Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Algebra/Polynomial/Degree/Lemmas.lean

Statistics

MetricCount
Definitions0
Theoremscoe_lt_degree, coeff_add_eq_left_of_lt, coeff_add_eq_right_of_lt, coeff_pow_eq_ite_of_natDegree_le_of_le, coeff_pow_of_natDegree_le, coeff_sub_eq_left_of_lt, coeff_sub_eq_neg_right_of_lt, comp_eq_zero_iff, comp_neg_X_eq_zero_iff, comp_neg_X_leadingCoeff_eq, degree_C_mul, degree_C_mul_of_mul_ne_zero, degree_add_degree_leadingCoeff_inv, degree_comp, degree_comp_neg_X, degree_leadingCoeff_inv, degree_map_eq_iff, degree_map_eq_of_injective, degree_map_eq_of_isUnit_leadingCoeff, degree_mul_C, degree_mul_leadingCoeff_inv, degree_mul_leadingCoeff_self_inv, degree_pos_of_evalβ‚‚_root, degree_pos_of_root, degree_sum_eq_of_disjoint, dvd_mul_leadingCoeff_inv, eq_natDegree_of_le_mem_support, irreducible_mul_leadingCoeff_inv, leadingCoeff_comp, leadingCoeff_map_eq_of_isUnit_leadingCoeff, leadingCoeff_map_of_injective, monic_mul_leadingCoeff_inv, natDegree_C_mul, natDegree_C_mul_eq_of_mul_eq_one, natDegree_C_mul_le, natDegree_C_mul_of_mul_ne_zero, natDegree_add_coeff_mul, natDegree_add_le_iff_left, natDegree_add_le_iff_right, natDegree_comp, natDegree_comp_eq_of_mul_ne_zero, natDegree_comp_le, natDegree_eq_one, natDegree_iterate_comp, natDegree_le_iff_coeff_eq_zero, natDegree_lt_coeff_mul, natDegree_map_eq_iff, natDegree_map_eq_of_injective, natDegree_map_eq_of_isUnit_leadingCoeff, natDegree_mul_C, natDegree_mul_C_eq_of_mul_eq_one, natDegree_mul_C_eq_of_mul_ne_zero, natDegree_mul_C_le, natDegree_mul_leadingCoeff_inv, natDegree_mul_leadingCoeff_self_inv, natDegree_pos_of_evalβ‚‚_root, natDegree_pos_of_nextCoeff_ne_zero, natDegree_sub, natDegree_sub_le_iff_left, natDegree_sub_le_iff_right, natDegree_sum_eq_of_disjoint, nextCoeff_C_mul, nextCoeff_C_mul_X_add_C, nextCoeff_map, nextCoeff_map_eq_of_isUnit_leadingCoeff, nextCoeff_mul_C, subsingleton_isRoot_of_natDegree_eq_one
67
Total67

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
coe_lt_degree πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
degree
natDegree
β€”Nat.instCanonicallyOrderedAdd
degree_eq_natDegree
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
coeff_add_eq_left_of_lt πŸ“–mathematicalnatDegreecoeff
Polynomial
instAdd
β€”coeff_add
coeff_eq_zero_of_natDegree_lt
add_zero
coeff_add_eq_right_of_lt πŸ“–mathematicalnatDegreecoeff
Polynomial
instAdd
β€”add_comm
coeff_add_eq_left_of_lt
coeff_pow_eq_ite_of_natDegree_le_of_le πŸ“–mathematicalnatDegreecoeff
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eq_or_ne
coeff_pow_of_natDegree_le
coeff_eq_zero_of_natDegree_lt
lt_of_le_of_lt
natDegree_pow_le_of_le
lt_of_le_of_ne
coeff_pow_of_natDegree_le πŸ“–mathematicalnatDegreecoeff
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”pow_zero
MulZeroClass.zero_mul
coeff_one_zero
pow_succ
coeff_mul_add_eq_of_natDegree_le
LE.le.trans
natDegree_pow_le
le_trans
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
le_refl
coeff_sub_eq_left_of_lt πŸ“–mathematicalnatDegree
Ring.toSemiring
coeff
Polynomial
instSub
β€”sub_eq_add_neg
coeff_add_eq_left_of_lt
natDegree_neg
coeff_sub_eq_neg_right_of_lt πŸ“–mathematicalnatDegree
Ring.toSemiring
coeff
Polynomial
instSub
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”sub_eq_add_neg
coeff_add_eq_right_of_lt
coeff_neg
comp_eq_zero_iff πŸ“–mathematicalβ€”comp
Polynomial
instZero
eval
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
semiring
RingHom.instFunLike
C
β€”mul_eq_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
natDegree_comp
natDegree_zero
eq_C_of_natDegree_eq_zero
C_comp
C_eq_zero
comp_C
zero_comp
C_0
comp_neg_X_eq_zero_iff πŸ“–mathematicalβ€”comp
Ring.toSemiring
Polynomial
instNeg
X
instZero
β€”comp_neg_X_leadingCoeff_eq
comp_neg_X_leadingCoeff_eq πŸ“–mathematicalβ€”leadingCoeff
Ring.toSemiring
comp
Polynomial
instNeg
X
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
natDegree
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Monic.leadingCoeff
natDegree_of_subsingleton
pow_zero
mul_one
zero_comp
MulZeroClass.mul_zero
leadingCoeff.eq_1
natDegree_comp_eq_of_mul_ne_zero
leadingCoeff_neg
coeff_comp_degree_mul_degree
natDegree_neg
natDegree_X
Commute.eq
Commute.pow_left
Commute.neg_one_left
degree_C_mul πŸ“–mathematicalβ€”degree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”degree_mul
degree_C
zero_add
degree_C_mul_of_mul_ne_zero πŸ“–mathematicalβ€”degree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”degree_mul'
leadingCoeff_C
degree_C
left_ne_zero_of_mul
zero_add
degree_add_degree_leadingCoeff_inv πŸ“–mathematicalβ€”WithBot
WithBot.add
degree
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
β€”degree_mul
IsDomain.to_noZeroDivisors
DivisionRing.isDomain
degree_mul_leadingCoeff_self_inv
degree_comp πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
comp
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
WithBot.instCommSemiring
Nat.instCommSemiring
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instLinearOrder
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Distrib.toAdd
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.instNontrivial
β€”Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instNontrivial
eq_or_ne
zero_comp
degree_zero
WithBot.bot_mul'
LT.lt.ne'
degree_eq_natDegree
ne_zero_of_degree_gt
Nat.cast_mul
natDegree_comp
degree_comp_neg_X πŸ“–mathematicalβ€”degree
Ring.toSemiring
comp
Polynomial
instNeg
X
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
degree_of_subsingleton
eq_or_ne
zero_comp
degree_eq_natDegree
WithBot.charZero
Nat.instCharZero
natDegree_comp_eq_of_mul_ne_zero
leadingCoeff_neg
Monic.leadingCoeff
natDegree_neg
natDegree_X
mul_one
degree_leadingCoeff_inv πŸ“–mathematicalβ€”degree
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
WithBot
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”degree_C
degree_map_eq_iff πŸ“–mathematicalβ€”degree
map
Polynomial
instZero
β€”eq_or_ne
map_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
degree_eq_bot
coeff_natDegree
coeff_map
leadingCoeff_eq_zero
degree_map_eq_of_leadingCoeff_ne_zero
degree_map_eq_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
degree
map
β€”MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
degree_map_eq_of_isUnit_leadingCoeff πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
leadingCoeff
degree
map
β€”degree_map_eq_of_leadingCoeff_ne_zero
IsUnit.ne_zero
RingHom.isUnit_map
degree_mul_C πŸ“–mathematicalβ€”degree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”degree_mul
degree_C
add_zero
degree_mul_leadingCoeff_inv πŸ“–mathematicalβ€”degree
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
β€”inv_ne_zero
leadingCoeff_eq_zero
degree_mul_C
IsDomain.to_noZeroDivisors
DivisionRing.isDomain
degree_mul_leadingCoeff_self_inv πŸ“–mathematicalβ€”degree
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
β€”inv_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.mul_zero
degree_mul_leadingCoeff_inv
degree_pos_of_evalβ‚‚_root πŸ“–mathematicalevalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
Nat.instMulZeroClass
degree
β€”natDegree_pos_iff_degree_pos
natDegree_pos_of_evalβ‚‚_root
degree_pos_of_root πŸ“–mathematicalIsRootWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
β€”lt_of_not_ge
eq_C_of_degree_le_zero
eval_C
IsRoot.eq_1
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
degree_sum_eq_of_disjoint πŸ“–mathematicalSet.Pairwise
setOf
Finset
Finset.instMembership
Polynomial
instZero
Function.onFun
WithBot
degree
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Finset.sup
WithBot.semilatticeSup
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeNat
WithBot.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”Finset.induction_on
Finset.sup_empty
Finset.sum_insert
Finset.sup_insert
lt_trichotomy
Set.Pairwise.mono
sup_eq_right
LT.lt.le
degree_add_eq_right_of_degree_lt
Finset.eq_empty_or_nonempty
add_zero
sup_of_le_left
Finset.exists_mem_eq_sup
zero_add
sup_of_le_right
Mathlib.Tactic.Contrapose.contrapose₃
sup_eq_left
degree_add_eq_left_of_degree_lt
dvd_mul_leadingCoeff_inv πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
instIsLocalHomOfMonoidWithZeroHomClassOfNontrivial
nontrivial
DivisionRing.toNontrivial
eq_natDegree_of_le_mem_support πŸ“–β€”natDegree
Finset
Finset.instMembership
support
β€”β€”le_antisymm
le_natDegree_of_mem_supp
irreducible_mul_leadingCoeff_inv πŸ“–mathematicalβ€”Irreducible
Polynomial
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
β€”inv_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.mul_zero
irreducible_mul_isUnit
isUnit_C
inv_ne_zero
leadingCoeff_ne_zero
leadingCoeff_comp πŸ“–mathematicalβ€”leadingCoeff
comp
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
natDegree
β€”coeff_comp_degree_mul_degree
natDegree_comp
coeff_natDegree
leadingCoeff_map_eq_of_isUnit_leadingCoeff πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
leadingCoeff
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”leadingCoeff_map_of_leadingCoeff_ne_zero
IsUnit.ne_zero
RingHom.isUnit_map
leadingCoeff_map_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
leadingCoeff
map
β€”natDegree_map_eq_of_injective
coeff_map
monic_mul_leadingCoeff_inv πŸ“–mathematicalβ€”Monic
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
β€”Monic.eq_1
leadingCoeff_mul
IsDomain.to_noZeroDivisors
DivisionRing.isDomain
leadingCoeff_C
mul_inv_cancelβ‚€
leadingCoeff_eq_zero
natDegree_C_mul πŸ“–mathematicalβ€”natDegree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”degree_C_mul
natDegree_C_mul_eq_of_mul_eq_one πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
natDegree
Polynomial
instMul
DFunLike.coe
RingHom
semiring
RingHom.instFunLike
C
β€”le_antisymm
natDegree_C_mul_le
one_mul
C_1
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_assoc
natDegree_C_mul_le πŸ“–mathematicalβ€”natDegree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”natDegree_C
zero_add
natDegree_mul_le
natDegree_C_mul_of_mul_ne_zero πŸ“–mathematicalβ€”natDegree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”eq_natDegree_of_le_mem_support
natDegree_C_mul_le
mem_support_iff
coeff_C_mul
natDegree_add_coeff_mul πŸ“–mathematicalβ€”coeff
Polynomial
instMul
natDegree
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_mul_degree_add_degree
natDegree_add_le_iff_left πŸ“–mathematicalnatDegreePolynomial
instAdd
β€”natDegree_le_iff_coeff_eq_zero
coeff_add
add_zero
natDegree_add_le_of_degree_le
natDegree_add_le_iff_right πŸ“–mathematicalnatDegreePolynomial
instAdd
β€”add_comm
natDegree_add_le_iff_left
natDegree_comp πŸ“–mathematicalβ€”natDegree
comp
β€”degree_le_zero_iff
natDegree_eq_zero_iff_degree_le_zero
comp_C
natDegree_C
MulZeroClass.mul_zero
zero_comp
MulZeroClass.zero_mul
natDegree_comp_eq_of_mul_ne_zero
isReduced_of_noZeroDivisors
ne_zero_of_natDegree_gt
natDegree_comp_eq_of_mul_ne_zero πŸ“–mathematicalβ€”natDegree
comp
β€”le_antisymm
natDegree_comp_le
MulZeroClass.mul_zero
Nat.instCanonicallyOrderedAdd
natDegree_eq_of_le_of_coeff_ne_zero
coeff_comp_degree_mul_degree
natDegree_comp_le πŸ“–mathematicalβ€”natDegree
comp
β€”natDegree_zero
WithBot.coe_le_coe
degree_eq_natDegree
comp_eq_sum_left
degree_sum_le
Finset.sup_le
degree_mul_le
add_le_add
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.addRightMono
covariant_swap_add_of_covariant_add
degree_le_natDegree
degree_pow_le
le_imp_le_of_le_of_le
add_le_add_right
nsmul_le_nsmul_right
le_refl
natDegree_C
Nat.cast_zero
zero_add
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instNontrivial
nsmul_eq_mul
Nat.cast_mul
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
le_natDegree_of_ne_zero
mem_support_iff
natDegree_eq_one πŸ“–mathematicalβ€”natDegree
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
β€”leadingCoeff_eq_zero
coeff_natDegree
ext
coeff_add
mul_coeff_zero
coeff_C_zero
coeff_X_zero
MulZeroClass.mul_zero
zero_add
coeff_mul_X
coeff_C_succ
add_zero
coeff_eq_zero_of_natDegree_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
natDegree_add_C
natDegree_C_mul_X
natDegree_iterate_comp πŸ“–mathematicalβ€”natDegree
Nat.iterate
Polynomial
comp
Monoid.toNatPow
Nat.instMonoid
β€”pow_zero
one_mul
Function.iterate_succ_apply'
natDegree_comp
pow_succ'
mul_assoc
natDegree_le_iff_coeff_eq_zero πŸ“–mathematicalβ€”natDegree
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
natDegree_lt_coeff_mul πŸ“–mathematicalnatDegreecoeff
Polynomial
instMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_eq_zero_of_natDegree_lt
LE.le.trans_lt
natDegree_mul_le
natDegree_map_eq_iff πŸ“–mathematicalβ€”natDegree
map
β€”eq_or_ne
natDegree_map_eq_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
natDegree
map
β€”natDegree_eq_of_degree_eq
degree_map_eq_of_injective
natDegree_map_eq_of_isUnit_leadingCoeff πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
leadingCoeff
natDegree
map
β€”natDegree_eq_natDegree
degree_map_eq_of_isUnit_leadingCoeff
natDegree_mul_C πŸ“–mathematicalβ€”natDegree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”degree_mul_C
natDegree_mul_C_eq_of_mul_eq_one πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
natDegree
Polynomial
instMul
DFunLike.coe
RingHom
semiring
RingHom.instFunLike
C
β€”le_antisymm
natDegree_mul_C_le
mul_one
C_1
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_assoc
natDegree_mul_C_eq_of_mul_ne_zero πŸ“–mathematicalβ€”natDegree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”eq_natDegree_of_le_mem_support
natDegree_mul_C_le
mem_support_iff
coeff_mul_C
natDegree_mul_C_le πŸ“–mathematicalβ€”natDegree
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”natDegree_C
add_zero
natDegree_mul_le
natDegree_mul_leadingCoeff_inv πŸ“–mathematicalβ€”natDegree
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
β€”natDegree_eq_of_degree_eq
degree_mul_leadingCoeff_inv
natDegree_mul_leadingCoeff_self_inv πŸ“–mathematicalβ€”natDegree
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
leadingCoeff
β€”natDegree_eq_of_degree_eq
degree_mul_leadingCoeff_self_inv
natDegree_pos_of_evalβ‚‚_root πŸ“–mathematicalevalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
natDegreeβ€”lt_of_not_ge
eq_C_of_natDegree_le_zero
evalβ‚‚_C
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
natDegree_pos_of_nextCoeff_ne_zero πŸ“–mathematicalβ€”natDegreeβ€”β€”
natDegree_sub πŸ“–mathematicalβ€”natDegree
Ring.toSemiring
Polynomial
instSub
β€”natDegree_neg
neg_sub
natDegree_sub_le_iff_left πŸ“–mathematicalnatDegree
Ring.toSemiring
Polynomial
instSub
β€”sub_eq_add_neg
natDegree_add_le_iff_left
natDegree_neg
natDegree_sub_le_iff_right πŸ“–mathematicalnatDegree
Ring.toSemiring
Polynomial
instSub
β€”natDegree_sub
natDegree_sub_le_iff_left
natDegree_sum_eq_of_disjoint πŸ“–mathematicalSet.Pairwise
setOf
Finset
Finset.instMembership
Polynomial
instZero
Function.onFun
natDegree
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Finset.sup
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeNat
Nat.instOrderBot
β€”natDegree_eq_of_degree_eq_some
degree_sum_eq_of_disjoint
Set.Pairwise.imp
natDegree_eq_of_degree_eq
Finset.sup'_eq_sup
Nat.cast_withBot
Finset.coe_sup'
le_antisymm
Finset.sup'_le_iff
Finset.sup'_congr
degree_eq_natDegree
Finset.le_sup'
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Eq.ge
Finset.sum_eq_zero
Mathlib.Tactic.Push.not_and_eq
natDegree_zero
Finset.sup_eq_bot_iff
nextCoeff_C_mul πŸ“–mathematicalβ€”nextCoeff
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
mul_ite
MulZeroClass.mul_zero
natDegree_C_mul
coeff_C_mul
nextCoeff_C_mul_X_add_C πŸ“–mathematicalβ€”nextCoeff
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
β€”nextCoeff_of_natDegree_pos
natDegree_add_C
natDegree_C_mul_X
Nat.instZeroLEOneClass
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coeff_add
mul_coeff_zero
coeff_C_zero
coeff_X_zero
MulZeroClass.mul_zero
zero_add
nextCoeff_map πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
nextCoeff
map
β€”natDegree_map_eq_of_injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coeff_map
nextCoeff_map_eq_of_isUnit_leadingCoeff πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
leadingCoeff
nextCoeff
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”nextCoeff_map_of_leadingCoeff_ne_zero
IsUnit.ne_zero
RingHom.isUnit_map
nextCoeff_mul_C πŸ“–mathematicalβ€”nextCoeff
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.mul_zero
natDegree_mul_C
coeff_mul_C
ite_mul
MulZeroClass.zero_mul
subsingleton_isRoot_of_natDegree_eq_one πŸ“–mathematicalnatDegreeSet.Subsingleton
setOf
IsRoot
β€”natDegree_eq_one
mul_left_cancelβ‚€

---

← Back to Index