDivisorAt.eq_zero_of_mul_eq, eval_smul, support_derivativeFinsupp_subset_range, mirror_eq_zero, gal_zero_isSolvable, derivative_zero, evalEval_zero, faithfulSMul, coe_zero, roots_eq_zero_iff_eq_zero_or_isRoot_eq_bot, map_eq_zero_iff, Monic.mul_natDegree_lt_iff, zero_scaleRoots, not_monic_zero_iff, PowerSeries.trunc_one_X, Monic.mul_left_eq_zero_iff, homogenize_zero, reverse_zero, map_eq_zero, matPolyEquiv_symm_X, Matrix.charmatrix_apply, scaleRoots_zero, smul_eval, Matrix.charmatrix_ofNat, smulCommClass, minpolyDiv_eq_zero, qsmul_eq_C_mul, eq_zero_of_infinite_isRoot, Cubic.toPoly_eq_zero_iff, ofFinsupp_eq_zero, isNilpotent_pow_X_mul_C_of_isNilpotent, evalEval_smul, mirror_smul, coeffs_zero, LaurentPolynomial.trunc_C_mul_T, derivative_natCast, comp_X_add_C_eq_zero_iff, natTrailingDegree_zero, hasseDeriv_X, PowerSeries.weierstrassMod_zero_right, monic_zero_iff_subsingleton', rootMultiplicity_zero, integralNormalization_zero, map_monic_eq_zero_iff, PowerSeries.weierstrassMod_zero, evalβ‚‚_smul, divX_one, isScalarTower_right, reflect_eq_zero_iff, splits_iff_splits, zero_modByMonic, matPolyEquiv_coeff_apply_aux_2, iterate_derivative_one, hilbertPoly_zero_right, degreeLTEquiv_eq_zero_iff_eq_zero, isUnit_leadingCoeff_mul_right_eq_zero_iff, smul_X_eq_monomial, annIdealGenerator_eq_zero_iff, matPolyEquiv_smul_one, trailingCoeff_eq_zero, isUnit_leadingCoeff_mul_left_eq_zero_iff, leadingCoeff_eq_zero, monic_zero_iff_subsingleton, isNilpotent_reverse_iff, PowerSeries.trunc_zero', hasseDeriv_eq_zero_of_lt_natDegree, Matrix.derivative_det_one_add_X_smul_aux, zero_notMem_multiset_map_X_add_C, transcendental_iff, Ideal.evalβ‚‚_C_mk_eq_zero, trailingDegree_eq_top, Matrix.charmatrix_diagonal, wronskian_zero_right, toFinsupp_zero, eq_zero_of_degree_lt_of_eval_finset_eq_zero, eval_smul', support_zero, erase_monomial, smeval_zero, derivative_one, supNorm_eq_zero_iff, smul_comp, polyEquivTensor_symm_apply_tmul_eq_smul, PowerSeries.isWeierstrassDivisionAt_zero, degree_eq_bot, degree_list_sum_le, Chebyshev.S_neg_one, resultant_zero_zero, derivativeFinsupp_C, derivativeFinsupp_X, roots_def, erase_zero, derivative_intCast, Mathlib.Tactic.ComputeDegree.coeff_smul, Matrix.isNilpotent_charpoly_sub_pow_of_isNilpotent
monomial πŸ“–CompOp
135 mathmath: MvPolynomial.pUnitAlgEquiv_symm_monomial, support_monomial, eraseLead_monomial, smeval_monomial_mul, PolyEquivTensor.toFunBilinear_apply_eq_sum, monomial_eq_monomial_iff, opRingEquiv_op_monomial, natDegree_monomial_le, monomial_mem_lifts, sum_bernoulli, C_mul_X_eq_monomial, roots_monomial, monomial_one_one_eq_X, Splits.monomial, mirror_monomial, coeffs_monomial, ofFn_eq_sum_monomial, derivative_monomial, toFinsupp_monomial, coe_monomial, PolyEquivTensor.toFunAlgHom_apply_tmul, adjoin_monomial_eq_reesAlgebra, monomial_mul_C, X_pow_eq_monomial, self_sub_monomial_natDegree_leadingCoeff, evalβ‚‚_monomial, monomial_pow, toLaurent_C_mul_T, PolynomialModule.monomial_smul_single, X_pow_smul_rTensor_monomial, smul_monomial, map_monomial, matPolyEquiv_coeff_apply_aux_1, monomial_mem_adjoin_monomial, ofFinsupp_single, le_trailingDegree_monomial, C_mul_X_pow_eq_monomial, monomial_eq_zero_iff, natTrailingDegree_monomial, eval_monomial_one_add_sub, Derivation.mapCoeffs_monomial, addHom_ext'_iff, degree_monomial_le, coeff_monomial_of_ne, monomial_injective, polyEquivTensor_symm_apply_tmul, valuation_inv_monomial_eq_valuation_X_zpow, sum_monomial_index, sum_monomial_eq, C_mul_monomial, as_sum_range, monomial_mul_X, mapAlgHom_monomial, reesAlgebra.monomial_mem, coeff_monomial, Differential.mapCoeffs_monomial, mul_eq_sum_sum, monomial_zero_one, eraseLead_add_monomial_natDegree_leadingCoeff, monomial_one_eq_iff, coeff_monomial_zero_mul, coeff_mul_monomial_zero, AdjoinRoot.powerBasisAux'_repr_symm_apply, Bivariate.swap_monomial_monomial, PolynomialModule.equivPolynomial_single, supNorm_monomial, gaussNorm_monomial, expand_monomial, hasseDeriv_monomial, monomial_add, coeff_monomial_same, opRingEquiv_symm_monomial, toAddCircle_monomial_eq_smul_fourier, coe_basisMonomials, PowerSeries.trunc_apply, isNilpotent_monomial_iff, as_sum_range', natDegree_monomial, contentIdeal_monomial, bernoulli_def, lhom_ext'_iff, X_pow_mul_monomial, valuation_monomial_eq_valuation_X_pow, PolyEquivTensor.invFun_monomial, monomial_neg, monomial_zero_right, signVariations_monomial, monomial_mul_X_pow, X_mul_monomial, taylor_monomial, valuation_aeval_monomial_eq_valuation_pow, smeval_monomial, homogenize_monomial_of_lt, aroots_monomial, derivative_monomial_succ, PowerSeries.trunc_succ, monomial_one_right_eq_X_pow, MvPolynomial.optionEquivLeft_monomial, hasseDeriv_apply, addSubmonoid_closure_setOf_eq_monomial, sum_modByMonic_coeff, aeval_monomial, MvPolynomial.pUnitAlgEquiv_monomial, monomial_zero_left, succ_signVariations_X_sub_C_mul_monomial, as_sum_support, natTrailingDegree_monomial_le, PolynomialModule.monomial_smul_apply, logMahlerMeasure_monomial, rootSet_monomial, monomial_left_inj, natDegree_monomial_eq, leadingCoeff_monomial, card_support_le_one_iff_monomial, coeff_mul_monomial, LaurentPolynomial.trunc_C_mul_T, PolynomialModule.monomial_smul_lsingle, monomial_natDegree_leadingCoeff_eq_self, support_monomial', RatFunc.algebraMap_monomial, smul_X_eq_monomial, monomial_sub, coeff_monomial_succ, degree_monomial, isMonicOfDegree_monomial_one, trailingDegree_monomial, erase_monomial, monomial_comp, monomial_mul_monomial, coeff_monomial_mul, coeffList_monomial, content_monomial, homogenize_monomial, monomial_add_erase, eval_monomial
ofMultiset πŸ“–CompOp
4 mathmath: rightInverse_ofMultiset_roots, roots_ofMultiset, ofMultiset_apply, ofMultiset_injective
pow πŸ“–CompOp
2 mathmath: toFinsupp_pow, ofFinsupp_pow
repr πŸ“–CompOpβ€”
semiring πŸ“–CompOp
2226 mathmath: fderiv, mul_div_eq_iff_isRoot, PowerSeries.coeff_mul_eq_coeff_trunc_mul_truncβ‚‚, MvPolynomial.pUnitAlgEquiv_symm_monomial, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_apply, rightInverse_ofMultiset_roots, support_monomial, units_coeff_zero_smul, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', isUnit_C_add_X_mul_iff, WeierstrassCurve.map_Οˆβ‚‚, natDegree_mul_X_pow, isMonicOfDegree_X_add_one, natDegree_mul_leadingCoeff_inv, degreeLT.addLinearEquiv_symm_apply_inr, taylor_eval, IsAdjoinRoot.repr_add_sub_repr_add_repr_mem_span, ker_mapRingHom, ZMod.irreducible_of_dvd_cyclotomic_of_natDegree, degree_pow_le_of_le, RatFunc.mk_def_of_ne, X_pow_mul_assoc_C, mem_aroots', separable_X_add_C, Lagrange.eval_iterate_derivative_eq_sum, mahlerMeasure_const, Ideal.Filtration.submodule_closure_single, eraseLead_monomial, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_symm_apply, RatFunc.ofFractionRing_mk', Derivation.apply_eval_eq, monic_X_pow, leadingCoeff_mul_X_pow, eq_X_sub_C_of_separable_of_root_eq, derivative_X_sq, coe_normUnit_of_ne_zero, Ideal.Filtration.submodule_eq_span_le_iff_stable_ge, separable_X_pow_sub_C_unit, smeval_monomial_mul, IntermediateField.aeval_gen_minpoly, RatFunc.mk_coe_def, splits_iff_exists_multiset, polynomialFunctions.eq_adjoin_X, ofFn_zero, toLaurent_eq_zero, mem_lifts_iff_mem_alg, roots_expand, taylorWithin_succ, MvPolynomial.pUnitAlgEquiv_apply, PolyEquivTensor.toFunBilinear_apply_eq_sum, algEquivCMulXAddC_apply, lcoeff_comp_mapAlgHom_eq, mul_divByMonic_eq_iff_isRoot, coe_taylorAlgHom, LaurentPolynomial.mk'_one_X_pow, cardPowDegree_zero, LinearMap.exists_monic_and_aeval_eq_zero, monic_X_sub_C, monomial_eq_monomial_iff, RatFunc.num_div, PolynomialModule.comp_single, coeff_X_pow_mul', coeff_derivative, degreeLT.instFreeSubtypeMemSubmodule, one_add_X_pow_sub_X_pow, AnalyticOn.aeval_polynomial, PowerBasis.exists_eq_aeval, FixedPoints.minpoly.irreducible, eq_cyclotomic_iff, MvPolynomial.support_finSuccEquiv, algebraMap_pi_eq_aeval, ker_evalRingHom, Monic.free_quotient, StandardEtalePair.inv_aeval_X_g, evalβ‚‚_intCastRingHom_X, IsPurelyInseparable.minpoly_eq', LaurentPolynomial.mk'_mul_T, expand_eq_sum, root_X_sub_C, Algebra.Norm.Transitivity.polyToMatrix_cornerAddX, polynomial_smul_apply', hasseDeriv_zero', continuous_aeval, X_pow_sub_C_splits_of_isPrimitiveRoot, Differential.implicitDeriv_C, Matrix.pow_eq_aeval_mod_charpoly, MvPolynomial.mem_image_support_coeff_finSuccEquiv, WeierstrassCurve.Affine.CoordinateRing.smul, resultant_X_add_C_right, pow_rootMultiplicity_dvd, derivWithin_aeval, AdjoinRoot.minpoly_root, X_pow_sub_C_eq_prod, derivative_intCast_mul, toMatrix_sylvesterMap', rootMultiplicity_eq_rootMultiplicity, eval_minpolyDiv_self, disjoint_ker_aeval_of_isCoprime, Ideal.mem_ofPolynomial, toAlgHom_taylorEquiv, PolynomialModule.smul_def, IsAdjoinRoot.mem_ker_map, aroots_smul_nonzero, mapAlgEquiv_id, expNegInvGlue.hasDerivAt_polynomial_eval_inv_mul, mem_reesAlgebra_iff_support, derivative_C_mul, aeval_algebraMap_apply_eq_algebraMap_eval, evalβ‚‚_minpolyDiv_self, support_trinomial, divX_X_pow, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_symm_mk, KaehlerDifferential.polynomialEquiv_symm, Ideal.exists_mem_span_singleton_map_residueField_eq, iterate_derivative_zero, cyclotomic_six, rootMultiplicity_eq_natTrailingDegree, aeval_algebraMap_eq_zero_iff, card_rootSet_le_derivative, ConjRootClass.aeval_minpoly_iff, Ideal.exists_nonzero_mem_of_ne_bot, PowerSeries.coeff_trunc, WeierstrassCurve.map_Ο†, contract_expand, derivative_mul, PowerSeries.trunc_mul_trunc, div_def, Chebyshev.one_sub_X_sq_mul_derivative_derivative_U_eq_poly_in_U, cyclotomic.irreducible, Cubic.of_a_eq_zero', WeierstrassCurve.Ξ¨Sq_even, C_inj, opRingEquiv_op_monomial, natDegree_monomial_le, prod_X_sub_C_nextCoeff, mem_roots_sub_C', Monic.leadingCoeff_C_mul, Ideal.mem_leadingCoeffNth_zero, leadingCoeff_quadratic, idealX_span, Multiset.prod_X_sub_X_eq_sum_esymm, PowerSeries.trunc_X_pow_self_mul, eraseLead_X_pow, coeffList_C_mul, support_C_mul_X, exists_partition_polynomial, Lagrange.derivative_nodal, nnqsmul_eq_C_mul, IsPrimitiveRoot.minpoly_dvd_pow_mod, PolynomialModule.map_smul, leadingCoeff_C_mul_of_isUnit, WeierstrassCurve.Affine.monic_polynomial, monomial_mem_lifts, aroots_X_sub_C, MvPolynomial.optionEquivLeft_C, taylor_mul, rootMultiplicity_sub_one_le_derivative_rootMultiplicity_of_ne_zero, degree_quadratic_lt, WeierstrassCurve.Affine.CoordinateRing.basis_one, sum_bernoulli, cyclotomic_dvd_geom_sum_of_dvd, C_mul_X_eq_monomial, natSepDegree_pow, eval_det_add_X_smul, prod_multiset_X_sub_C_of_monic_of_roots_card_eq, mem_rootSet_of_injective, X_mem_lifts, not_isUnit_of_natDegree_pos, logMahlerMeasure_C_mul, C_1, aeval_map_algebraMap, degree_pow_le, evalβ‚‚_minpolyDiv_of_evalβ‚‚_eq_zero, charZero, IsMonicOfDegree.natDegree_sub_X_pow, WeierstrassCurve.Οˆβ‚‚_sq, instIsScalarTowerPolynomial_1, hasseDeriv_one', derivative_comp_one_sub_X, MvPolynomial.optionEquivLeft_X_some, PolynomialModule.comp_smul, monic_X_pow_add_C, monic_multisetProd_X_sub_C, derivative_pow_eq_zero, isCoprime_of_is_root_of_eval_derivative_ne_zero, PolyEquivTensor.right_inv, toPowerSeries_toMvPowerSeries, PolynomialModule.aeval_equivPolynomial, algEquivOfCompEqX_symm, leadingCoeff_det_X_one_add_C, MvPolynomial.pUnitAlgEquiv_symm_apply, quotientSpanXSubCAlgEquiv_symm_apply, degreeLT_mono, roots_monomial, coeff_zero_of_isScalarTower, X_pow_sub_C_irreducible_iff_of_odd, coeff_one_add_X_pow, zero_notMem_multiset_map_X_sub_C, card_roots_sub_C', rootMultiplicity_expand_pow, irreducible_of_monic, aeval_iterate_derivative_of_ge, eq_C_of_degree_eq_zero, derivative_expand, degree_pow, derivative_sum, isCoveringMapOn_eval, nextCoeffUp_C_eq_zero, X_pow_sub_C_irreducible_of_odd, aeval_fn_apply, derivative_pow_succ, coeff_pow_eq_ite_of_natDegree_le_of_le, MvPolynomial.natDegree_finSuccEquiv, WeierstrassCurve.map_Ξ¨, StandardEtalePresentation.toPresentation_algebra_smul, sum_smul_minpolyDiv_eq_X_pow, derivative_ofNat, monomial_one_one_eq_X, Ideal.quotient_map_C_eq_zero, natDegree_X_pow_sub_C, Splits.eval_derivative, irreducible_iff_roots_eq_zero_of_degree_le_three, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, derivative_smul, isNilpotent_X_mul_iff, Splits.monomial, AlgebraicIndependent.polynomial_aeval_of_transcendental, roots_C_mul_X_pow, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_eq_mk, IsDistinguishedAt.map_eq_X_pow, subalgebraNontrivial, dickson_two_zero, LaurentPolynomial.mk'_one_X, RatFunc.laurent_algebraMap, iterate_derivative_eq_factorial_smul_sum, iterate_derivative_X_add_pow, PowerBasis.quotientEquivQuotientMinpolyMap_apply, WeierstrassCurve.Ξ¨Sq_odd, Chebyshev.S_eq_U_comp_half_mul_X, pUnitAlgEquiv_symm_toPowerSeries, evalβ‚‚_X_pow, degree_C_mul_of_isUnit, aroots_quadratic_eq_pair_iff_of_ne_zero', derivative_X, sumIDeriv_map, degree_mul_leadingCoeff_inv, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, eq_prod_roots_of_splits, eq_prod_roots_of_monic_of_splits_id, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, mirror_monomial, WeierstrassCurve.Affine.Y_sub_negPolynomial, Module.AEval.of_symm_smul, dvd_iterate_derivative_pow, coeffs_monomial, KaehlerDifferential.polynomialEquiv_D, MvPolynomial.optionEquivLeft_apply, minpoly_algHom_toLinearMap, ofFn_eq_sum_monomial, hilbertPoly_smul, MvPolynomial.totalDegree_coeff_finSuccEquiv_add_le, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_eqβ‚‚, prime_C_iff, AdjoinRoot.mk_surjective, Lagrange.interpolate_eq_nodalWeight_mul_nodal_div_X_sub_C, pow_comp, abc, finrank_quotient_span_eq_natDegree', cyclotomic_expand_eq_cyclotomic_mul, LinearMap.charpoly_nilpotent_tfae, WeierstrassCurve.Affine.CoordinateRing.coe_basis, natSepDegree_X_sub_C_pow, isMonicOfDegree_two_iff', not_isRoot_C, Multiset.prod_X_add_C_coeff, exists_partition_polynomial_aux, natDegree_C_add, Splits.eval_root_derivative, Monic.eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one, C_mul', eraseLead_add_C_mul_X_pow, matPolyEquiv_map_smul, RatFunc.laurent_div, minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C, isMonicOfDegree_X_sub_one, degreeLT.basis_val, reverse_mul_X_pow, derivative_monomial, ConjRootClass.minpoly.map_eq_prod, not_dvd_of_degree_lt, aeval_sumIDeriv, WeierstrassCurve.Affine.map_polynomialY, Monic.natDegree_pow, sumIDeriv_C, Chebyshev.T_derivative_eq_U, Subalgebra.aeval_coe, matPolyEquiv_diagonal_X, coeff_taylor_natDegree, roots_C_mul, Ideal.Filtration.mem_submodule, coeff_divByMonic_X_sub_C_rec, gal_X_pow_isSolvable, Subfield.splits_bot, monic_X_pow_add, RatFunc.liftOn_ofFractionRing_mk, leadingCoeff_X_pow_add_C, eval_C, Chebyshev.iterate_derivative_T_eval_one_recurrence, smeval_X_pow, Matrix.charmatrix_apply_eq, toFinsupp_monomial, Lagrange.nodal_insert_eq_nodal, mapAlgHom_eq_evalβ‚‚AlgHom'_CAlgHom, coe_monomial, rootMultiplicity_sub_one_le_derivative_rootMultiplicity, PolyEquivTensor.toFunAlgHom_apply_tmul, Matrix.charpoly_natCast, eval_divByMonic_eq_trailingCoeff_comp, algebraMap_apply, evalEval_finset_sum, PowerBasis.equivAdjoinSimple_symm_aeval, adjoin_monomial_eq_reesAlgebra, MvPolynomial.optionEquivRight_C, monomial_mul_C, Monic.geom_sum', IsPrimitive.isUnit_iff_isUnit_map_of_injective, X_pow_eq_monomial, Bivariate.Polynomial.Bivariate.pderiv_one_equivMvPolynomial, X_pow_sub_C_irreducible_iff_forall_prime_of_odd, not_isUnit_of_degree_pos_of_isReduced, trunc_toLaurent, toAddCircle_X_pow_eq_fourier, as_sum_range_C_mul_X_pow', Matrix.derivative_det_one_add_X_smul, integralNormalization_C, Splits.mem_lift_of_roots_mem_range, rootMultiplicity_X_sub_C_pow, resultant_X_sub_C_right, differentiableOn_aeval, mem_iff_eq_smul_annIdealGenerator, MvPolynomial.degreeOf_coeff_finSuccEquiv, derivative_rootMultiplicity_of_root, transcendental_iff_injective, taylor_injective, iterate_derivative_mul_X, evalβ‚‚RingHom_evalβ‚‚RingHom, isUnit_map, update_eq_add_sub_coeff, monic_finprod_X_sub_C, degree_C_mul_of_mul_ne_zero, Ideal.jacobson_bot_polynomial_le_sInf_map_maximal, IsCyclotomicExtension.aeval_zeta, Real.Polynomial.isRoot_cos_pi_div_five, coe_C, instIsDomainOfIsCancelAdd, WeierstrassCurve.Affine.C_addPolynomial, sumIDeriv_eq_self_add, self_sub_monomial_natDegree_leadingCoeff, bernoulli_generating_function, natDegree_finset_prod_X_sub_C_eq_card, support_C_mul_X', prod_cyclotomic_eq_X_pow_sub_one, iterate_derivative_X, MvPolynomial.nonempty_support_finSuccEquiv, natDegree_sum_le, evalβ‚‚_monomial, Matrix.charpoly_mul_comm_of_le, Module.AEval'.X_smul_of, AdjoinRoot.smul_mk, Splits.eval_derivative_eq_eval_mul_sum, AdjoinRoot.quotEquivQuotMap_symm_apply_mk, coe_compRingHom_apply, WeierstrassCurve.Affine.irreducible_polynomial, pow_rootMultiplicity_not_dvd, divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative, AdjoinRoot.evalEval_apply, derivative'_apply, constantCoeff_apply, mem_support_derivative, aeval_X_pow, PowerSeries.eq_shift_mul_X_pow_add_trunc, monomial_pow, coeff_mul_X_pow, evalEval_intCast, Bivariate.aveal_eq_map_swap, le_trailingDegree_C, WeierstrassCurve.Affine.polynomial_eq, evalβ‚‚_finset_sum, WeierstrassCurve.preΞ¨_odd, toLaurent_C_mul_T, resultant_X_pow_right, card_roots_le_derivative, aevalTower_algebraMap, rootsExpandPowEquivRoots_apply, Bivariate.swap_apply, derivative_eval, WeierstrassCurve.Ξ¨_one, LindemannWeierstrass.exp_polynomial_approx, map_expand, PolynomialModule.monomial_smul_single, Ideal.injective_quotient_le_comap_map, C_eq_zero, dvd_comp_X_add_C_iff, separable_X_pow_sub_C, span_singleton_annIdealGenerator, Monic.eq_X_pow_iff_natDegree_le_natTrailingDegree, dvd_comp_C_mul_X_add_C_iff, algEquivCMulXAddC_symm_eq, X_pow_smul_rTensor_monomial, X_pow_sub_one_splits, WeierstrassCurve.Affine.natDegree_polynomial, coeff_C_ne_zero, isMonicOfDegree_add_add_two, degree_X_pow_add_C, Matrix.det_one_add_smul, IsUnitTrinomial.irreducible_of_isCoprime, smul_monomial, Monic.comp_X_sub_C, WeierstrassCurve.Affine.CoordinateRing.instIsScalarTowerPolynomial, leadingCoeff_smul_integralNormalization, eval_pow, MvPolynomial.evalβ‚‚_const_pUnitAlgEquiv_symm, MvPolynomial.eval_comp_toMvPolynomial, degree_X_sub_C, iterate_derivative_X_sub_pow, MvPolynomial.support_finSuccEquiv_nonempty, support_trinomial', C_0, isSplittingField_X_pow_sub_C_of_root_adjoin_eq_top, PowerSeries.degree_trunc_lt, irreducible_of_eisenstein_criterion, PowerSeries.IsWeierstrassFactorization.isWeierstrassDivision, expand_eq_comp_X_pow, FirstOrder.Field.lift_genericMonicPoly, exists_finset_of_splits, Chebyshev.T_two, Submodule.IsPrincipal.contentIdeal_le_span_iff_dvd, IntermediateField.aeval_coe, WeierstrassCurve.Ξ¨Sq_ofNat, Matrix.charpoly_of_upperTriangular, Monic.not_dvd_of_natDegree_lt, irreducible_mul_leadingCoeff_inv, IsSepClosed.roots_eq_zero_iff, MvPolynomial.degree_optionEquivLeft, aeval_one, Module.AEval.instIsScalarTowerOrigPolynomial, gal_X_pow_sub_C_isSolvable, Lagrange.interpolate_eq_sum, Module.AEval.C_smul, sum_C_index, Matrix.charmatrix_apply_ne, aeval_eq_zero_of_mem_rootSet, degreeLT.addLinearEquiv_castAdd, KaehlerDifferential.polynomialEquiv_comp_D, coeff_X_pow_mul, IsLocalization.integerNormalization_map_to_map, FiniteField.roots_X_pow_card_sub_X, Algebra.discr_powerBasis_eq_norm, natTrailingDegree_C, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, X_mul_C, algebraMap_def, Derivation.mapCoeffs_C, coeff_C_mul_X, leadingCoeff_cubic, eval_X_pow, map_monomial, expand_one, resultant_C_zero_right, natDegree_eq_one, aeval_subalgebra_coe, minpoly.sub_algebraMap, WeierstrassCurve.Ο†_three, AdjoinRoot.mk_eq_mk, X_pow_mul_assoc, matPolyEquiv_coeff_apply_aux_1, leadingCoeffHom_apply, degreeLT.addLinearEquiv_apply_fst, C_eq_natCast, isConjRoot_iff_aeval_eq_zero, coeff_X_pow, RatFunc.mk_eq_mk', derivative_X_sub_C_sq, Matrix.charpoly_sub_scalar, aeval_X_left_apply, smul_eq_C_mul, FiniteField.instIsSplittingFieldExtensionHSubPolynomialHPowNatXCard, opRingEquiv_op_C, WeierstrassCurve.baseChange_Οˆβ‚‚, Chebyshev.U_two, C_eq_intCast, smeval.linearMap_apply, degree_C_lt_degree_C_mul_X, aroots_C_mul, eval_derivative_of_splits, isUnit_iff, Splits.X_pow, roots_X_pow_char_pow_sub_C_pow, coeff_mapAlgHom_apply, Multiset.prod_X_sub_C_dvd_iff_le_roots, divRadical_dvd_derivative, aeval_prod_apply, leadingCoeff_mul_prod_normalizedFactors, Module.AEval'.of_symm_X_smul, squarefree_cyclotomic, aeval_add_of_sq_eq_zero, monomial_mem_adjoin_monomial, Matrix.IsHermitian.charpoly_cfc_eq, mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero, derivativeFinsupp_apply_toFun, Chebyshev.aeval_T, aeval_comp, deriv_aeval, Chebyshev.S_sq_add_S_sq, nextCoeff_C_mul_X_add_C, monic_mapAlg_iff, matPolyEquiv_symm_apply_coeff, ofFinsupp_single, splits_pow, toLaurent_injective, le_trailingDegree_monomial, X_pow_sub_one_dvd_prod_cyclotomic, prod_multiset_root_eq_finset_root, dvd_C_mul, iterate_derivative_derivative_mul_X_sq, Monic.irreducible_iff_lt_natDegree_lt, toMvPolynomial_eq_rename_comp, WeierstrassCurve.Affine.baseChange_negPolynomial, Derivation.comp_aeval_eq, X_pow_sub_C_separable_iff, IsPurelyInseparable.minpoly_eq, Ideal.polynomial_not_isField, nextCoeff_mul_C, coeff_X_sub_C_mul, WeierstrassCurve.Affine.CoordinateRing.mk_ψ, Cubic.of_a_eq_zero, comp_C_mul_X_eq_zero_iff, modByMonic_eq_zero_iff_quotient_eq_zero, evalEval_sum, comap_taylorEquiv_degreeLT, ofReal_eval, degree_quadratic, evalEval_X, PowerSeries.trunc_trunc_mul_trunc, MvPolynomial.transcendental_polynomial_aeval_X_iff, monic_X_pow_sub_C, rootsExpandEquivRoots_apply, leadingCoeff_linear, aeval_prod, rootMultiplicity_eq_natFind_of_ne_zero, isMonicOfDegree_two_iff, C_mul_X_pow_eq_monomial, nextCoeff_X_add_C, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, PowerSeries.trunc_mul_C, eq_X_add_C_of_degree_le_one, taylor_zero', MvPolynomial.eval_eq_eval_mv_eval', isUnit_iff', WeierstrassCurve.preΞ¨'_even, evalEvalRingHom_eq, expand_C, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, logMahlerMeasure_X_sub_C, C_mem_lifts, aevalTower_toAlgHom, monomial_eq_zero_iff, card_roots_toFinset_le_card_roots_derivative_diff_roots_succ, MvPolynomial.optionEquivLeft_X_none, IsAdjoinRootMonic.map_modByMonic, MvPolynomial.algebraicIndependent_polynomial_aeval_X, natDegree_mul_leadingCoeff_self_inv, CAlgHom_apply, trailingDegree_C_mul_X_pow, X_pow_sub_one_eq_prod, toAddCircle.integrable, prod_multiset_X_sub_C_dvd, degree_cubic_lt, AdjoinRoot.mul_div_root_cancel, eq_X_add_C_of_natDegree_le_one, minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow, degree_C, Cubic.of_b_eq_zero, mkDerivation_one_eq_derivative', natTrailingDegree_mul_X_pow, derivative_X_add_C, hermite_succ, Real.fibRec_charPoly_eq, instCharP, Matrix.charpoly_zero, PolyEquivTensor.toFunLinear_mul_tmul_mul, hermite_eq_iterate, ofFinsupp_algebraMap, aeval_pi_apply, hasseDeriv_comp, IsAdjoinRoot.map_repr, aevalTower_comp_algebraMap, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial, AdjoinRoot.aeval_eq_of_algebra, support_binomial', cyclotomic_eq_prod_X_sub_primitiveRoots, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_add_eq, roots_pow, X_add_C_scaleRoots, resultant_C_right, splits_C, Splits.comp_X_sub_C, iterate_derivative_natCast_mul, WeierstrassCurve.Ξ¨_ofNat, evalβ‚‚_sum, aevalTower_X, AdjoinRoot.mk_leftInverse, natDegree_C_mul_X, differentiable_aeval, natTrailingDegree_monomial, comp_C, coeff_mul_X_sub_C, bernsteinPolynomial.iterate_derivative_at_1_eq_zero_of_lt, finrank_quotient_span_eq_natDegree, eval_monomial_one_add_sub, RatFunc.numDenom_div, roots_expand_map_frobenius, map_pow, gal_X_pow_sub_one_isSolvable, natDegree_X_add_C, map_taylor, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_map_eval, aeval_X_left, map_under_lt_comap_of_weaklyQuasiFiniteAt, MvPolynomial.finSuccEquiv_coeff_coeff, support_C, Derivation.mapCoeffs_monomial, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C', roots_expand_image_frobenius, degreeLT.addLinearEquiv_apply_snd, natSepDegree_C_mul_X_sub_C_pow, IsPrimitive.irreducible_iff_irreducible_map_fraction_map, height_map_C, RatFunc.num_C, WeierstrassCurve.Ξ¨_neg, minpoly.dvd_iff, X_sub_C_mul_divByMonic_eq_sub_modByMonic, IsNilpotent.charpoly_eq_X_pow_finrank, addHom_ext'_iff, natDegree_sum_eq_of_disjoint, RatFunc.smul_eq_C_mul, roots_C_mul_X_sub_C_of_IsUnit, PowerSeries.trunc_X_of, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, evalEval_multiset_prod, derivative_X_pow_succ, degree_X_pow_le, eq_C_of_natDegree_le_zero, monic_X_add_C, logMahlerMeasure_X_add_C, aevalTower_C, modByMonic_eq_zero_iff_dvd, WeierstrassCurve.Affine.addPolynomial_slope, cfc_map_polynomial, coeff_C_mul, idealSpan_range_update_divByMonic, degree_monomial_le, rootMultiplicity_eq_nat_find_of_nonzero, roots_quadratic_eq_pair_iff_of_ne_zero, coeff_monomial_of_ne, derivative_X_sub_C_pow, cyclotomic_mul_prime_dvd_eq_pow, natDegree_C_mul_eq_of_mul_eq_one, IsMonicOfDegree.exists_natDegree_lt, eraseLead_C_mul_X, natDegree_C, hilbertPoly_succ, ker_constantCoeff, X_pow_sub_C_irreducible_iff_of_prime_pow, Lagrange.basis_eq_prod_sub_inv_mul_nodal_div, WeierstrassCurve.Affine.map_negPolynomial, IsAdjoinRoot.map_X, Monic.eq_X_pow_iff_natTrailingDegree_eq_natDegree, toLaurent_comp_C, polynomialFunctions.starClosure_eq_adjoin_X, IsRoot.mul_div_eq, sum_C_mul_X_pow_eq, LinearMap.pow_eq_aeval_mod_charpoly, not_isUnit_of_degree_pos, PowerBasis.liftEquiv_symm_apply, Module.AEval'.X_pow_smul_of, as_sum_support_C_mul_X_pow, toFinsupp_X_pow, derivWithin, Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T, degree_quadratic_le, eq_quadratic_of_degree_le_two, WeierstrassCurve.Ο†_one, adjSylvester_comp_sylveserMap, exists_iterate_derivative_eq_factorial_smul, divX_eq_zero_iff, rootsExpandPowToRoots_apply, reflect_one, MulSemiringAction.charpoly_eq_prod_smul, monomial_injective, taylor_eq_zero, AdjoinRoot.mk_eq_zero, card_support_eq, reflect_monomial, leadingCoeff_pow_X_add_C, PowerBasis.equivAdjoinSimple_aeval, rank_polynomial_polynomial, cauchyBound_C, mem_lifts, RatFunc.laurentAux_div, traceForm_dualSubmodule_adjoin, X_pow_sub_X_sub_one_irreducible, polyEquivTensor_symm_apply_tmul, roots_C_mul_X_add_C, natDegree_C_mul_le, divX_hom_toFun, LinearMap.charpoly_eq_X_pow_iff, sum_comp, leadingCoeff_X_pow_sub_C, LaurentPolynomial.mk'_eq, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, AdjoinRoot.span_maximal_of_irreducible, WeierstrassCurve.baseChange_Ο†, AdjoinRoot.quotEquivQuotMap_apply, degreeLT.instFiniteSubtypeMemSubmodule, IsAdjoinRootMonic.modByMonicHom_map, derivativeFinsupp_apply_apply, Bivariate.equivMvPolynomial_symm_X_0, sup_aeval_range_eq_top_of_isCoprime, minpoly.eq_X_sub_C_of_algebraMap_inj, taylor_apply, charP, natDegree_C_mul_of_mul_ne_zero, eval_derivative_eq_eval_mul_sum_of_splits, WeierstrassCurve.Affine.C_addPolynomial_slope, iterate_derivative_comp_one_sub_X, Splits.eq_prod_roots, evalEvalRingHom_apply, spectralNorm.spectralNorm_pow_natDegree_eq_prod_roots, instIsScalarTowerPolynomial, Monic.not_dvd_of_degree_lt, notMem_nonZeroDivisors_iff, degree_derivative_lt, div_wf_lemma, Matrix.charmatrix_fromBlocks, derivative_natCast_mul, mapAlgEquiv_comp, eq_X_add_C_of_degree_eq_one, prod_cyclotomic'_eq_X_pow_sub_one, fderiv_aeval, Splits.eval_derivative_div_eval_of_ne_zero, sup_ker_aeval_eq_ker_aeval_mul_of_coprime, mahlerMeasure_C_mul_X_add_C, IsAlgebraic.exists_nonzero_coeff_and_aeval_eq_zero, Module.End.aeval_apply_of_hasEigenvector, PowerBasis.mem_span_pow', KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, eq_C_of_natDegree_eq_zero, evalβ‚‚_C_X, sum_monomial_index, derivativeFinsupp_derivative, lifts_iff_ringHom_rangeS, smeval_C, Algebra.adjoin_singleton_eq_range_aeval, mem_span_C_coeff, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, isCoprime_expand, IsCyclotomicExtension.isSplittingField_X_pow_sub_one, X_mul_divX_add, card_support_binomial, sum_monomial_eq, separable_C_mul_X_pow_add_C_mul_X_add_C', PowerSeries.trunc_trunc_mul, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, Splits.comp_X_add_C, Monic.isUnit_iff, degree_derivative_eq, C_mul_monomial, natDegree_hasseDeriv_le, evalEval_prod, MvPolynomial.optionEquivLeft_coeff_coeff, monic_C_mul_of_mul_leadingCoeff_eq_one, separable_X_pow_sub_C', Matrix.charpoly.optionEquivLeft_symm_univ_isHomogeneous, fact_irreducible_factor, IsCyclotomicExtension.splits_X_pow_sub_one, transcendental_aeval_iff, coeff_pow_mul_natDegree, Splits.aeval_eq_prod_aroots, as_sum_range, toLaurent_apply, not_isField, expand_inj, PolynomialModule.isScalarTower', natDegree_mul_C_eq_of_mul_eq_one, content_C_mul, Splits.eq_X_sub_C_of_single_root, coeff_det_X_add_C_card, isUnit_of_coeff_isUnit_isNilpotent, not_isUnit_of_natDegree_pos_of_isReduced, associated_of_dvd_of_natDegree_le, quotientSpanXSubCAlgEquiv_mk, Cubic.of_c_eq_zero', cyclotomic_prime_pow_eq_geom_sum, smeval_X_pow_mul, evalRingHom_mapMatrix_comp_polyToMatrix, NumberField.Ideal.liesOver_primesOverSpanEquivMonicFactorsMod_symm, aeval_X_left_eq_map, Lagrange.X_sub_C_dvd_nodal, det_taylorLinearEquiv_toLinearMap, roots_X_sub_C, isUnit_C, PowerSeries.smul_weierstrassMod, expand_expand, WeierstrassCurve.C_Ξ¨β‚‚Sq, natDegree_quadratic_le, Bivariate.swap_Y, rootSet_C_mul_X_pow, natDegree_sum_le_of_forall_le, monomial_mul_X, rootSet_derivative_subset_convexHull_rootSet, mapAlgHom_monomial, Chebyshev.iterate_derivative_T_eval_zero_recurrence, iterate_derivative_X_pow_eq_natCast_mul, AnalyticWithinAt.aeval_polynomial, le_rootMultiplicity_iff, natDegree_taylor, degree_taylor, lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors, annIdealGenerator_mem, support_C_subset, hasFDerivAt, Cubic.of_b_eq_zero', WeierstrassCurve.Affine.derivative_addPolynomial_slope, support_C_mul_X_pow', aeval_apply_smul_mem_of_le_comap, eq_C_content_mul_primPart, degree_sum_le, C'_mem_lifts, rootMultiplicity_mul_X_sub_C_pow, Module.AEval.isTorsion_of_finiteDimensional, Ideal.mem_leadingCoeff, degreeLT.addLinearEquiv_apply, minpoly.ker_aeval_eq_span_minpoly, Chebyshev.aeval_S, mem_annIdeal_iff_aeval_eq_zero, card_support_eq', valuation_aeval_eq_valuation_X_pow_natDegree_of_one_lt_valuation_X, instIsNoetherianRingSubtypePolynomialMemSubalgebraReesAlgebra, C_eq_algebraMap, mapAlg_eq_map, separable_def', IsPrimitiveRoot.minpoly_dvd_expand, eval_unique, derivative_of_natDegree_zero, Finset.prod_X_add_C_coeff, Bivariate.equivMvPolynomial_symm_C, Matrix.charpoly_one, divX_mul_X_add, Subfield.roots_X_pow_char_sub_X_bot, aeval_eq_smeval, toFinsuppIsoLinear_symm_apply_toFinsupp, natSepDegree_X_pow_char_pow_sub_C, LaurentPolynomial.algebraMap_X_pow, homogenize_X_pow, evalEval_sub, minpoly.isRadical, IsPrimitive.Int.irreducible_iff_irreducible_map_cast, coeffList_C, Splits.taylor, Matrix.det_one_add_X_smul, Algebra.adjoin_mem_exists_aeval, coe_polyEquivTensor'_symm, FiniteField.isSplittingField_of_nat_card_eq, reesAlgebra.monomial_mem, lt_rootMultiplicity_iff_isRoot_iterate_derivative, Ideal.Filtration.inf_submodule, roots_expand_image_frobenius_subset, PowerSeries.derivativeFun_coe, comp_eq_zero_iff, isNilpotent_aeval_sub_of_isNilpotent_sub, Module.End.IsSemisimple.aeval, coeff_monomial, RatFunc.smul_eq_C_smul, Differential.mapCoeffs_monomial, MvPolynomial.support_coeff_finSuccEquiv, Module.AEval.X_pow_smul_of, minpoly.aeval, degree_X_pow_sub_C, taylor_coeff_zero, mul_eq_sum_sum, coe_polyEquivTensor', natDegree_X_pow_add_C, instExpChar, isUnit_iff_coeff_isUnit_isNilpotent, divX_C_mul, PowerSeries.eq_X_pow_mul_shift_add_trunc, iterate_derivative_C, degree_mul_leadingCoeff_self_inv, PowerSeries.trunc_trunc_of_le, mahlerMeasure_X_add_C, WeierstrassCurve.ψ_even, coeff_pow_of_natDegree_le, taylor_X_pow, reverse_X_pow_mul, Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff, LaurentPolynomial.algebraMap_eq_toLaurent, eq_C_coeff_zero_iff_natDegree_eq_zero, Differential.mapCoeffs_C, IsUnitTrinomial.not_isUnit, comp_C_mul_X_coeff, Ideal.mem_leadingCoeffNth, cyclotomic_prime_pow_mul_X_pow_sub_one, int_evalβ‚‚_eq, gal_C_isSolvable, evalRingHom_mapMatrix_comp_compRingEquiv, resultant_X_sub_C_pow_left, bernsteinPolynomial.variance, toFn_zero, toLaurent_X_pow, ofFn_zero', RatFunc.instIsScalarTowerOfIsDomainOfPolynomial, derivative_C_mul_X, Bivariate.swap_X, AdjoinRoot.lift_mk, eval_iterate_derivative_rootMultiplicity, lcoeff_apply, iterate_derivative_derivative_mul_X, Chebyshev.add_one_mul_self_mul_T_eq_poly_in_T, WeierstrassCurve.Affine.CoordinateRing.map_mk, Splits.X_add_C, bernoulli_eq_sub_sum, degree_C_lt, leadingCoeff_pow', padic_polynomial_dist, aeval_conj, nextCoeff_C_eq_zero, iterate_derivative_eq_zero, hasseDeriv_coeff, degree_C_mul_X_pow_le, separable_prod_X_sub_C_iff', le_trailingDegree_C_mul_X_pow, map_mapRingHom_evalEval, algEquivAevalNegX_symm_apply, derivative_rootMultiplicity_of_root_of_mem_nonZeroDivisors, AdjoinRoot.root_isInv, monomial_zero_one, FiniteField.splits_X_pow_nat_card_sub_X, hasseDeriv_mul, PowerSeries.trunc_one_left, IsAdjoinRoot.adjoinRootAlgEquiv_apply_eq_map, coeff_mul_C, hermite_eq_deriv_gaussian', aeval_smul, rootMultiplicity_C, eq_prod_roots_of_splits_id, eraseLead_add_monomial_natDegree_leadingCoeff, RatFunc.laurentAux_algebraMap, IsAdjoinRoot.repr_zero_mem_span, coeff_C, AdjoinRoot.modByMonicHom_mk, Ideal.Filtration.submodule_span_single, natDegree_X_sub_C, WeierstrassCurve.Affine.CoordinateRing.mk_Ο†, Bivariate.equivMvPolynomial_symm_X_1, iterate_derivative_X_pow_eq_smul, WeierstrassCurve.ψ_zero, Matrix.matPolyEquiv_charmatrix, natDegree_C_mul, PowerBasis.mem_span_pow, card_support_eq_three, aeval_def, Chebyshev.derivative_U_eval_one, aeval_mul, monomial_one_eq_iff, resultant_X_sub_C_pow_right, StandardEtalePresentation.toSubmersivePresentation_jacobian, smeval_C_mul, IsAlgClosed.exists_aeval_eq_zero_of_injective, X_sub_C_dvd_sub_C_eval, expand_eq_zero, degreeLT.addLinearEquiv_apply', WeierstrassCurve.Ξ¨_three, differentiableAt_aeval, WeierstrassCurve.Affine.Y_sub_polynomialY, hasseDeriv_zero, prime_X_sub_C, coeff_monomial_zero_mul, hilbertPoly_X_pow_succ, Monic.mem_nonZeroDivisors, Lagrange.iterate_derivative_interpolate, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, taylorAlgHom_apply, pow_sub_dvd_iterate_derivative_pow, hasFDerivAt_aeval, associated_of_dvd_of_degree_eq, IsAdjoinRoot.lift_map, C_sub, algEquivOfCompEqX_symm_apply, roots_X_pow_char_sub_C_pow, finset_sum_coeff, mem_nonZeroDivisors_iff, mem_nonZeroDivisors_of_trailingCoeff, aeval_eq_prod_aroots_sub_of_monic_of_splits, MvPolynomial.mem_support_coeff_optionEquivLeft, coeff_sum, Bivariate.swap_C_C, AdjoinRoot.liftAlgHom_mk, natDegree_derivative_le, RatFunc.faithfulSMul, LinearMap.aeval_eq_aeval_mod_charpoly, deriv_gaussian_eq_hermite_mul_gaussian, LinearMap.hasEigenvalue_zero_tfae, iterate_derivative_eq_sum, PolynomialModule.smul_apply, algEquivAevalXAddC_symm_apply, MvPolynomial.aeval_toMvPolynomial, Chebyshev.iterate_derivative_U_eval_zero_recurrence, resultant_pow_right, isMaximal_comap_C_of_isJacobsonRing, nextCoeff_X_sub_C, natDegree_C_mul_X_pow, AdjoinRoot.coe_mkₐ, evalEval_pow, PolyEquivTensor.invFun_add, dvd_mul_leadingCoeff_inv, RatFunc.algebraMap_C, C_mul_X_pow_eq_self, leadingCoeff_X_pow, AnalyticAt.aeval_polynomial, degree_X_sub_C_le, PowerSeries.trunc_C, Monic.mem_rootSet, cardPowDegree_apply, spectrum.map_polynomial_aeval_of_nonempty, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, sumIDeriv_apply, sylvesterDeriv_updateRow, degree_C_mul_X_le, mul_X_pow_comp, dvd_derivative_iff, coeff_mul_monomial_zero, roots_ofMultiset, expand_zero, cyclotomic.dvd_X_pow_sub_one, eraseLead_C_mul_X_pow, roots_expand_pow_map_iterateFrobenius_le, Monic.natSepDegree_eq_one_iff, resultant_taylor, trailingDegree_C, leadingCoeff_sum_of_degree_eq, Ideal.is_fg_degreeLE, X_pow_sub_C_irreducible_of_prime, roots_multiset_prod_X_sub_C, homogenize_finsetSum, PowerBasis.equivOfMinpoly_aeval, degreeLT.addLinearEquiv_symm_apply_inl, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, degreeLT.addLinearEquiv_symm_apply_inr_basis, natDegree_hasseDeriv, homogenize_C_mul, AdjoinRoot.powerBasisAux'_repr_symm_apply, Bivariate.swap_monomial_monomial, rootMultiplicity_expand, bernoulli_comp_one_add_X, X_pow_dvd_iff, contract_C, Matrix.charpoly_fin_two, evalβ‚‚_mul_C', eval_derivative_div_eval_of_ne_zero_of_splits, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eval, separable_prod_X_sub_C_iff, MvPolynomial.totalDegree_coeff_optionEquivLeft_add_le, resultant_C_left, LinearMap.charpoly_constantCoeff_eq_zero_iff, PolynomialModule.equivPolynomial_single, natDegree_mul_C_of_isUnit, dickson_add_two, toFn_comp_ofFn_eq_id, AdjoinRoot.quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, irreducible_of_degree_eq_one_of_isRelPrime_coeff, exists_eq_pow_rootMultiplicity_mul_and_not_dvd, supNorm_monomial, Bivariate.swap_map_C, derivative_comp, Monic.eq_X_add_C, transcendental_iff_ker_eq_bot, WeierstrassCurve.Affine.CoordinateRing.mk_Ξ¨_sq, mapRingHom_comp_C, eq_C_of_degree_le_zero, mem_nonZeroDivisors_of_leadingCoeff, gaussNorm_monomial, expand_X, contentIdeal_C, taylor_taylor, WeierstrassCurve.Ξ¦_ofNat, exists_approx_polynomial, eval_C_X_evalβ‚‚_map_C_X, minpoly.isIntegrallyClosed_dvd_iff, expand_monomial, PolynomialModule.smul_single_apply, supNorm_C, Monic.irreducible_iff_natDegree, eval_finset_sum, matPolyEquiv_map_C, card_roots_X_pow_sub_C, WeierstrassCurve.baseChange_Ξ¨, Algebra.Norm.Transitivity.eval_zero_comp_det, instIsTorsionFree, pow_scaleRoots_of_isReduced, mul_scaleRoots, X_pow_sub_one_separable_iff, WeierstrassCurve.Affine.map_polynomial, derivative_sq, leadingCoeff_C_mul_X_pow, mem_roots_sub_C, hermite_eq_deriv_gaussian, Monic.finite_quotient, WeierstrassCurve.Ξ¦_three, MvPolynomial.optionEquivLeft_coeff_some_coeff_none, isMaximal_comap_C_of_isMaximal, not_isUnit_X_add_C, roots_smul_nonzero, degree_cubic, LinearMap.isNilpotent_iff_charpoly, natSepDegree_C_mul, Algebra.adjoin_eq_exists_aeval, WeierstrassCurve.ψ_one, hasseDeriv_monomial, PowerSeries.trunc_trunc_pow, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul, Bivariate.pderiv_zero_equivMvPolynomial, cyclotomic_mul_prime_pow_eq, derivativeFinsupp_map, Splits.pow, mem_roots_iff_aeval_eq_zero, dickson_one_one_charP, degree_X_pow, IsLocalization.scaleRoots_commonDenom_mem_lifts, WeierstrassCurve.Affine.baseChange_polynomialX, monomial_add, one_lt_rootMultiplicity_iff_isRoot_gcd, WeierstrassCurve.preΞ¨'_odd, resultant_X_add_C_left, gal_X_sub_C_isSolvable, Bivariate.equivMvPolynomial_X, hasDerivWithinAt_aeval, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_eq₁, coeff_monomial_same, reesAlgebra.fg, evalβ‚‚_evalRingHom, Module.AEval.of_symm_X_smul, aeval_coe_eq_smeval, natDegree_pow_le_of_le, FiniteField.isSplittingField_of_card_eq, IsMonicOfDegree.aeval_add, natDegree_multiset_prod_X_sub_C_eq_card, C_dvd_iff_dvd_coeff, hasStrictDerivAt_aeval, dickson_one_one_zmod_p, MvPolynomial.natDegree_optionEquivLeft, span_of_finite_le_degreeLT, aeval_algebraMap_eq_zero_iff_of_injective, StandardEtalePresentation.exists_mul_aeval_x_g_pow_eq_aeval_x, Splits.C_mul_X_pow, bernsteinPolynomial.iterate_derivative_succ_at_0_eq_zero, iterate_derivative_eq_zero_of_degree_lt, toFinsuppIsoLinear_apply, exists_eq_X_add_C_of_natDegree_le_one, natSepDegree_smul_nonzero, Matrix.charpoly_coeff_eq_prod_coeff_of_le, PowerSeries.subst_coe, AdjoinRoot.Polynomial.quotQuotEquivComm_mk, RatFunc.denom_div, opRingEquiv_symm_C_mul_X_pow, WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq, MvPolynomial.mem_support_finSuccEquiv, isRoot_iterate_derivative_of_lt_rootMultiplicity, minpoly.aeval_algHom, mapAlgEquiv_toAlgHom, monic_expand_iff, iterate_derivative_prod_X_sub_C, monic_geom_sum_X, signVariations_eraseLead_mul_X_sub_C, eval_det, dvd_content_iff_C_dvd, natSepDegree_expand, coeff_C_succ, opRingEquiv_symm_monomial, toAddCircle_monomial_eq_smul_fourier, separable_C, instIsLocalHomRingHomC, aeval_apply_smul_mem_of_le_comap', X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, cfc_eval_C, mahlerMeasure_X_sub_C, minpoly.add_algebraMap, MvPolynomial.rename_comp_toMvPolynomial, Ideal.isPrime_map_C_of_isPrime, PolynomialModule.equivPolynomialSelf_apply_eq, finiteMultiplicity_of_degree_pos_of_monic, MvPolynomial.finSuccEquiv_comp_C_eq_C, irreducible_of_degree_le_three_of_not_isRoot, degreeLT.addLinearEquiv_symm_apply, MulSemiringAction.charpoly_eq, Chebyshev.iterate_derivative_U_eval_one_recurrence, coe_basisMonomials, PowerSeries.trunc_apply, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial_slope, IsAdjoinRoot.adjoinRootAlgEquiv_apply_mk, WeierstrassCurve.ψ_odd, isMonicOfDegree_one_iff, root_X_pow_sub_C_pow, WeierstrassCurve.Ξ¨_even, bernsteinPolynomial.sum_mul_smul, LinearMap.aeval_self_charpoly, natDegree_X_pow_mul, WeierstrassCurve.Ξ¦_four, Mathlib.Tactic.ComputeDegree.natDegree_C_le, LaurentPolynomial.evalβ‚‚_toLaurent, coe_mapRingHom, C_mul_dvd, MvPolynomial.finSuccEquiv_eq, eval_mul_X_pow, isNilpotent_monomial_iff, as_sum_range', natDegree_monomial, mem_iff_annIdealGenerator_dvd, spectrum.subset_polynomial_aeval, PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul, factorial_mul_shiftedLegendre_eq, isNilpotent_iff, Chebyshev.one_sub_X_sq_mul_derivative_derivative_T_eq_poly_in_T, C_comp, natDegree_X_pow_le, IsAdjoinRootMonic.map_modByMonicHom, WeierstrassCurve.Affine.degree_polynomial, div_C, separable_def, aroots_quadratic_eq_pair_iff_of_ne_zero, comp_one, MvPolynomial.image_support_finSuccEquiv, iterate_derivative_smul, Ideal.mem_map_C_iff, natSepDegree_pow_of_ne_zero, isUnit_of_self_mul_dvd_separable, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_coeff_natDegree, IsConjRoot.aeval_eq_zero, PowerSeries.IsWeierstrassDivisorAt.mod_smul, sumIDeriv_X, Bivariate.aevalAeval_swap, natDegree_pow_le, MulSemiringActionHom.coe_polynomial, coeff_X_pow_self, natDegree_pow, contentIdeal_monomial, dvd_C_mul_X_sub_one_pow_add_one, rootSet_C, injective_ofFn, matPolyEquiv_symm_C, toFinsupp_algebraMap, Bivariate.equivMvPolynomial_C_X, isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C, lifts_iff_coeff_lifts, PolyEquivTensor.toFunBilinear_apply_apply, natDegree_mul_C_eq_of_mul_ne_zero, coe_compRingHom, ofMultiset_apply, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, Module.AEval.mem_mapSubmodule_symm_apply, PolyEquivTensor.toFunLinear_tmul_apply, coeff_iterate_derivative, Cubic.prod_X_sub_C_eq, algHom_ext_iff, coeToPowerSeries.algHom_apply, Chebyshev.T_neg_two, rootMultiplicity_eq_multiplicity, bernoulli_def, Module.AEval.X_smul_of, derivative_evalβ‚‚_C, multiset_prod_X_sub_C_nextCoeff, C_div, Chebyshev.S_two, RatFunc.instIsScalarTowerOfPolynomial, Lagrange.nodal_eq_mul_nodal_erase, lhom_ext'_iff, Monic.irreducible_iff_degree_lt, PowerSeries.derivative_coe, natDegree_X_pow, divX_C_mul_X_pow, MvPolynomial.prod_X_add_C_coeff, MvPolynomial.degree_finSuccEquiv, Bivariate.Polynomial.Bivariate.pderiv_zero_equivMvPolynomial, X_pow_mul_monomial, roots_expand_pow_map_iterateFrobenius, LaurentPolynomial.toLaurent_support, aeval_derivative_of_splits, evalEval_add, MvPolynomial.nonempty_support_optionEquivLeft, map_expand_pow_char, WeierstrassCurve.Ξ¨_zero, WeierstrassCurve.ψ_three, lsum_apply, Ideal.polynomialQuotientEquivQuotientPolynomial_symm_mk, WeierstrassCurve.Affine.baseChange_polynomial, coeff_expand_mul, cyclotomic_mul_prime_eq_pow_of_not_dvd, IsDistinguishedAt.algEquivQuotient_symm_apply, derivative_pow, isDomain_iff, C_ofNat, reverse_add_C, derivative_prod, IsPrimitiveRoot.squarefree_minpoly_mod, isSplittingField_C, not_irreducible_expand, AlgebraicClosure.Monics.map_eq_prod, LindemannWeierstrass.integral_exp_mul_eval, WeierstrassCurve.ψ_neg, isLocalization, expand_mul, eval_sumIDeriv_of_pos, aeval_continuousMap_apply, coe_aeval_mk_apply, dickson_one_one_eq_chebyshev_T, leadingCoeff_mul_C_of_isUnit, FiniteField.X_pow_card_sub_X_natDegree_eq, IsMonicOfDegree.pow, isRegular_X_pow, prod_cyclotomic_eq_geom_sum, coeff_zero_eq_aeval_zero, MvPolynomial.support_optionEquivLeft, not_isUnit_X_sub_C, FiniteField.splits_X_pow_card_sub_X, MvPolynomial.finSuccEquiv_X_succ, card_support_eq_two, Monic.geom_sum, cfc_polynomial, WeierstrassCurve.baseChange_ψ, polynomial_expand_eq, Chebyshev.iterate_derivative_U_eval_one, chebyshev_T_eq_dickson_one_one, span_minpoly_eq_annihilator, toFinsuppIsoAlg_symm_apply_toFinsupp, iterate_derivative_C_mul, reflect_C_mul_X_pow, card_support_eq_one, PolyEquivTensor.invFun_monomial, coe_expand, polynomialFunctions_coe, irreducible_factor, aroots_C_mul_X_pow, mkDerivation_one_eq_derivative, Matrix.charpoly_sub_diagonal_degree_lt, fourierCoeff_toAddCircle_natCast, leadingCoeff_C_mul_X, degreeLT.addLinearEquiv_symm_apply', spectrum.map_polynomial_aeval_of_degree_pos, constantCoeff_surjective, eraseLead_C, Splits.X_sub_C, isUnit_primPart_C, iterate_derivative_mul_X_pow, MvPolynomial.evalβ‚‚_const_pUnitAlgEquiv, evalβ‚‚RingHom'_apply, IsAdjoinRootMonic.modByMonicHom_root_pow, annIdealGenerator_aeval_eq_zero, C_leadingCoeff_mul_prod_multiset_X_sub_C, coeff_inv_units, evalβ‚‚_pow, minpoly.eq_X_sub_C', smeval_pow, taylor_coeff_one, toContinuousMapAlgHom_apply, sup_ker_aeval_le_ker_aeval_mul, fderivWithin_aeval, PolyEquivTensor.toFunLinear_one_tmul_one, fderivWithin, monomial_neg, hasDerivAt, Monic.comp_X_add_C, divX_C, StandardEtalePresentation.toPresentation_Οƒ', monomial_zero_right, associated_of_dvd_of_natDegree_le_of_leadingCoeff, cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, Monic.C_dvd_iff_isUnit, iterate_derivative_sub, coeff_X_add_one_pow, monic_mul_C_of_leadingCoeff_mul_eq_one, signVariations_monomial, natSepDegree_C, IsIntegrallyClosed.eq_map_mul_C_of_dvd, Derivation.map_aeval, matPolyEquiv_eval_eq_map, monic_mul_leadingCoeff_inv, eq_X_sub_C_of_splits_of_single_root, Splits.aeval_eq_prod_aroots_of_monic, card_support_C_mul_X_pow_le_one, PolyEquivTensor.left_inv, monomial_mul_X_pow, matPolyEquiv_coeff_apply, discr_C, aeval_neg, coeToPowerSeries.ringHom_apply, support_C_mul_X_pow, aeval_derivative_mem_differentIdeal, MvPolynomial.prod_C_add_X_eq_sum_esymm, modByMonic_X_sub_C_eq_C_eval, denomsClearable_C_mul_X_pow, binomial_eq_binomial, taylorEquiv_symm, iterate_derivative_X_pow_eq_C_mul, Matrix.charpoly_vecMulVec, derivative_X_pow, exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map, coeff_expand, MvPolynomial.finSuccEquiv_apply, sumIDeriv_derivative, rootsExpandToRoots_apply, degree_C_mul, X_dvd_iff, X_mul_monomial, gaussNorm_C, StandardEtalePair.HasMap.isUnit_derivative_f, Splits.eq_prod_roots_of_monic, AdjoinRoot.mk_X, leadingCoeff_expand, isNilpotent_C_mul_pow_X_of_isNilpotent, aeval_sumIDeriv_eq_eval, leadingCoeff_X_sub_C, Monic.pow, Matrix.isUnit_charpolyRev_of_isNilpotent, expand_eq_C, RatFunc.num_div_dvd', IsCoprime.wronskian_eq_zero_iff, WeierstrassCurve.Ξ¦_two, aeval_C, PowerBasis.exists_eq_aeval', evalEval_neg, aeval_eq_prod_aroots_sub_of_splits, KaehlerDifferential.polynomial_D_apply, toLaurent_inj, leval_apply, X_pow_mem_lifts, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, MvPolynomial.rename_polynomial_aeval_X, ofFn_degree_lt, taylor_monomial, comp_eq_aeval, Lagrange.interpolate_apply, IsPurelyInseparable.minpoly_eq_X_pow_sub_C, C_mul, valuation_aeval_monomial_eq_valuation_pow, LinearMap.charpoly_one, natDegree_X_sub_C_le, splits_X_sub_C_mul_iff, factorial_smul_hasseDeriv, toMvPolynomial_X, FiniteField.minpoly_frobeniusAlgHom, dickson_of_two_le, Matrix.coeff_det_one_add_X_smul_one, aeval_ofReal, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eq_poly_in_T, degree_add_degree_leadingCoeff_inv, toFinsupp_sum, evalβ‚‚AddMonoidHom_apply, trinomial_def, hasDerivAt_aeval, coe_algebraMap_eq_CC, aeval_root_derivative_of_splits, X_sub_C_scaleRoots, Chebyshev.aeval_C, PerfectField.separable_iff_squarefree, iterate_derivative_neg, aeval_eq_sum_range, polyEquivTensor_apply, resultant_C_zero_left, C_eq_or_isOpenQuotientMap_eval, PolyEquivTensor.toFunBilinear_apply_eq_smul, MvPolynomial.eval_toMvPolynomial, X_pow_sub_X_sub_one_irreducible_rat, instFree, sum_taylor_eq, taylor_eval_sub, Chebyshev.aeval_U, derivative_prod_finset, mem_normalizedFactors_iff, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply_eq_span, isNilpotent_C_iff, disc_C, X_mem_nonzeroDivisors, Differential.deriv_aeval_eq, MvPolynomial.irreducible_toPolynomialAdjoinImageCompl, hasseDeriv_C, Algebra.exists_aeval_invOf_eq_zero_of_idealMap_adjoin_sup_span_eq_top, natDegree_linear_le, MvPolynomial.toMvPowerSeries_pUnitAlgEquiv, MvPolynomial.transcendental_polynomial_aeval_X, coeff_list_sum, Ideal.factors_span_eq, derivation_C, minpoly_algEquiv_toLinearMap, smeval_monomial, natDegree_det_X_add_C_le, eval_C_X_comp_evalβ‚‚_map_C_X, AdjoinRoot.algHom_subsingleton, toLaurent_one, homogenize_monomial_of_lt, mod_X_sub_C_eq_C_eval, StandardEtalePair.cond, Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T, StandardEtalePresentation.aeval_val_equivMvPolynomial, PolynomialModule.eval_smul, smul_C, derivative_sub, mem_rootSet', AdjoinRoot.Polynomial.quotQuotEquivComm_symm_mk_mk, geom_sum_X_comp_X_add_one_eq_sum, hasStrictDerivAt, LinearMap.charpoly_sub_smul, Bivariate.swap_C, minpoly.neg, cyclotomic.irreducible_rat, natSepDegree_X_sub_C, coe_normUnit, RatFunc.algebraMap_apply, instFaithfulSMulPolynomial, aroots_monomial, det_taylorLinearEquiv, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, PowerSeries.trunc_one, aroots_X_pow, degree_sum_eq_of_disjoint, derivative_monomial_succ, NormedAlgebra.Real.exists_isMonicOfDegree_two_and_aeval_eq_zero, resultant_deriv, degree_le_zero_iff, IsAdjoinRoot.algebraMap_apply, support_X_pow, spectralValue_X_sub_C, StandardEtalePair.aeval_X_g_mul_mk_X, Transcendental.aeval, PowerSeries.trunc_succ, roots_C_mul_X_sub_C, MvPolynomial.evalβ‚‚_pUnitAlgEquiv_symm, monomial_one_right_eq_X_pow, Derivation.compAEval_eq, hasseDeriv_apply_one, aeval_endomorphism, WeierstrassCurve.Affine.CoordinateRing.mk_Οˆβ‚‚_sq, IntermediateField.mem_adjoin_simple_iff, rootMultiplicity_le_iff, eraseLead_mul_eq_mul_eraseLead_of_nextCoeff_zero, isUnit_iff_degree_eq_zero, surjective_toFn, modByMonic_X, IsPurelyInseparable.minpoly_eq_X_sub_C_pow, WeierstrassCurve.Affine.CoordinateRing.basis_zero, Module.AEval.of_aeval_smul, map_sum, Algebra.mem_ideal_map_adjoin, X_pow_sub_C_irreducible_of_prime_pow, minpoly.not_isUnit, mem_aroots, integralNormalization_mul_C_leadingCoeff, eval_sum, bernsteinPolynomial.derivative_succ, ZMod.expand_card, roots_quadratic_eq_pair_iff_of_ne_zero', PowerSeries.IsWeierstrassDivision.isWeierstrassFactorization, lifts_iff_liftsRing, iterate_derivative_X_sub_pow_self, derivativeFinsupp_one, X_dvd_sub_C, IsAdjoinRoot.map_self, degreeLT_eq_span_X_pow, eval_mul_X_sub_C, MvPolynomial.polynomial_eval_evalβ‚‚, WeierstrassCurve.Affine.map_polynomialX, minpolyDiv_spec, isNilpotent_mul_X_iff, reverse_C, Splits.C_mul, cardPowDegree_nonzero, toFinsuppIsoAlg_apply, reflect_C, evalβ‚‚_C, taylor_zero, Ideal.jacobson_bot_polynomial_of_jacobson_bot, comp_zero, toMatrix_sylvesterMap, PowerSeries.coeff_mul_eq_coeff_trunc_mul_trunc, MvPolynomial.optionEquivLeft_monomial, RatFunc.ofFractionRing_eq, reflect_C_mul, derivative_neg, aeval_algEquiv, Matrix.charpoly_inv, deriv, evalβ‚‚_pow', support_subset_support_matPolyEquiv, algEquivAevalNegX_apply, natDegree_sub_C, Module.End.ker_aeval_ring_hom'_unit_polynomial, PowerSeries.trunc_coe_eq_self, PrimeSpectrum.range_comap_algebraMap_localization_compl_eq_range_comap_quotientMk, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, MvPolynomial.optionEquivLeft_symm_apply, Algebra.FinitePresentation.polynomial, hasseDeriv_natDegree_eq_C, hasFDerivWithinAt_aeval, as_sum_range_C_mul_X_pow, Submodule.IsPrincipal.contentIdeal_generator_dvd, contDiff_aeval, IsAdjoinRoot.ofAlgEquiv_map_apply, isNilpotent_reflect_iff, matPolyEquiv_symm_map_eval, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_mk, mem_reesAlgebra_iff, derivative_C_mul_X_pow, signVariations_X_sub_C_mul_eraseLead_le, support_binomial, MvPolynomial.mem_support_coeff_finSuccEquiv, derivative_C, FunctionField.ringOfIntegers.instIsNoetherianPolynomialSubtypeMemSubalgebraOfIsSeparableRatFunc, roots_X_pow_char_sub_C, degree_mul_C_of_isUnit, mem_rootSet, AdjoinRoot.minpoly_powerBasis_gen, AdjoinRoot.aeval_algHom_eq_zero, derivative_bernoulli_add_one, hasseDeriv_apply, addSubmonoid_closure_setOf_eq_monomial, map_under_lt_comap_of_quasiFiniteAt, dickson_two_one_eq_chebyshev_U, evalβ‚‚_derivative_of_splits, natTrailingDegree_X_pow, Separable.squarefree, C_mul_comp, IsAdjoinRoot.map_eq_zero_iff, Algebra.FiniteType.instPolynomial, Module.End.IsSemisimple.minpoly_squarefree, roots_expand_image_iterateFrobenius, sum_modByMonic_coeff, Chebyshev.iterate_derivative_U_eval_one_eq_div, aeval_monomial, eval_map_algebraMap, Algebra.Norm.Transitivity.eval_zero_det_det, mapAlgEquiv_coe_ringHom, AdjoinRoot.quotEquivQuotMap_symm_apply, bernoulli_one, Chebyshev.iterate_derivative_T_eval_one, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, StandardEtalePresentation.toPresentation_val, algEquivOfCompEqX_apply, Ideal.isDomain_map_C_quotient, matPolyEquiv_eval, isIntegrallyClosed_iff', mem_rootSet_of_ne, mapAlg_comp, sylvesterMap_apply_coe, IsAdjoinRoot.aeval_root_self, natDegree_mul_C_le, aeval_eq_sum_range', degreeLT.addLinearEquiv_natAdd, expand_char, aeval_zero, leadingCoeff_X_pow_sub_one, Chebyshev.C_eq_two_mul_T_comp_half_mul_X, MvPolynomial.pUnitAlgEquiv_monomial, conductor_mul_differentIdeal, support_derivativeFinsupp_subset_range, mapRingHom_id, ofFn_comp_toFn_eq_id_of_natDegree_lt, monomial_zero_left, natDegree_mul_C, Module.AEval.annihilator_top_eq_ker_aeval, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, FiniteField.X_pow_card_pow_sub_X_natDegree_eq, WeierstrassCurve.Ο†_four, roots_expand_pow_image_iterateFrobenius_subset, rootMultiplicity_X_sub_C_self, taylor_coeff, minpoly.eq_iff_aeval_minpoly_eq_zero, splits_X_sub_C, algEquivCMulXAddC_symm_apply, taylor_inj, Chebyshev.T_eq_half_mul_C_comp_two_mul_X, derivative_zero, opRingEquiv_symm_C, evalEval_zero, IsAlgClosed.roots_eq_zero_iff, exists_irreducible_of_natDegree_ne_zero, natDegree_cubic, degree_leadingCoeff_inv, irreducible_X, IsMonicOfDegree.aeval_sub, MvPolynomial.finSuccEquiv_rename_finSuccEquiv, not_isUnit_X_pow_sub_one, ContinuousMap.polynomial_comp_attachBound, toFinsupp_C_mul_X_pow, expand_eval, logMahlerMeasure_const, natDegree_C_mul_of_isUnit, hermite_zero, Monic.not_irreducible_iff_exists_add_mul_eq_coeff, Monic.irreducible_iff_natDegree', isAlgebraic_iff_not_injective, dickson_two, succ_signVariations_X_sub_C_mul_monomial, derivative_X_add_C_sq, one_lt_rootMultiplicity_iff_isRoot_iterate_derivative, span_le_degreeLE_of_finite, cyclotomic_three, as_sum_support, FiniteField.expand_card, taylorLinearEquiv_symm, coeff_expand_mul', comp_eq_sum_left, differentiableWithinAt_aeval, rootMultiplicity_X_sub_C, AdjoinRoot.coe_algEquivOfEq, natTrailingDegree_monomial_le, AdjoinRoot.aeval_eq, Matrix.charpoly_mul_comm', evalβ‚‚_multiset_sum, coeff_zero_eq_aeval_zero', PowerSeries.evalβ‚‚_trunc_eq_sum_range, IsLocalization.adjoin_inv, degreeLT.addLinearEquiv_symm_apply_inl_basis, PowerSeries.trunc_one_X, leval_coe_eq_smeval, map_dvd_map, dvd_comp_X_sub_C_iff, LaurentPolynomial.leftInverse_trunc_toLaurent, roots_expand_pow, AnalyticOnNhd.aeval_polynomial, evalEval_map_C, pow_mul_divByMonic_rootMultiplicity_eq, contract_mul_expand, algEquivAevalXAddC_apply, leadingCoeff_C, PolynomialModule.monomial_smul_apply, map_frobenius_expand, natDegree_coe_units, Module.AEval.instFinitePolynomial, logMahlerMeasure_monomial, cauchyBound_X_add_C, degree_cubic_le, PowerSeries.trunc_trunc, WeierstrassCurve.Ξ¨_four, leadingCoeff_X_pow_add_one, rootSet_monomial, matPolyEquiv_symm_X, monomial_left_inj, evalEval_list_prod, aeval_pi, newtonMap_apply, Derivation.apply_aeval_eq', toLaurent_C_mul_eq, X_sub_C_mul_removeFactor, aevalTower_comp_C, logMahlerMeasure_C_mul_X_add_C, not_isUnit_X, Cubic.eq_prod_three_roots, FiniteField.isSplittingField_sub, coe_aeval_eq_eval, Matrix.aeval_self_charpoly, leadingCoeff_pow, exists_irreducible_of_natDegree_pos, Multiset.prod_X_add_C_eq_sum_esymm, coeff_C_zero, natDegree_iterate_derivative, Monic.nextCoeff_pow, exists_prod_multiset_X_sub_C_mul, degree_linear_le, smul_modByMonic, IsAdjoinRoot.algEquiv_map, mapAlgHom_comp, Matrix.charmatrix_apply, instFiniteTypeSubtypePolynomialMemSubalgebraReesAlgebraOfIsNoetherianRing, eval_add_of_sq_eq_zero, scaleRoots_zero, derivative_X_add_C_pow, homogenize_C, PowerSeries.aeval_coe, cyclotomic_prime, content_C, eval_multisetSum, splits_iff_exists_multiset', toFinsupp_C_mul_X, natDegree_monomial_eq, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, Monic.expand, dvd_iff_isRoot, iterate_derivative_mul, mapRingHom_comp, Chebyshev.T_eq_X_mul_T_sub_pol_U, qsmul_eq_C_mul, derivative_map, Multiset.prod_X_add_C_coeff', splits_X_pow, PowerSeries.substAlgHom_coe, degree_linear_lt_degree_C_mul_X_sq, LinearMap.charpoly_zero, cauchyBound_X_sub_C, splits_of_exists_multiset, map_C, rootSet_X_pow, iterate_derivative_intCast_mul, taylor_mem_degreeLT, C_neg, leadingCoeff_monomial, Lagrange.eval_nodal_derivative_eval_node_eq, MvPolynomial.rename_toMvPolynomial, natDegree_expand, Module.Basis.traceDual_powerBasis_eq, isNilpotent_pow_X_mul_C_of_isNilpotent, prod_X_sub_C_coeff_card_pred, evalEval_smul, card_support_le_one_iff_monomial, MvPolynomial.optionEquivLeft_symm_C_X, not_irreducible_C, coeff_mul_monomial, degree_quadratic_lt_degree_C_mul_X_cb, coeff_C_mul_X_pow, LaurentPolynomial.trunc_C_mul_T, aeval_pi_applyβ‚‚, derivative_natCast, WeierstrassCurve.Ο†_two, degree_C_mul_X, MvPolynomial.finSuccEquiv_X_zero, comp_X_add_C_eq_zero_iff, MvPolynomial.degreeOf_eq_natDegree, resultant_X_sub_C_left, hasseDeriv_X, lifts_iff_set_range, aeval_mem_adjoin_singleton, spectralValue_eq_zero_iff, toLaurent_X, derivative_bernoulli, scaleRoots_C, evalβ‚‚AlgHom'_apply, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_natDegree, toAddCircle_X_eq_fourier_one, AdjoinRoot.mk_self, WeierstrassCurve.Ξ¨Sq_three, ofFn_coeff_eq_val_of_lt, coeff_mul_X_pow', evalEval_surjective, degree_pow', PolynomialModule.monomial_smul_lsingle, tendsto_abv_aeval_atTop, Lagrange.nodal_subgroup_eq_X_pow_card_sub_one, degree_mul_C, LinearMap.not_hasEigenvalue_zero_tfae, MvPolynomial.transcendental_supported_polynomial_aeval_X_iff, div_C_mul, resultant_C_mul_left, resultant_pow_left, StandardEtalePresentation.toPresentation_relation, cyclotomic_expand_eq_cyclotomic, map_mapRingHom_eval_map, toMvPolynomial_injective, roots_X_pow, opRingEquiv_op_C_mul_X_pow, degreeLT.basisProd_natAdd, Ideal.polynomialQuotientEquivQuotientPolynomial_map_mk, PowerSeries.WithPiTopology.tendsto_trunc_atTop, roots_X_add_C, WeierstrassCurve.Affine.baseChange_polynomialY, monomial_natDegree_leadingCoeff_eq_self, degreeLE_mono, aeval_algHom_apply, coe_toLaurentAlg, WeierstrassCurve.Ξ¨Sq_four, PowerSeries.IsWeierstrassDivisionAt.smul, hilbertPoly_mul_one_sub_pow_add, Ideal.quotient_mk_maps_eq, RatFunc.toFractionRingRingEquiv_symm_eq, shiftedLegendre_eval_symm, bernsteinPolynomial.derivative_zero, iterate_derivative_map, sumIDeriv_apply_of_le, RatFunc.aeval_X_left_eq_algebraMap, Bivariate.pderiv_one_equivMvPolynomial, support_monomial', WeierstrassCurve.map_ψ, mem_degreeLE, isScalarTower_right, X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd, separable_C_mul_X_pow_add_C_mul_X_add_C, Monic.irreducible_iff_irreducible_map_fraction_map, Matrix.IsHermitian.charpoly_eq, RatFunc.associated_num_inv, bernsteinPolynomial.iterate_derivative_at_0_eq_zero_of_lt, taylor_X, multiset_prod_X_sub_C_coeff_card_pred, separable_X_sub_C, mapAlgHom_coe_ringHom, bernsteinPolynomial.iterate_derivative_at_0, finiteMultiplicity_X_sub_C, Chebyshev.derivative_U_eval_one_eq_div, WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq, hasFDerivWithinAt, Algebra.IsInvariant.charpoly_mem_lifts, MvPolynomial.optionEquivLeft_elim_eval, MvPolynomial.optionEquivLeft_symm_X, leadingCoeff_X_add_C, degree_sum_fin_lt, minpoly.irreducible, IsEisensteinAt.irreducible, expand_aeval, ringHom_ext'_iff, irreducible_X_sub_C, not_dvd_of_natDegree_lt, Monic.as_sum, ofFinsupp_sum, degreeLE_eq_span_X_pow, matPolyEquiv_coeff_apply_aux_2, aeval_natCast, aevalTower_comp_toAlgHom, iterate_derivative_one, preimage_eval_singleton, mem_nonzeroDivisors_of_coeff_mem, IsPrimitive.isUnit_iff_isUnit_map, natDegree_derivative_lt, MvPolynomial.aeval_comp_toMvPolynomial, Cubic.C_mul_prod_X_sub_C_eq, aeval_algHom, coe_aevalAeval_eq_evalEval, map_mapRingHom_eval_map_eval, toLaurent_C, eq_leadingCoeff_mul_of_monic_of_dvd_of_natDegree_le, ofMultiset_injective, IsSplittingField.IsScalarTower.splits, PowerBasis.aeval_minpolyGen, X_pow_comp, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eq_poly_in_U, coe_aeval_eq_evalRingHom, RatFunc.algebraMap_monomial, instFiniteDimensionalQuotientPolynomialIdealSpanSingletonSetSmithCoeffs, AdjoinRoot.coe_algHomOfDvd, bernoulli_comp_one_sub_X, toLaurentAlg_apply, taylor_pow, evalEval_natCast, irreducible_C_mul_X_add_C, smul_X_eq_monomial, commute_X_pow, Chebyshev.C_two, resultant_X_pow_left, succ_signVariations_le_X_sub_C_mul, one_lt_rootMultiplicity_iff_isRoot, monomial_sub, coeff_monomial_succ, Splits.C, MvPolynomial.evalβ‚‚_pUnitAlgEquiv, PowerSeries.trunc_sub, annIdealGenerator_eq_zero_iff, le_trailingDegree_X_pow, reverse_C_add, natDegree_linear, matPolyEquiv_smul_one, autAdjoinRootXPowSubC_root, degree_monomial, spectrum.map_polynomial_aeval, toLaurent_C_mul_X_pow, Ideal.isPrime_map_C_iff_isPrime, pow_scaleRoots', PowerSeries.trunc_derivativeFun, Matrix.charpoly_diagonal, degree_mul_X_pow, degree_add_C, sylveserMap_comp_adjSylvester, toAddCircle_C_eq_smul_fourier_zero, evalEval_C, algHom_ext'_iff, isLocalHom_expand, coe_evalβ‚‚RingHom, natDegree_pow_X_add_C, LaurentPolynomial.toLaurent_reverse, PowerSeries.trunc_map, natDegree_eq_zero, ker_modByMonicHom, Monic.irreducible_of_degree_eq_one, Mathlib.Tactic.ComputeDegree.coeff_pow_of_natDegree_le_of_eq_ite', map_evalRingHom_eval, isNilpotent_reverse_iff, PowerSeries.coeff_coe_trunc_of_lt, IsUnitTrinomial.irreducible_aux1, roots_C_mul_X_add_C_of_IsUnit, isMonicOfDegree_monomial_one, PowerSeries.trunc_zero', mirror_C, bernoulli_comp_neg_X, MvPolynomial.optionEquivLeft_symm_C_C, Derivation.compAEval_apply, Cubic.of_c_eq_zero, matPolyEquiv_eq_X_pow_sub_C, cyclotomic_eq_X_pow_sub_one_div, hasseDeriv_eq_zero_of_lt_natDegree, spectralValue_X_pow, coeff_divByMonic_X_sub_C, ofFn_coeff_eq_zero_of_ge, degreeLT.basisProd_castAdd, Matrix.derivative_det_one_add_X_smul_aux, degree_C_mul_X_pow, trailingDegree_monomial, C_pow, C_add, coe_taylorEquiv, hasDerivWithinAt, zero_notMem_multiset_map_X_add_C, Matrix.charpoly_ofNat, Matrix.aeval_eq_aeval_mod_charpoly, mod_def, aeval_algebraMap_apply, PowerSeries.trunc_derivative, AdjoinRoot.algEquivOfEq_toAlgHom, leadingCoeff_divByMonic_X_sub_C, bernsteinPolynomial.derivative_succ_aux, pairwise_coprime_X_sub_C, WeierstrassCurve.Ο†_zero, derivative_X_sub_C, MvPolynomial.IsHomogeneous.finSuccEquiv_coeff_isHomogeneous, fourierCoeff_toAddCircle, IsDistinguishedAt.algEquivQuotient_apply, natSepDegree_X_pow, Module.AEval.mem_mapSubmodule_apply, aroots_C, isMonicOfDegree_X_pow, minpoly.ker_eval, minpoly.eq_X_sub_C, cyclotomic_prime_mul_X_sub_one, roots_C, Chebyshev.C_neg_two, mapAlgHom_id, Matrix.charmatrix_diagonal, Lagrange.nodal_erase_eq_nodal_div, monic_prod_X_sub_C, LaurentPolynomial.instIsScalarTowerPolynomial, natDegree_cubic_le, ConjRootClass.irreducible_minpoly, card_roots_toFinset_le_derivative, map_aeval_eq_aeval_map, adjoin_X, IsAlgClosed.associated_iff_roots_eq_roots, iterate_derivative_sum, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eval, WeierstrassCurve.ψ_four, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_mk_of, Module.AEval.annihilator_eq_ker_aeval, Bivariate.equivMvPolynomial_C_C, WeierstrassCurve.Ξ¨_odd, natDegree_quadratic, RatFunc.laurentAux_ofFractionRing_mk, natDegree_C_mul_X_pow_le, aeval_add, instIsLocalHomRingHomAlgebraMap, continuousOn_aeval, aeval_sub, coe_pow, IsAdjoinRoot.map_surjective, sumIDeriv_apply_of_lt, mem_lift_of_splits_of_roots_mem_range, erase_monomial, continuousAt_aeval, IsSepClosed.exists_aeval_eq_zero, card_roots_sub_C, integralClosure.mem_lifts_of_monic_of_dvd_map, homogenizeLM_apply, degree_derivative_le, Module.End.eigenspace_aeval_polynomial_degree_1, inv_eq_of_aeval_divX_ne_zero, Chebyshev.iterate_derivative_T_eval_one_eq_div, lifts_iff_coeffs_subset_range, isRoot_of_isRoot_iff_dvd_derivative_mul, exists_monic_aeval_eq_zero_forall_mem_of_mem_map, resultant_C_mul_right, derivative_one, taylorLinearEquiv_apply_coe, PowerSeries.natDegree_trunc_lt, irreducible_of_degree_eq_one, coe_evalEvalRingHom, degree_linear, Chebyshev.derivative_T_eval_one, WeierstrassCurve.Affine.CoordinateRing.basis_apply, taylor_C, LindemannWeierstrass.hasDerivAt_cexp_mul_sumIDeriv, Transcendental.aeval_of_transcendental, mem_degreeLT, derivative_apply, PowerSeries.trunc_X, mem_map_rangeS, C_injective, aeval_X, degreeLT.basis_repr, LaurentPolynomial.exists_T_pow, polyEquivTensor_symm_apply_tmul_eq_smul, nextCoeff_C_mul, AdjoinRoot.mkₐ_toRingHom, self_sub_C_mul_X_pow, monomial_comp, natDegree_add_C, IsAdjoinRoot.algEquiv_apply_map, coe_evalRingHom, eval_C_mul, roots_expand_map_frobenius_le, isCoprime_X_sub_C_of_isUnit_sub, irreducible_X_pow_sub_C_of_root_adjoin_eq_top, evalβ‚‚_evalβ‚‚RingHom_apply, ofFn_natDegree_lt, isNoetherianRing, aeval_homogenize_of_eq_one, toContinuousMapOnAlgHom_apply, evalEval_one, neg_one_pow_mul_shiftedLegendre_comp_one_sub_X_eq, IsAdjoinRoot.ker_map, monomial_mul_monomial, coe_mapAlgHom, content_X_pow, RatFunc.associated_denom_inv, signVariations_C_mul, MvPolynomial.totalDegree_coeff_optionEquivLeft_le, Monic.irreducible_iff_roots_eq_zero_of_degree_le_three, trailingDegree_X_pow, mkDerivation_apply, not_finite, coeff_monomial_mul, Module.instFinitePolynomialAEval', Lagrange.interpolate_singleton, C_content_dvd, galois_poly_separable, Ideal.Filtration.submodule_fg_iff_stable, coeff_X_add_C_pow, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, degree_linear_lt, WeierstrassCurve.preΞ¨_even, PowerSeries.trunc_C_mul, Chebyshev.add_one_mul_T_eq_poly_in_U, coeffList_monomial, algEquivAevalXAddC_symm, evalEval_mul, degree_coe_units, IsAlgClosed.exists_aeval_eq_zero, expand_injective, natDegree_pow', coeff_det_X_add_C_zero, derivative_C_mul_X_sq, content_monomial, Lagrange.nodal_eq, derivativeFinsupp_C, card_support_trinomial, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_monic, taylor_one, X_pow_sub_C_irreducible_iff_of_prime, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal, irreducible_of_dvd_cyclotomic_of_natDegree, AdjoinRoot.mk_C, map_iterateFrobenius_expand, derivativeFinsupp_X, roots_X_pow_char_pow_sub_C, RatFunc.eval_algebraMap, exists_irreducible_of_degree_pos, evalβ‚‚_algebraMap_X, LinearMap.exists_monic_and_coeff_mem_pow_and_aeval_eq_zero_of_range_le_smul, toMvPolynomial_C, exists_mul_add_mul_eq_C_resultant, Matrix.charpoly_of_card_eq_two, eval_multiset_prod_X_sub_C_derivative, toFinsupp_C, smeval_mul_X_pow, X_sub_C_pow_dvd_iff, lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors', aroots_pow, Matrix.charmatrix_zero, natDegree_multiset_sum_le, isCyclic_tfae, roots_prod_X_sub_C, add_scaleRoots_of_natDegree_eq, bernsteinPolynomial.iterate_derivative_at_1, cfc_comp_polynomial, Lagrange.nodalWeight_eq_eval_derivative_nodal, derivative_intCast, C_smul_derivation_apply, leadingCoeff_taylor, homogenize_monomial, X_pow_mul_C, AdjoinRoot.evalEval_mk, derivative_add, expand_pow, degree_sub_C, map_taylorEquiv_degreeLT, PowerBasis.liftEquiv_apply_coe, Multiset.prod_X_sub_C_coeff, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, degree_X_add_C, eval_geom_sum, monomial_add_erase, isMonicOfDegree_sub_add_two, algebraMap_eq, coe_mapAlgEquiv, cyclotomic'_eq_X_pow_sub_one_div, X_pow_mul, degree_C_le, eval_monomial, Monic.neg_one_pow_natDegree_mul_comp_neg_X, IsAdjoinRootMonic.modByMonic_repr_map, fourierCoeff_toAddCircle_eq_zero_of_lt_zero, MvPolynomial.transcendental_supported_polynomial_aeval_X, GaloisField.splits_zmod_X_pow_sub_X, aeval_sumIDeriv_of_pos, MvPolynomial.eval_polynomial_eval_finSuccEquiv, monic_X_pow_sub, continuousWithinAt_aeval, Monic.eq_X_sub_C_pow_of_natSepDegree_eq_one_of_splits, KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk_symm_apply_eq_span, Derivation.apply_aeval_eq, PowerSeries.trunc_derivative', KummerDedekind.quotMapEquivQuotQuotMap_symm_apply, RatFunc.toFractionRing_eq, Matrix.isNilpotent_charpoly_sub_pow_of_isNilpotent
smulZeroClass πŸ“–CompOp
58 mathmath: degree_smul_of_smul_regular, Mathlib.Tactic.ComputeDegree.degree_smul_le_of_le, nnqsmul_eq_C_mul, homogenize_smul, sum_smul_index', derivative_smul, natDegree_smul, C_mul', monic_of_isUnit_leadingCoeff_inv_smul, AdjoinRoot.smul_mk, natDegree_smul_of_smul_regular, smul_monomial, sum_smul_index, smul_eq_C_mul, isScalarTower, cauchyBound_smul, smeval_smul, prodXSubSMul.smul, IsSMulRegular.polynomial, MulSemiringAction.charpoly_eq_prod_smul, MulSemiringAction.smul_charpoly, Mathlib.Tactic.ComputeDegree.natDegree_smul_le_of_le, smul_X, coe_smul, smul_eq_map, smul_eval_smul, isCentralScalar, iterate_derivative_X_pow_eq_smul, ofFinsupp_smul, leadingCoeff_smul_of_smul_regular, degree_smul_of_isRightRegular_leadingCoeff, coeff_smul, support_smul, PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul, iterate_derivative_smul, FixedPoints.smul_polynomial, PolyEquivTensor.toFunBilinear_apply_apply, natDegree_smul_le, map_smul, degree_smul_le, PolyEquivTensor.toFunBilinear_apply_eq_smul, smul_C, toFinsupp_smul, eval_smul, faithfulSMul, scaleRoots_zero, smul_eval, smulCommClass, qsmul_eq_C_mul, evalEval_smul, mirror_smul, evalβ‚‚_smul, isScalarTower_right, smul_X_eq_monomial, eval_smul', smul_comp, polyEquivTensor_symm_apply_tmul_eq_smul, Mathlib.Tactic.ComputeDegree.coeff_smul
sum πŸ“–CompOp
40 mathmath: PolyEquivTensor.toFunBilinear_apply_eq_sum, expand_eq_sum, sum_smul_index', PolyEquivTensor.toFunAlgHom_apply_tmul, derivative_eval, sum_C_index, sum_smul_index, sum_X_index, evalEval_sum, sum_add, evalβ‚‚_sum, sum_C_mul_X_pow_eq, polyEquivTensor_symm_apply_tmul, sum_monomial_index, sum_monomial_eq, smul_sum, mul_eq_sum_sum, sum_eq_of_subset, evalβ‚‚_def, coeff_sum, sum_add_index, lsum_apply, smeval_def, sum_def, eval_eq_sum, sum_over_range, sum_taylor_eq, sum_fin, sum_zero_index, aeval_endomorphism, eval_sum, sum_over_range', hasseDeriv_apply, smeval_eq_sum, comp_eq_sum_left, coeff_mul_mirror, evalβ‚‚_eq_sum, mahlerMeasure_le_sum_norm_coeff, derivative_apply, sum_add'
support πŸ“–CompOp
89 mathmath: supp_subset_range, support_monomial, MvPolynomial.support_finSuccEquiv, support_trinomial, support_C_mul_X, card_support_le_one_of_eraseLead_eq_zero, eraseLead_support, iterate_derivative_eq_factorial_smul_sum, card_support_eraseLead_add_one, natDegree_notMem_eraseLead_support, support_C_mul_X', MvPolynomial.nonempty_support_finSuccEquiv, IsLocalization.coeffIntegerNormalization_mem_support, mem_support_derivative, MvPolynomial.support_finSuccEquiv_nonempty, support_trinomial', isUnitTrinomial_iff, support_neg, support_scaleRoots_eq, support_binomial', support_C, hilbertPoly_succ, as_sum_support_C_mul_X_pow, card_support_eq, mem_support_iff, natDegree_eq_support_max', support_ofFinsupp, IsUnitTrinomial.card_support_eq_three, card_support_binomial, support_C_subset, support_C_mul_X_pow', support_X, card_support_eq', support_update_zero, card_support_mul_le, supp_subset_range_natDegree_succ, mul_eq_sum_sum, support_add, reflect_support, card_support_eq_three, card_supp_le_succ_natDegree, iterate_derivative_eq_sum, notMem_support_iff, supNorm_def', support_integralNormalization_subset, IsLocalization.scaleRoots_commonDenom_mem_lifts, MvPolynomial.mem_support_finSuccEquiv, support_smul, support_toSubring, sum_sq_norm_coeff_eq_circleAverage, support_opRingEquiv, natTrailingDegree_eq_support_min', card_support_eraseLead, card_support_eq_zero, support_integralNormalization, LaurentPolynomial.toLaurent_support, MvPolynomial.nonempty_support_optionEquivLeft, MvPolynomial.support_optionEquivLeft, card_support_eq_two, card_support_eq_one, support_update, card_support_C_mul_X_pow_le_one, support_C_mul_X_pow, sum_def, natTrailingDegree_mem_support_of_nonzero, support_map_subset, eraseLead_support_card_lt, support_X_pow, nonempty_support_iff, support_update_ne_zero, support_subset_support_matPolyEquiv, support_binomial, support_eq_empty, natDegree_mem_support_of_nonzero, support_toFinsupp, as_sum_support, trinomial_support, mem_coeffs_iff, support_restriction, card_support_le_one_iff_monomial, card_support_eq_one_of_eraseLead_eq_zero, support_scaleRoots_le, support_monomial', support_erase, support_map_of_injective, support_zero, support_nonempty, support_X_empty, card_support_trinomial
toFinsupp πŸ“–CompOp
38 mathmath: toFinsupp_zsmul, toFinsupp_pow, toFinsupp_monomial, toFinsupp_inj, toFinsupp_injective, toFinsupp_eq_zero, toFinsupp_nsmul, eta, toFinsupp_X_pow, toLaurent_apply, toFinsuppIsoLinear_symm_apply_toFinsupp, toFinsupp_one, toFinsupp_natCast, toFinsupp_ofNat, toFinsupp_mul, toFinsuppIsoLinear_apply, toFinsupp_algebraMap, toFinsupp_X, toFinsupp_eq_one, supDegree_eq_degree, toFinsuppIsoAlg_symm_apply_toFinsupp, toFinsuppIso_apply, toFinsupp_apply, toFinsupp_sum, toFinsupp_add, toFinsupp_neg, toFinsupp_smul, toFinsuppIsoAlg_apply, toFinsupp_sub, support_toFinsupp, toFinsupp_C_mul_X_pow, toFinsupp_C_mul_X, toFinsupp_intCast, supDegree_eq_natDegree, IsUnitTrinomial.irreducible_aux1, toFinsupp_erase, toFinsupp_zero, toFinsupp_C
toFinsuppIso πŸ“–CompOp
2 mathmath: toFinsuppIso_apply, toFinsuppIso_symm_apply
toFinsuppIsoLinear πŸ“–CompOp
2 mathmath: toFinsuppIsoLinear_symm_apply_toFinsupp, toFinsuppIsoLinear_apply
unique πŸ“–CompOpβ€”
update πŸ“–CompOp
10 mathmath: coeff_update_ne, update_zero_eq_erase, update_eq_add_sub_coeff, coeff_update_apply, support_update_zero, coeff_update_same, support_update, support_update_ne_zero, coeff_update, degree_update_le
Β«term_[X]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
C_0 πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instZero
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
C_1 πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instOne
β€”β€”
C_add πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAdd
β€”RingHom.map_add
C_eq_intCast πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Ring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
instIntCast
β€”map_intCast
RingHom.instRingHomClass
C_eq_natCast πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instNatCast
β€”map_natCast
RingHom.instRingHomClass
C_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”C_injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
C_inj πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”C_injective
C_injective πŸ“–mathematicalβ€”Polynomial
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”monomial_injective
C_mul πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
instMul
β€”RingHom.map_mul
C_mul_X_eq_monomial πŸ“–mathematicalβ€”Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”C_mul_X_pow_eq_monomial
pow_one
C_mul_X_pow_eq_monomial πŸ“–mathematicalβ€”Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”mul_one
pow_succ
mul_assoc
X.eq_1
monomial_mul_monomial
C_mul_monomial πŸ“–mathematicalβ€”Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”monomial_mul_monomial
zero_add
C_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
C_eq_zero
C_neg πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Ring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
instNeg
β€”map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
C_ofNat πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”β€”
C_pow πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”RingHom.map_pow
C_sub πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Ring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instSub
β€”map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
X_mul πŸ“–mathematicalβ€”Polynomial
instMul
X
β€”AddMonoidAlgebra.ext
AddMonoidAlgebra.mul_apply
Finsupp.sum_single_index
add_comm
MulZeroClass.zero_mul
Finsupp.sum_fun_zero
one_mul
MulZeroClass.mul_zero
mul_one
X_mul_C πŸ“–mathematicalβ€”Polynomial
instMul
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”X_mul
X_mul_monomial πŸ“–mathematicalβ€”Polynomial
instMul
X
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”X_mul
monomial_mul_X
X_ne_C πŸ“–β€”β€”β€”β€”NeZero.one
monomial_eq_monomial_iff
X_ne_zero πŸ“–β€”β€”β€”β€”coeff_X_one
NeZero.one
X_pow_eq_monomial πŸ“–mathematicalβ€”Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”monomial_one_right_eq_X_pow
X_pow_mul πŸ“–mathematicalβ€”Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”pow_zero
one_mul
mul_one
pow_succ
mul_assoc
X_mul
X_pow_mul_C πŸ“–mathematicalβ€”Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”X_pow_mul
X_pow_mul_assoc πŸ“–mathematicalβ€”Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”mul_assoc
X_pow_mul
X_pow_mul_assoc_C πŸ“–mathematicalβ€”Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”X_pow_mul_assoc
X_pow_mul_monomial πŸ“–mathematicalβ€”Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”X_pow_mul
monomial_mul_X_pow
addHom_ext πŸ“–β€”DFunLike.coe
AddMonoidHom
Polynomial
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
semiring
AddMonoidHom.instFunLike
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”β€”AddMonoidHom.eq_of_eqOn_denseM
addSubmonoid_closure_setOf_eq_monomial
addHom_ext' πŸ“–β€”AddMonoidHom.comp
Polynomial
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
semiring
LinearMap.toAddMonoidHom
Semiring.toModule
module
RingHom.id
monomial
β€”β€”addHom_ext
DFunLike.congr_fun
addHom_ext'_iff πŸ“–mathematicalβ€”AddMonoidHom.comp
Polynomial
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
semiring
LinearMap.toAddMonoidHom
Semiring.toModule
module
RingHom.id
monomial
β€”addHom_ext'
addSubmonoid_closure_setOf_eq_monomial πŸ“–mathematicalβ€”AddSubmonoid.closure
Polynomial
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
semiring
setOf
DFunLike.coe
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Top.top
AddSubmonoid
AddSubmonoid.instTop
β€”top_unique
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
AddSubmonoid.map_equiv_top
Finsupp.add_closure_setOf_eq_single
AddMonoidHom.map_mclosure
AddSubmonoid.closure_mono
Set.image_subset_iff
ofFinsupp_single
binomial_eq_binomial πŸ“–mathematicalβ€”Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”C_mul_X_pow_eq_monomial
toFinsupp_add
toFinsupp_monomial
Finsupp.single_add_single_eq_single_add_single
card_support_eq_zero πŸ“–mathematicalβ€”Finset.card
support
Polynomial
instZero
β€”β€”
coeff_C πŸ“–mathematicalβ€”coeff
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”coeff_monomial
coeff_C_ne_zero πŸ“–mathematicalβ€”coeff
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”coeff_C
coeff_C_succ πŸ“–mathematicalβ€”coeff
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”coeff_C
coeff_C_zero πŸ“–mathematicalβ€”coeff
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”coeff_monomial
coeff_X πŸ“–mathematicalβ€”coeff
X
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”coeff_monomial
coeff_X_of_ne_one πŸ“–mathematicalβ€”coeff
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_X
coeff_X_one πŸ“–mathematicalβ€”coeff
X
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”coeff_monomial
coeff_X_zero πŸ“–mathematicalβ€”coeff
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_monomial
coeff_erase πŸ“–mathematicalβ€”coeff
erase
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”erase_def
coeff_inj πŸ“–mathematicalβ€”coeffβ€”coeff_injective
coeff_injective πŸ“–mathematicalβ€”Polynomial
coeff
β€”β€”
coeff_mem_coeffs πŸ“–mathematicalβ€”Finset
Finset.instMembership
coeffs
coeff
β€”β€”
coeff_monomial πŸ“–mathematicalβ€”coeff
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”toFinsupp_monomial
Finsupp.single_apply
coeff_monomial_of_ne πŸ“–mathematicalβ€”coeff
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Finsupp.single_eq_of_ne
coeff_monomial_same πŸ“–mathematicalβ€”coeff
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”Finsupp.single_eq_same
coeff_monomial_succ πŸ“–mathematicalβ€”coeff
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_monomial
coeff_natCast_ite πŸ“–mathematicalβ€”coeff
Polynomial
instNatCast
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”coeff_C
Nat.cast_ite
Nat.cast_zero
coeff_neg πŸ“–mathematicalβ€”coeff
Ring.toSemiring
Polynomial
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”ofFinsupp_neg
coeff.eq_1
Finsupp.neg_apply
coeff_ofFinsupp πŸ“–mathematicalβ€”coeff
ofFinsupp
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
β€”coeff.eq_1
coeff_ofNat_succ πŸ“–mathematicalβ€”coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Nat.cast_ofNat
coeff_natCast_ite
Nat.cast_zero
coeff_ofNat_zero πŸ“–mathematicalβ€”coeffβ€”coeff_monomial
coeff_one πŸ“–mathematicalβ€”coeff
Polynomial
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”coeff_monomial
coeff_one_zero πŸ“–mathematicalβ€”coeff
Polynomial
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”coeff_one
coeff_sub πŸ“–mathematicalβ€”coeff
Ring.toSemiring
Polynomial
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”ofFinsupp_sub
coeff.eq_1
Finsupp.sub_apply
coeff_update πŸ“–mathematicalβ€”coeff
update
Function.update
β€”Finsupp.coe_update
Function.update_apply
coeff_update_apply πŸ“–mathematicalβ€”coeff
update
β€”coeff_update
Function.update_apply
coeff_update_ne πŸ“–mathematicalβ€”coeff
update
β€”coeff_update_apply
coeff_update_same πŸ“–mathematicalβ€”coeff
update
β€”coeff_update_apply
coeff_zero πŸ“–mathematicalβ€”coeff
Polynomial
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
coeffs_empty_iff πŸ“–mathematicalβ€”coeffs
Finset
Finset.instEmptyCollection
Polynomial
instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
support_nonempty
coeff_mem_coeffs
mem_support_iff
coeffs_monomial πŸ“–mathematicalβ€”coeffs
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Finset
Finset.instSingleton
β€”coeffs.eq_1
support_monomial
Finset.image_singleton
coeff_monomial_same
coeffs_nonempty_iff πŸ“–mathematicalβ€”Finset.Nonempty
coeffs
β€”β€”
coeffs_one πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
coeffs
Polynomial
instOne
Finset.instSingleton
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”coeff_one
coeffs_zero πŸ“–mathematicalβ€”coeffs
Polynomial
instZero
Finset
Finset.instEmptyCollection
β€”β€”
commute_X πŸ“–mathematicalβ€”Commute
Polynomial
instMul
X
β€”X_mul
commute_X_pow πŸ“–mathematicalβ€”Commute
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”X_pow_mul
eq_zero_of_eq_zero πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Polynomial
instZero
β€”one_smul
zero_smul
erase_def πŸ“–mathematicalβ€”erase
Polynomial
ofFinsupp
Finsupp.erase
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
erase_monomial πŸ“–mathematicalβ€”erase
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
instZero
β€”toFinsupp_injective
toFinsupp_erase
toFinsupp_monomial
Finsupp.erase_single
erase_ne πŸ“–mathematicalβ€”coeff
erase
β€”coeff_erase
erase_same πŸ“–mathematicalβ€”coeff
erase
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_erase
erase_zero πŸ“–mathematicalβ€”erase
Polynomial
instZero
β€”toFinsupp_injective
toFinsupp_erase
Finsupp.erase_of_notMem_support
eta πŸ“–mathematicalβ€”ofFinsupp
toFinsupp
β€”β€”
exists_iff_exists_finsupp πŸ“–mathematicalβ€”ofFinsuppβ€”β€”
ext πŸ“–β€”coeffβ€”β€”ext_iff
ext_iff πŸ“–mathematicalβ€”coeffβ€”DFunLike.ext_iff
faithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
β€”FaithfulSMul.eq_of_smul_eq_smul
Finsupp.faithfulSMul
finite_range_coeff πŸ“–mathematicalβ€”Set.Finite
Set.range
coeff
β€”Finsupp.finite_range
forall_eq_iff_forall_eq πŸ“–β€”β€”β€”β€”subsingleton_iff_subsingleton
forall_iff_forall_finsupp πŸ“–mathematicalβ€”ofFinsuppβ€”β€”
induction_on πŸ“–β€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instAdd
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”β€”pow_zero
mul_one
Finset.induction
C_0
Finset.sum_insert
sum_C_mul_X_pow_eq
sum.eq_1
induction_on' πŸ“–β€”Polynomial
instAdd
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”β€”induction_on
C_mul_X_pow_eq_monomial
instIsCancelMulZeroOfIsCancelAdd πŸ“–mathematicalβ€”IsCancelMulZero
Polynomial
instMul
instZero
β€”instIsLeftCancelMulZeroOfIsCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
instIsRightCancelMulZeroOfIsCancelAdd
IsCancelMulZero.toIsRightCancelMulZero
instIsDomainOfIsCancelAdd πŸ“–mathematicalβ€”IsDomain
Polynomial
semiring
β€”instIsCancelMulZeroOfIsCancelAdd
IsDomain.toIsCancelMulZero
nontrivial
IsDomain.toNontrivial
instIsLeftCancelMulZeroOfIsCancelAdd πŸ“–mathematicalβ€”IsLeftCancelMulZero
Polynomial
instMul
instZero
β€”Function.Injective.isLeftCancelMulZero
RingEquiv.injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
AddMonoidAlgebra.instIsLeftCancelAddZeroOfIsCancelAddOfUniqueSums
TwoUniqueSums.toUniqueSums
TwoUniqueSums.of_covariant_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
instIsRightCancelMulZeroOfIsCancelAdd πŸ“–mathematicalβ€”IsRightCancelMulZero
Polynomial
instMul
instZero
β€”Function.Injective.isRightCancelMulZero
RingEquiv.injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
AddMonoidAlgebra.instIsRightCancelAddZeroOfIsCancelAddOfUniqueSums
TwoUniqueSums.toUniqueSums
TwoUniqueSums.of_covariant_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
instIsTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
β€”IsRegular.isSMulRegular
AddMonoidAlgebra.instIsTorsionFree
instNoZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
Polynomial
instMul
instZero
β€”Function.Injective.noZeroDivisors
RingEquiv.injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
AddMonoidAlgebra.instNoZeroDivisorsOfUniqueSums
TwoUniqueSums.toUniqueSums
TwoUniqueSums.of_covariant_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
isCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
MulOpposite
β€”IsCentralScalar.op_smul_eq_smul
AddMonoidAlgebra.isCentralScalar
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
β€”smul_assoc
AddMonoidAlgebra.isScalarTower
isScalarTower_right πŸ“–mathematicalβ€”IsScalarTower
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
semiring
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”smul_mul_assoc
AddMonoidAlgebra.isScalarTower_self
lhom_ext' πŸ“–β€”LinearMap.comp
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Semiring.toModule
module
RingHom.id
RingHomCompTriple.ids
monomial
β€”β€”RingHomCompTriple.ids
LinearMap.toAddMonoidHom_injective
addHom_ext
LinearMap.congr_fun
lhom_ext'_iff πŸ“–mathematicalβ€”LinearMap.comp
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Semiring.toModule
module
RingHom.id
RingHomCompTriple.ids
monomial
β€”RingHomCompTriple.ids
lhom_ext'
mem_coeffs_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
coeffs
support
coeff
β€”Finset.mem_image
mem_support_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
β€”support_ofFinsupp
coeff_ofFinsupp
monomial_add πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instAdd
β€”LinearMap.map_add
monomial_add_erase πŸ“–mathematicalβ€”Polynomial
instAdd
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
coeff
erase
β€”toFinsupp_injective
toFinsupp_add
toFinsupp_monomial
toFinsupp_erase
coeff.eq_1
Finsupp.single_add_erase
monomial_eq_monomial_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”toFinsupp_monomial
Finsupp.single_eq_single_iff
monomial_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”LinearMap.map_eq_zero_iff
monomial_injective
monomial_injective πŸ“–mathematicalβ€”Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”RingEquiv.injective
Finsupp.single_injective
monomial_left_inj πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”β€”
monomial_mul_C πŸ“–mathematicalβ€”Polynomial
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
RingHom
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”monomial_mul_monomial
add_zero
monomial_mul_X πŸ“–mathematicalβ€”Polynomial
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
X
β€”X.eq_1
monomial_mul_monomial
mul_one
monomial_mul_X_pow πŸ“–mathematicalβ€”Polynomial
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”pow_zero
mul_one
add_zero
pow_succ
monomial_mul_X
add_assoc
monomial_mul_monomial πŸ“–mathematicalβ€”Polynomial
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”toFinsupp_injective
toFinsupp_mul
toFinsupp_monomial
AddMonoidAlgebra.single_mul_single
monomial_neg πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
instNeg
β€”eq_neg_iff_add_eq_zero
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
neg_add_cancel
monomial_zero_right
monomial_one_one_eq_X πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
X
β€”β€”
monomial_one_right_eq_X_pow πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
pow_zero
pow_succ
monomial_one_one_eq_X
monomial_mul_monomial
mul_one
monomial_pow πŸ“–mathematicalβ€”Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”pow_zero
MulZeroClass.mul_zero
pow_succ
monomial_mul_monomial
add_comm
mul_add
Distrib.leftDistribClass
mul_one
monomial_sub πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instSub
β€”sub_eq_add_neg
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
monomial_neg
monomial_zero_left πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
RingHom
RingHom.instFunLike
C
β€”β€”
monomial_zero_one πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instOne
β€”β€”
monomial_zero_right πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instZero
β€”LinearMap.map_zero
mul_eq_sum_sum πŸ“–mathematicalβ€”Polynomial
instMul
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
support
sum
DFunLike.coe
LinearMap
RingHom.id
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
coeff
β€”toFinsupp_injective
Finset.sum_congr
toFinsupp_sum
toFinsupp_mul
toFinsupp_monomial
AddMonoidAlgebra.mul_def
natCast_mul πŸ“–mathematicalβ€”Polynomial
instMul
instNatCast
instNSMul
β€”nsmul_eq_mul
nnqsmul_eq_C_mul πŸ“–mathematicalβ€”NNRat
Polynomial
DivisionSemiring.toSemiring
SMulZeroClass.toSMul
instZero
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
NNRat.instDistribSMul
instMul
DFunLike.coe
RingHom
semiring
RingHom.instFunLike
C
NNRat.cast
DivisionSemiring.toNNRatCast
β€”NNRat.smul_one_eq_cast
smul_C
C_1
smul_one_mul
isScalarTower_right
NNRat.instIsScalarTowerRight
noZeroDivisors_iff πŸ“–mathematicalβ€”NoZeroDivisors
Polynomial
instMul
instZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Function.Injective.noZeroDivisors
C_injective
C_0
C_mul
instNoZeroDivisors
nontrivial πŸ“–mathematicalβ€”Nontrivial
Polynomial
β€”AddMonoidAlgebra.nontrivial
Nontrivial.exists_pair_ne
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
Polynomial
β€”exists_pair_ne
Nontrivial.of_polynomial_ne
nontrivial
notMem_support_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
ofFinsupp_add πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidAlgebra.nonUnitalNonAssocSemiring
Polynomial
instAdd
β€”β€”
ofFinsupp_eq_one πŸ“–mathematicalβ€”ofFinsupp
Polynomial
instOne
AddMonoidAlgebra
AddMonoidAlgebra.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”ofFinsupp_one
ofFinsupp_eq_zero πŸ“–mathematicalβ€”ofFinsupp
Polynomial
instZero
AddMonoidAlgebra
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidAlgebra.nonUnitalNonAssocSemiring
β€”ofFinsupp_zero
ofFinsupp_erase πŸ“–mathematicalβ€”ofFinsupp
Finsupp.erase
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
erase
β€”erase_def
ofFinsupp_inj πŸ“–mathematicalβ€”ofFinsuppβ€”β€”
ofFinsupp_intCast πŸ“–mathematicalβ€”ofFinsupp
Ring.toSemiring
AddMonoidAlgebra
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
AddMonoidAlgebra.ring
Nat.instAddMonoid
Polynomial
instIntCast
β€”β€”
ofFinsupp_mul πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra
AddMonoidAlgebra.instMul
Polynomial
instMul
β€”β€”
ofFinsupp_natCast πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidAlgebra.nonAssocSemiring
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Polynomial
instNatCast
β€”β€”
ofFinsupp_neg πŸ“–mathematicalβ€”ofFinsupp
Ring.toSemiring
AddMonoidAlgebra
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddMonoidAlgebra.addAddCommGroup
Polynomial
instNeg
β€”β€”
ofFinsupp_nsmul πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidAlgebra.nonAssocSemiring
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Polynomial
instNSMul
β€”β€”
ofFinsupp_ofNat πŸ“–mathematicalβ€”ofFinsuppβ€”β€”
ofFinsupp_one πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra
AddMonoidAlgebra.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial
instOne
β€”β€”
ofFinsupp_pow πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidAlgebra.semiring
Nat.instAddMonoid
Polynomial
pow
β€”pow_zero
pow_succ
ofFinsupp_mul
ofFinsupp_single πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra.single
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”β€”
ofFinsupp_smul πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidAlgebra.addAddCommMonoid
AddMonoidAlgebra.smulZeroClass
Polynomial
instZero
smulZeroClass
β€”β€”
ofFinsupp_sub πŸ“–mathematicalβ€”ofFinsupp
Ring.toSemiring
AddMonoidAlgebra
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidAlgebra.ring
Nat.instAddMonoid
Polynomial
instSub
β€”sub_eq_add_neg
ofFinsupp_sum πŸ“–mathematicalβ€”ofFinsupp
Finset.sum
AddMonoidAlgebra
AddMonoidAlgebra.addAddCommMonoid
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
β€”map_sum
RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
ofFinsupp_zero πŸ“–mathematicalβ€”ofFinsupp
AddMonoidAlgebra
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidAlgebra.nonUnitalNonAssocSemiring
Polynomial
instZero
β€”β€”
ofFinsupp_zsmul πŸ“–mathematicalβ€”ofFinsupp
Ring.toSemiring
AddMonoidAlgebra
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidAlgebra.ring
Nat.instAddMonoid
Polynomial
instZSMul
β€”β€”
ofMultiset_apply πŸ“–mathematicalβ€”DFunLike.coe
AddChar
Multiset
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
AddChar.instFunLike
ofMultiset
Multiset.prod
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”β€”
qsmul_eq_C_mul πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SMulZeroClass.toSMul
instZero
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Rat.instDistribSMul
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
DivisionRing.toRatCast
β€”Rat.smul_one_eq_cast
smul_C
C_1
smul_one_mul
isScalarTower_right
Rat.instIsScalarTowerRight
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
β€”SMulCommClass.smul_comm
AddMonoidAlgebra.smulCommClass
smul_C πŸ“–mathematicalβ€”Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”smul_monomial
smul_X_eq_monomial πŸ“–mathematicalβ€”Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”X_pow_eq_monomial
smul_monomial
smul_eq_mul
mul_one
smul_monomial πŸ“–mathematicalβ€”Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”toFinsupp_injective
AddMonoidAlgebra.smul_single
smul_sum πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
sum
β€”Finsupp.smul_sum
subsingleton_iff_subsingleton πŸ“–mathematicalβ€”Polynomialβ€”Function.Injective.subsingleton
C_injective
Unique.instSubsingleton
sum_C_index πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
DFunLike.coe
RingHom
Polynomial
semiring
RingHom.instFunLike
C
β€”sum_monomial_index
sum_C_mul_X_pow_eq πŸ“–mathematicalβ€”sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
instMul
DFunLike.coe
RingHom
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”C_mul_X_pow_eq_monomial
sum_monomial_eq
sum_X_index πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
X
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”sum_monomial_index
sum_add πŸ“–mathematicalβ€”sum
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”sum_add'
sum_add' πŸ“–mathematicalβ€”sum
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”Finset.sum_congr
Finset.sum_add_distrib
sum_add_index πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
sum
Polynomial
instAdd
β€”Finsupp.sum_add_index
sum_def πŸ“–mathematicalβ€”sum
Finset.sum
support
coeff
β€”β€”
sum_eq_of_subset πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
Finset.instHasSubset
support
sum
Finset.sum
coeff
β€”Finsupp.sum_of_support_subset
sum_monomial_eq πŸ“–mathematicalβ€”sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”ofFinsupp_sum
Finsupp.sum_single
sum_monomial_index πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
DFunLike.coe
LinearMap
RingHom.id
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”Finsupp.sum_single_index
sum_smul_index πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instDistribSMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Finsupp.sum_smul_index
sum_smul_index' πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Finsupp.sum_smul_index'
sum_zero_index πŸ“–mathematicalβ€”sum
Polynomial
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_congr
support_C πŸ“–mathematicalβ€”support
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Finset
Finset.instSingleton
β€”support_monomial
support_C_mul_X πŸ“–mathematicalβ€”support
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
Finset
Finset.instSingleton
β€”C_mul_X_eq_monomial
support_monomial
support_C_mul_X' πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
Finset.instSingleton
β€”C_mul_X_eq_monomial
support_monomial'
support_C_mul_X_pow πŸ“–mathematicalβ€”support
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Finset
Finset.instSingleton
β€”C_mul_X_pow_eq_monomial
support_monomial
support_C_mul_X_pow' πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Finset.instSingleton
β€”C_mul_X_pow_eq_monomial
support_monomial'
support_C_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Finset.instSingleton
β€”support_monomial'
support_X πŸ“–mathematicalAddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
support
X
Finset
Finset.instSingleton
β€”pow_one
support_X_pow
support_X_empty πŸ“–mathematicalAddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
support
X
Finset
Finset.instEmptyCollection
β€”X.eq_1
monomial_zero_right
support_zero
support_X_pow πŸ“–mathematicalAddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
support
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
Finset
Finset.instSingleton
β€”X_pow_eq_monomial
support_monomial
support_add πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
Polynomial
instAdd
Finset.instUnion
β€”Finsupp.support_add
support_binomial' πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Finset.instInsert
Finset.instSingleton
β€”HasSubset.Subset.trans
Finset.instIsTransSubset
support_add
Finset.union_subset
support_C_mul_X_pow'
Finset.singleton_subset_iff
Finset.mem_insert_self
Finset.mem_insert_of_mem
Finset.mem_singleton_self
support_eq_empty πŸ“–mathematicalβ€”support
Finset
Finset.instEmptyCollection
Polynomial
instZero
β€”β€”
support_erase πŸ“–mathematicalβ€”support
erase
Finset.erase
β€”erase_def
Finsupp.support_erase
support_monomial πŸ“–mathematicalβ€”support
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Finset
Finset.instSingleton
β€”ofFinsupp_single
support.eq_1
Finsupp.support_single_ne_zero
support_monomial' πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Finset.instSingleton
β€”ofFinsupp_single
support.eq_1
Finsupp.support_single_subset
support_neg πŸ“–mathematicalβ€”support
Ring.toSemiring
Polynomial
instNeg
β€”ofFinsupp_neg
support.eq_1
Finsupp.support_neg
support_nonempty πŸ“–mathematicalβ€”Finset.Nonempty
support
β€”Finset.nonempty_iff_ne_empty
Iff.not
support_eq_empty
support_ofFinsupp πŸ“–mathematicalβ€”support
ofFinsupp
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”support.eq_1
support_toFinsupp πŸ“–mathematicalβ€”Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toFinsupp
support
β€”support.eq_1
support_trinomial' πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Finset.instInsert
Finset.instSingleton
β€”HasSubset.Subset.trans
Finset.instIsTransSubset
support_add
Finset.union_subset
support_C_mul_X_pow'
Finset.singleton_subset_iff
Finset.mem_insert_self
Finset.mem_insert_of_mem
Finset.mem_singleton_self
support_update πŸ“–mathematicalβ€”support
update
Finset
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.erase
Finset.instInsert
β€”Finsupp.support_update
support_update_ne_zero πŸ“–mathematicalβ€”support
update
Finset
Finset.instInsert
β€”support_update
support_update_zero πŸ“–mathematicalβ€”support
update
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.erase
β€”update_zero_eq_erase
support_erase
support_zero πŸ“–mathematicalβ€”support
Polynomial
instZero
Finset
Finset.instEmptyCollection
β€”β€”
toFinsuppIsoLinear_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Polynomial
AddMonoidAlgebra
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
AddMonoidAlgebra.addAddCommMonoid
module
Semiring.toModule
AddMonoidAlgebra.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
toFinsuppIsoLinear
toFinsupp
β€”RingHomInvPair.ids
toFinsuppIsoLinear_symm_apply_toFinsupp πŸ“–mathematicalβ€”toFinsupp
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddMonoidAlgebra
Polynomial
AddMonoidAlgebra.addAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
AddMonoidAlgebra.module
Semiring.toModule
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
toFinsuppIsoLinear
β€”RingHomInvPair.ids
toFinsuppIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Polynomial
AddMonoidAlgebra
instMul
AddMonoidAlgebra.instMul
instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidAlgebra.nonUnitalNonAssocSemiring
EquivLike.toFunLike
RingEquiv.instEquivLike
toFinsuppIso
toFinsupp
β€”β€”
toFinsuppIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
AddMonoidAlgebra
Polynomial
AddMonoidAlgebra.instMul
instMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidAlgebra.nonUnitalNonAssocSemiring
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
toFinsuppIso
ofFinsupp
β€”β€”
toFinsupp_C πŸ“–mathematicalβ€”toFinsupp
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
AddMonoidAlgebra.single
β€”β€”
toFinsupp_C_mul_X πŸ“–mathematicalβ€”toFinsupp
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
AddMonoidAlgebra.single
β€”C_mul_X_eq_monomial
toFinsupp_monomial
toFinsupp_C_mul_X_pow πŸ“–mathematicalβ€”toFinsupp
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
AddMonoidAlgebra.single
β€”C_mul_X_pow_eq_monomial
toFinsupp_monomial
toFinsupp_X πŸ“–mathematicalβ€”toFinsupp
X
AddMonoidAlgebra.single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”β€”
toFinsupp_X_pow πŸ“–mathematicalβ€”toFinsupp
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
AddMonoidAlgebra.single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”X_pow_eq_monomial
toFinsupp_monomial
toFinsupp_add πŸ“–mathematicalβ€”toFinsupp
Polynomial
instAdd
AddMonoidAlgebra
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidAlgebra.nonUnitalNonAssocSemiring
β€”β€”
toFinsupp_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
toFinsupp
coeff
β€”β€”
toFinsupp_eq_one πŸ“–mathematicalβ€”toFinsupp
AddMonoidAlgebra
AddMonoidAlgebra.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial
instOne
β€”toFinsupp_one
toFinsupp_eq_zero πŸ“–mathematicalβ€”toFinsupp
AddMonoidAlgebra
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidAlgebra.nonUnitalNonAssocSemiring
Polynomial
instZero
β€”toFinsupp_zero
toFinsupp_erase πŸ“–mathematicalβ€”toFinsupp
erase
Finsupp.erase
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”erase_def
toFinsupp_inj πŸ“–mathematicalβ€”toFinsuppβ€”toFinsupp_injective
toFinsupp_injective πŸ“–mathematicalβ€”Polynomial
AddMonoidAlgebra
toFinsupp
β€”β€”
toFinsupp_intCast πŸ“–mathematicalβ€”toFinsupp
Ring.toSemiring
Polynomial
instIntCast
AddMonoidAlgebra
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
AddMonoidAlgebra.ring
Nat.instAddMonoid
β€”β€”
toFinsupp_monomial πŸ“–mathematicalβ€”toFinsupp
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
AddMonoidAlgebra.single
β€”β€”
toFinsupp_mul πŸ“–mathematicalβ€”toFinsupp
Polynomial
instMul
AddMonoidAlgebra
AddMonoidAlgebra.instMul
β€”β€”
toFinsupp_natCast πŸ“–mathematicalβ€”toFinsupp
Polynomial
instNatCast
AddMonoidAlgebra
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidAlgebra.nonAssocSemiring
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”β€”
toFinsupp_neg πŸ“–mathematicalβ€”toFinsupp
Ring.toSemiring
Polynomial
instNeg
AddMonoidAlgebra
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddMonoidAlgebra.addAddCommGroup
β€”β€”
toFinsupp_nsmul πŸ“–mathematicalβ€”toFinsupp
Polynomial
instNSMul
AddMonoidAlgebra
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidAlgebra.nonAssocSemiring
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”β€”
toFinsupp_ofNat πŸ“–mathematicalβ€”toFinsuppβ€”β€”
toFinsupp_one πŸ“–mathematicalβ€”toFinsupp
Polynomial
instOne
AddMonoidAlgebra
AddMonoidAlgebra.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”β€”
toFinsupp_pow πŸ“–mathematicalβ€”toFinsupp
Polynomial
pow
AddMonoidAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidAlgebra.semiring
Nat.instAddMonoid
β€”ofFinsupp_pow
toFinsupp_smul πŸ“–mathematicalβ€”toFinsupp
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
AddMonoidAlgebra
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidAlgebra.addAddCommMonoid
AddMonoidAlgebra.smulZeroClass
β€”β€”
toFinsupp_sub πŸ“–mathematicalβ€”toFinsupp
Ring.toSemiring
Polynomial
instSub
AddMonoidAlgebra
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidAlgebra.ring
Nat.instAddMonoid
β€”sub_eq_add_neg
toFinsupp_sum πŸ“–mathematicalβ€”toFinsupp
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
AddMonoidAlgebra
AddMonoidAlgebra.addAddCommMonoid
β€”map_sum
RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
toFinsupp_zero πŸ“–mathematicalβ€”toFinsupp
Polynomial
instZero
AddMonoidAlgebra
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidAlgebra.nonUnitalNonAssocSemiring
β€”β€”
toFinsupp_zsmul πŸ“–mathematicalβ€”toFinsupp
Ring.toSemiring
Polynomial
instZSMul
AddMonoidAlgebra
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidAlgebra.ring
Nat.instAddMonoid
β€”β€”
update_zero_eq_erase πŸ“–mathematicalβ€”update
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
erase
β€”ext
coeff_update_apply
coeff_erase

Polynomial.Nontrivial

Theorems

NameKindAssumesProvesValidatesDepends On
of_polynomial_ne πŸ“–mathematicalβ€”Nontrivialβ€”subsingleton_or_nontrivial
Unique.instSubsingleton

---

← Back to Index