Documentation Verification Report

Coeff

πŸ“ Source: Mathlib/Algebra/Polynomial/Coeff.lean

Statistics

MetricCount
DefinitionsconstantCoeff, lcoeff, lsum
3
TheoremsC_dvd_iff_dvd_coeff, C_mul', card_support_binomial, card_support_mul_le, card_support_trinomial, charP, charZero, coeff_C_mul, coeff_C_mul_X, coeff_C_mul_X_pow, coeff_X_add_C_pow, coeff_X_add_one_pow, coeff_X_mul, coeff_X_mul_zero, coeff_X_pow, coeff_X_pow_mul, coeff_X_pow_mul', coeff_X_pow_self, coeff_add, coeff_intCast_mul, coeff_list_sum, coeff_list_sum_map, coeff_monomial_mul, coeff_monomial_zero_mul, coeff_mul, coeff_mul_C, coeff_mul_X, coeff_mul_X_pow, coeff_mul_X_pow', coeff_mul_X_zero, coeff_mul_intCast, coeff_mul_monomial, coeff_mul_monomial_zero, coeff_mul_natCast, coeff_mul_ofNat, coeff_natCast_mul, coeff_ofNat_mul, coeff_one_add_X_pow, coeff_smul, coeff_sum, constantCoeff_apply, constantCoeff_surjective, finset_sum_coeff, intCast_coeff_zero, intCast_inj, isRegular_X, isRegular_X_pow, isUnit_C, lcoeff_apply, lsum_apply, mul_X_pow_eq_zero, mul_coeff_one, mul_coeff_zero, natCast_coeff_zero, natCast_inj, one_add_X_pow_sub_X_pow, smul_eq_C_mul, support_binomial, support_smul, support_trinomial, update_eq_add_sub_coeff
61
Total64

Polynomial

Definitions

NameCategoryTheorems
constantCoeff πŸ“–CompOp
7 mathmath: constantCoeff_apply, ker_constantCoeff, LinearMap.hasEigenvalue_zero_tfae, evalRingHom_zero, LinearMap.charpoly_constantCoeff_eq_zero_iff, constantCoeff_surjective, LinearMap.not_hasEigenvalue_zero_tfae
lcoeff πŸ“–CompOp
3 mathmath: lcoeff_comp_mapAlgHom_eq, lcoeff_apply, coeff_list_sum
lsum πŸ“–CompOp
1 mathmath: lsum_apply

Theorems

NameKindAssumesProvesValidatesDepends On
C_dvd_iff_dvd_coeff πŸ“–mathematicalβ€”Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
coeff
β€”coeff_C_mul
dvd_mul_right
ext
Finset.sum_congr
finset_sum_coeff
coeff_monomial
Finset.sum_ite_eq'
MulZeroClass.mul_zero
C_mul' πŸ“–mathematicalβ€”Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
SMulZeroClass.toSMul
instZero
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”ext
coeff_C_mul
coeff_smul
smul_eq_mul
card_support_binomial πŸ“–mathematicalβ€”Finset.card
support
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”support_binomial
Finset.card_insert_of_notMem
Finset.mem_singleton
Finset.card_singleton
card_support_mul_le πŸ“–mathematicalβ€”Finset.card
support
Polynomial
instMul
β€”support_toFinsupp
toFinsupp_mul
Finset.card_le_card
AddMonoidAlgebra.support_mul
Finset.card_imageβ‚‚_le
card_support_trinomial πŸ“–mathematicalβ€”Finset.card
support
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”support_trinomial
Finset.card_insert_of_notMem
Finset.mem_insert
LT.lt.ne
Finset.mem_singleton
LT.lt.trans
Finset.card_singleton
charP πŸ“–mathematicalβ€”CharP
Polynomial
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
semiring
β€”CharP.cast_eq_zero_iff
map_natCast
RingHom.instRingHomClass
C_0
charZero πŸ“–mathematicalβ€”CharZero
Polynomial
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
semiring
β€”β€”
coeff_C_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”AddMonoidAlgebra.single_zero_mul_apply
coeff_C_mul_X πŸ“–mathematicalβ€”coeff
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”pow_one
coeff_C_mul_X_pow
coeff_C_mul_X_pow πŸ“–mathematicalβ€”coeff
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”C_mul_X_pow_eq_monomial
coeff_monomial
coeff_X_add_C_pow πŸ“–mathematicalβ€”coeff
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
β€”Commute.add_pow
commute_X
lcoeff_apply
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
coeff_mul_C
Finset.sum_eq_single
coeff_X_pow
MulZeroClass.zero_mul
coeff_X_pow_self
one_mul
Nat.choose_eq_zero_of_lt
Nat.cast_zero
MulZeroClass.mul_zero
coeff_X_add_one_pow πŸ“–mathematicalβ€”coeff
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instAdd
X
instOne
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Nat.choose
β€”C_1
coeff_X_add_C_pow
one_pow
one_mul
coeff_X_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
X
β€”Commute.eq
commute_X
coeff_mul_X
coeff_X_mul_zero πŸ“–mathematicalβ€”coeff
Polynomial
instMul
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”mul_coeff_zero
coeff_X_zero
MulZeroClass.zero_mul
coeff_X_pow πŸ“–mathematicalβ€”coeff
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
coeff_X_pow_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”Commute.eq
commute_X_pow
coeff_mul_X_pow
coeff_X_pow_mul' πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Commute.eq
commute_X_pow
coeff_mul_X_pow'
coeff_X_pow_self πŸ“–mathematicalβ€”coeff
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”coeff_X_pow
coeff_add πŸ“–mathematicalβ€”coeff
Polynomial
instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Finsupp.add_apply
coeff_intCast_mul πŸ“–mathematicalβ€”coeff
Ring.toSemiring
Polynomial
instMul
instIntCast
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”coeff_C_mul
coeff_list_sum πŸ“–mathematicalβ€”coeff
Polynomial
instAdd
instZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
DFunLike.coe
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
semiring
module
Semiring.toModule
LinearMap.instFunLike
lcoeff
β€”map_list_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
coeff_list_sum_map πŸ“–mathematicalβ€”coeff
Polynomial
instAdd
instZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_list_sum
coeff_monomial_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”C_mul_X_pow_eq_monomial
mul_assoc
coeff_C_mul
X_pow_mul
coeff_mul_X_pow
coeff_monomial_zero_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”coeff_monomial_mul
coeff_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Finset.Nat.instHasAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Finset.sum_congr
AddMonoidAlgebra.mul_apply_antidiagonal
Finset.HasAntidiagonal.mem_antidiagonal
coeff_mul_C πŸ“–mathematicalβ€”coeff
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”AddMonoidAlgebra.mul_single_zero_apply
coeff_mul_X πŸ“–mathematicalβ€”coeff
Polynomial
instMul
X
β€”pow_one
coeff_mul_X_pow
coeff_mul_X_pow πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”coeff_mul
Finset.sum_eq_single
coeff_X_pow
MulZeroClass.mul_zero
mul_one
coeff_mul_X_pow' πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
coeff_mul_X_pow
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
coeff_mul
Finset.sum_eq_zero
coeff_X_pow
LT.lt.ne
LE.le.trans_lt
le_of_add_le_right
Eq.le
Finset.HasAntidiagonal.mem_antidiagonal
not_le
MulZeroClass.mul_zero
coeff_mul_X_zero πŸ“–mathematicalβ€”coeff
Polynomial
instMul
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”mul_coeff_zero
coeff_X_zero
MulZeroClass.mul_zero
coeff_mul_intCast πŸ“–mathematicalβ€”coeff
Ring.toSemiring
Polynomial
instMul
instIntCast
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”coeff_mul_C
coeff_mul_monomial πŸ“–mathematicalβ€”coeff
Polynomial
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”C_mul_X_pow_eq_monomial
X_pow_mul
mul_assoc
coeff_mul_C
coeff_mul_X_pow
coeff_mul_monomial_zero πŸ“–mathematicalβ€”coeff
Polynomial
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”coeff_mul_monomial
coeff_mul_natCast πŸ“–mathematicalβ€”coeff
Polynomial
instMul
instNatCast
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”coeff_mul_C
coeff_mul_ofNat πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_mul_C
coeff_natCast_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
instNatCast
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”coeff_C_mul
coeff_ofNat_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_C_mul
coeff_one_add_X_pow πŸ“–mathematicalβ€”coeff
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instAdd
instOne
X
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Nat.choose
β€”add_comm
coeff_X_add_one_pow
coeff_smul πŸ“–mathematicalβ€”coeff
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
coeff_sum πŸ“–mathematicalβ€”coeff
sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
β€”finset_sum_coeff
Finset.sum_congr
constantCoeff_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
constantCoeff
coeff
β€”β€”
constantCoeff_surjective πŸ“–mathematicalβ€”Polynomial
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
constantCoeff
β€”coeff_C_zero
finset_sum_coeff πŸ“–mathematicalβ€”coeff
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
β€”map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
intCast_coeff_zero πŸ“–mathematicalβ€”coeff
Ring.toSemiring
Polynomial
instIntCast
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”Int.cast_natCast
coeff_natCast_ite
Int.cast_negSucc
Nat.cast_add
Nat.cast_one
neg_add_rev
coeff_add
coeff_neg
coeff_one_zero
intCast_inj πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
instIntCast
β€”intCast_coeff_zero
isRegular_X πŸ“–mathematicalβ€”IsRegular
Polynomial
instMul
X
β€”isRegular_X_pow
pow_one
isRegular_X_pow πŸ“–mathematicalβ€”IsRegular
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”ext
coeff_X_pow_mul
IsLeftRegular.right_of_commute
commute_X_pow
isUnit_C πŸ“–mathematicalβ€”IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”coeff_C_zero
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
lcoeff_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
lcoeff
coeff
β€”β€”
lsum_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
LinearMap.instFunLike
lsum
sum
β€”β€”
mul_X_pow_eq_zero πŸ“–β€”Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instZero
β€”β€”ext
coeff_mul_X_pow
ext_iff
mul_coeff_one πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
β€”coeff_mul
Finset.Nat.antidiagonal_eq_map
Finset.sum_map
Finset.sum_congr
Finset.sum_range_succ
Finset.sum_singleton
tsub_zero
Nat.instOrderedSub
tsub_self
Nat.instCanonicallyOrderedAdd
mul_coeff_zero πŸ“–mathematicalβ€”coeff
Polynomial
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_mul
Finset.sum_congr
Finset.antidiagonal_zero
Nat.instCanonicallyOrderedAdd
Finset.sum_singleton
natCast_coeff_zero πŸ“–mathematicalβ€”coeff
Polynomial
instNatCast
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”coeff_natCast_ite
natCast_inj πŸ“–mathematicalβ€”Polynomial
instNatCast
β€”coeff_natCast_ite
one_add_X_pow_sub_X_pow πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instAdd
instOne
X
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Finset.range
instNSMul
Nat.choose
β€”ext
coeff_sub
coeff_one_add_X_pow
coeff_X_pow
Finset.sum_congr
nsmul_eq_mul
finset_sum_coeff
coeff_natCast_mul
mul_ite
mul_one
MulZeroClass.mul_zero
Finset.sum_ite_eq
Nat.choose_self
Nat.cast_one
sub_self
sub_zero
Nat.choose_eq_zero_of_lt
Nat.cast_zero
smul_eq_C_mul πŸ“–mathematicalβ€”Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
instMul
DFunLike.coe
RingHom
semiring
RingHom.instFunLike
C
β€”coeff_smul
coeff_C_mul
support_binomial πŸ“–mathematicalβ€”support
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Finset
Finset.instInsert
Finset.instSingleton
β€”subset_antisymm
Finset.instAntisymmSubset
support_binomial'
coeff_add
coeff_C_mul
coeff_X_pow_self
mul_one
coeff_X_pow
MulZeroClass.mul_zero
zero_add
add_zero
support_smul πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
Polynomial
SMulZeroClass.toSMul
instZero
smulZeroClass
β€”mem_support_iff
Mathlib.Tactic.Contrapose.contraposeβ‚„
coeff_smul
smul_zero
support_trinomial πŸ“–mathematicalβ€”support
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Finset
Finset.instInsert
Finset.instSingleton
β€”subset_antisymm
Finset.instAntisymmSubset
support_trinomial'
coeff_add
coeff_C_mul
coeff_X_pow_self
mul_one
coeff_X_pow
LT.lt.ne
LT.lt.ne'
LT.lt.trans
MulZeroClass.mul_zero
add_zero
zero_add
update_eq_add_sub_coeff πŸ“–mathematicalβ€”update
Ring.toSemiring
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
coeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”ext
coeff_update_apply
coeff_add
coeff_C_mul_X_pow
add_sub_cancel
add_zero

---

← Back to Index