π Source: Mathlib/Algebra/Polynomial/Degree/Lemmas.lean
coe_lt_degree
coeff_add_eq_left_of_lt
coeff_add_eq_right_of_lt
coeff_pow_eq_ite_of_natDegree_le_of_le
coeff_pow_of_natDegree_le
coeff_sub_eq_left_of_lt
coeff_sub_eq_neg_right_of_lt
comp_eq_zero_iff
comp_neg_X_eq_zero_iff
comp_neg_X_leadingCoeff_eq
degree_C_mul
degree_C_mul_of_mul_ne_zero
degree_add_degree_leadingCoeff_inv
degree_comp
degree_comp_neg_X
degree_leadingCoeff_inv
degree_map_eq_iff
degree_map_eq_of_injective
degree_map_eq_of_isUnit_leadingCoeff
degree_mul_C
degree_mul_leadingCoeff_inv
degree_mul_leadingCoeff_self_inv
degree_pos_of_evalβ_root
degree_pos_of_root
degree_sum_eq_of_disjoint
dvd_mul_leadingCoeff_inv
eq_natDegree_of_le_mem_support
irreducible_mul_leadingCoeff_inv
leadingCoeff_comp
leadingCoeff_map_eq_of_isUnit_leadingCoeff
leadingCoeff_map_of_injective
monic_mul_leadingCoeff_inv
natDegree_C_mul
natDegree_C_mul_eq_of_mul_eq_one
natDegree_C_mul_le
natDegree_C_mul_of_mul_ne_zero
natDegree_add_coeff_mul
natDegree_add_le_iff_left
natDegree_add_le_iff_right
natDegree_comp
natDegree_comp_eq_of_mul_ne_zero
natDegree_comp_le
natDegree_eq_one
natDegree_iterate_comp
natDegree_le_iff_coeff_eq_zero
natDegree_lt_coeff_mul
natDegree_map_eq_iff
natDegree_map_eq_of_injective
natDegree_map_eq_of_isUnit_leadingCoeff
natDegree_mul_C
natDegree_mul_C_eq_of_mul_eq_one
natDegree_mul_C_eq_of_mul_ne_zero
natDegree_mul_C_le
natDegree_mul_leadingCoeff_inv
natDegree_mul_leadingCoeff_self_inv
natDegree_pos_of_evalβ_root
natDegree_pos_of_nextCoeff_ne_zero
natDegree_sub
natDegree_sub_le_iff_left
natDegree_sub_le_iff_right
natDegree_sum_eq_of_disjoint
nextCoeff_C_mul
nextCoeff_C_mul_X_add_C
nextCoeff_map
nextCoeff_map_eq_of_isUnit_leadingCoeff
nextCoeff_mul_C
subsingleton_isRoot_of_natDegree_eq_one
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
degree
natDegree
Nat.instCanonicallyOrderedAdd
degree_eq_natDegree
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
coeff
Polynomial
instAdd
coeff_add
coeff_eq_zero_of_natDegree_lt
add_zero
add_comm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
eq_or_ne
lt_of_le_of_lt
natDegree_pow_le_of_le
lt_of_le_of_ne
pow_zero
MulZeroClass.zero_mul
coeff_one_zero
pow_succ
coeff_mul_add_eq_of_natDegree_le
LE.le.trans
natDegree_pow_le
le_trans
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
le_refl
Ring.toSemiring
instSub
sub_eq_add_neg
natDegree_neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
coeff_neg
comp
instZero
eval
DFunLike.coe
RingHom
RingHom.instFunLike
C
mul_eq_zero
IsStrictOrderedRing.noZeroDivisors
CanonicallyOrderedAdd.toExistsAddOfLE
natDegree_zero
eq_C_of_natDegree_eq_zero
C_comp
C_eq_zero
comp_C
zero_comp
C_0
instNeg
X
leadingCoeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Monic.leadingCoeff
natDegree_of_subsingleton
mul_one
MulZeroClass.mul_zero
leadingCoeff.eq_1
leadingCoeff_neg
coeff_comp_degree_mul_degree
natDegree_X
Commute.eq
Commute.pow_left
Commute.neg_one_left
instMul
degree_mul
degree_C
zero_add
degree_mul'
leadingCoeff_C
left_ne_zero_of_mul
WithBot.add
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
IsDomain.to_noZeroDivisors
DivisionRing.isDomain
WithBot.zero
Nat.instMulZeroClass
CommSemiring.toSemiring
WithBot.instCommSemiring
Nat.instCommSemiring
Nat.instPartialOrder
Nat.instLinearOrder
Distrib.toAdd
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.instNontrivial
degree_zero
WithBot.bot_mul'
LT.lt.ne'
ne_zero_of_degree_gt
Nat.cast_mul
degree_of_subsingleton
map
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
degree_eq_bot
coeff_natDegree
coeff_map
leadingCoeff_eq_zero
degree_map_eq_of_leadingCoeff_ne_zero
IsUnit
IsUnit.ne_zero
RingHom.isUnit_map
inv_ne_zero
inv_zero
evalβ
natDegree_pos_iff_degree_pos
IsRoot
lt_of_not_ge
eq_C_of_degree_le_zero
eval_C
IsRoot.eq_1
Set.Pairwise
setOf
Finset
Finset.instMembership
Function.onFun
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.sup
WithBot.semilatticeSup
Lattice.toSemilatticeSup
instDistribLatticeNat
WithBot.instOrderBot
SemilatticeSup.toPartialOrder
Finset.induction_on
Finset.sup_empty
Finset.sum_insert
Finset.sup_insert
lt_trichotomy
Set.Pairwise.mono
sup_eq_right
LT.lt.le
degree_add_eq_right_of_degree_lt
Finset.eq_empty_or_nonempty
sup_of_le_left
Finset.exists_mem_eq_sup
sup_of_le_right
Mathlib.Tactic.Contrapose.contraposeβ
sup_eq_left
degree_add_eq_left_of_degree_lt
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
MonoidWithZeroHomClass.toMonoidHomClass
instIsLocalHomOfMonoidWithZeroHomClassOfNontrivial
nontrivial
DivisionRing.toNontrivial
support
le_antisymm
le_natDegree_of_mem_supp
Irreducible
irreducible_mul_isUnit
isUnit_C
leadingCoeff_ne_zero
leadingCoeff_map_of_leadingCoeff_ne_zero
Monic
Monic.eq_1
leadingCoeff_mul
mul_inv_cancelβ
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
one_mul
C_1
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_assoc
natDegree_C
natDegree_mul_le
mem_support_iff
coeff_C_mul
coeff_mul_degree_add_degree
natDegree_add_le_of_degree_le
degree_le_zero_iff
natDegree_eq_zero_iff_degree_le_zero
isReduced_of_noZeroDivisors
ne_zero_of_natDegree_gt
natDegree_eq_of_le_of_coeff_ne_zero
WithBot.coe_le_coe
comp_eq_sum_left
degree_sum_le
Finset.sup_le
degree_mul_le
add_le_add
WithBot.addRightMono
covariant_swap_add_of_covariant_add
degree_le_natDegree
degree_pow_le
le_imp_le_of_le_of_le
add_le_add_right
nsmul_le_nsmul_right
Nat.cast_zero
nsmul_eq_mul
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
le_natDegree_of_ne_zero
ext
mul_coeff_zero
coeff_C_zero
coeff_X_zero
coeff_mul_X
coeff_C_succ
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
natDegree_add_C
natDegree_C_mul_X
Nat.iterate
Nat.instMonoid
Function.iterate_succ_apply'
pow_succ'
LE.le.trans_lt
natDegree_eq_of_degree_eq
natDegree_eq_natDegree
coeff_mul_C
eq_C_of_natDegree_le_zero
evalβ_C
neg_sub
Nat.instOrderBot
natDegree_eq_of_degree_eq_some
Set.Pairwise.imp
Finset.sup'_eq_sup
Nat.cast_withBot
Finset.coe_sup'
Finset.sup'_le_iff
Finset.sup'_congr
Finset.le_sup'
Mathlib.Tactic.Contrapose.contraposeβ
Eq.ge
Finset.sum_eq_zero
Mathlib.Tactic.Push.not_and_eq
Finset.sup_eq_bot_iff
nextCoeff
mul_ite
nextCoeff_of_natDegree_pos
tsub_self
Nat.instOrderedSub
nextCoeff_map_of_leadingCoeff_ne_zero
ite_mul
Set.Subsingleton
mul_left_cancelβ
---
β Back to Index