Documentation Verification Report

Monomial

📁 Source: Mathlib/Algebra/Polynomial/Degree/Monomial.lean

Statistics

MetricCount
Definitions0
TheoremsC_mul_X_pow_eq_self, monomial_natDegree_leadingCoeff_eq_self, natDegree_le_pred
3
Total3

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
C_mul_X_pow_eq_self 📖mathematicalFinset.card
support
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
natDegree
C_mul_X_pow_eq_monomial
monomial_natDegree_leadingCoeff_eq_self
monomial_natDegree_leadingCoeff_eq_self 📖mathematicalFinset.card
support
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
natDegree
leadingCoeff
card_support_le_one_iff_monomial
monomial_zero_right
natDegree_monomial
leadingCoeff_monomial
natDegree_le_pred 📖natDegree
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.le_succ_iff_eq_or_le
leadingCoeff_eq_zero
coeff_natDegree

---

← Back to Index