Documentation Verification Report

CancelLeads

๐Ÿ“ Source: Mathlib/Algebra/Polynomial/CancelLeads.lean

Statistics

MetricCount
DefinitionscancelLeads
1
Theoremsdvd_cancelLeads_of_dvd_of_dvd, natDegree_cancelLeads_lt_of_natDegree_le_natDegree, natDegree_cancelLeads_lt_of_natDegree_le_natDegree_of_comm, neg_cancelLeads
4
Total5

Polynomial

Definitions

NameCategoryTheorems
cancelLeads ๐Ÿ“–CompOp
4 mathmath: neg_cancelLeads, natDegree_cancelLeads_lt_of_natDegree_le_natDegree, natDegree_cancelLeads_lt_of_natDegree_le_natDegree_of_comm, dvd_cancelLeads_of_dvd_of_dvd

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_cancelLeads_of_dvd_of_dvd ๐Ÿ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
cancelLeads
CommRing.toRing
โ€”dvd_sub
Dvd.dvd.trans
Dvd.intro_left
natDegree_cancelLeads_lt_of_natDegree_le_natDegree ๐Ÿ“–mathematicalnatDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
CommRing.toRing
cancelLeads
โ€”natDegree_cancelLeads_lt_of_natDegree_le_natDegree_of_comm
mul_comm
natDegree_cancelLeads_lt_of_natDegree_le_natDegree_of_comm ๐Ÿ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
leadingCoeff
Ring.toSemiring
natDegree
cancelLeadsโ€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
mul_one
MulZeroClass.zero_mul
tsub_zero
MulZeroClass.mul_zero
sub_self
cancelLeads.eq_1
sub_eq_add_neg
tsub_eq_zero_iff_le
LE.le.trans_lt
le_of_eq
lt_of_le_of_ne
le_trans
natDegree_add_le_of_le
natDegree_mul_le_of_le
Mathlib.Tactic.ComputeDegree.natDegree_C_le
le_rfl
natDegree_neg_le_of_le
natDegree_pow_le_of_le
natDegree_X_le
zero_add
le_refl
Mathlib.Tactic.Contrapose.contraposeโ‚„
leadingCoeff_eq_zero
leadingCoeff.eq_1
mul_assoc
X_pow_mul
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
add_comm
add_tsub_cancel_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
coeff_add
coeff_C_mul
coeff_neg
coeff_mul_X_pow
add_neg_cancel
neg_cancelLeads ๐Ÿ“–mathematicalโ€”Polynomial
Ring.toSemiring
instNeg
cancelLeads
โ€”neg_sub

---

โ† Back to Index