Documentation Verification Report

Units

πŸ“ Source: Mathlib/Algebra/Polynomial/Degree/Units.lean

Statistics

MetricCount
Definitions0
TheoremsC_dvd_iff_isUnit, degree_pos_of_not_isUnit, natDegree_pos_of_not_isUnit, coeff_coe_units_zero_ne_zero, degree_coe_units, degree_eq_zero_of_isUnit, degree_pos_of_not_isUnit_of_dvd_monic, isUnit_iff, natDegree_coe_units, natDegree_eq_zero_of_isUnit, natDegree_pos_of_not_isUnit_of_dvd_monic, not_isUnit_of_degree_pos, not_isUnit_of_natDegree_pos
13
Total13

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_coe_units_zero_ne_zero πŸ“–β€”β€”β€”β€”natDegree_coe_units
leadingCoeff.eq_1
leadingCoeff_eq_zero
Units.ne_zero
nontrivial
degree_coe_units πŸ“–mathematicalβ€”degree
Units.val
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
WithBot
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”degree_eq_zero_of_isUnit
degree_eq_zero_of_isUnit πŸ“–mathematicalIsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
degree
WithBot
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”LE.le.antisymm
natDegree_eq_zero_iff_degree_le_zero
natDegree_eq_zero_of_isUnit
zero_le_degree_iff
IsUnit.ne_zero
nontrivial
degree_pos_of_not_isUnit_of_dvd_monic πŸ“–mathematicalMonic
CommSemiring.toSemiring
IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
eq_C_of_degree_le_zero
Monic.C_dvd_iff_isUnit
isUnit_iff πŸ“–mathematicalβ€”IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”eq_C_of_natDegree_eq_zero
natDegree_eq_zero_of_isUnit
isUnit_C
natDegree_coe_units πŸ“–mathematicalβ€”natDegree
Units.val
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
natDegree_of_subsingleton
natDegree_eq_of_degree_eq_some
degree_coe_units
natDegree_eq_zero_of_isUnit πŸ“–mathematicalIsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
natDegreeβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
natDegree_of_subsingleton
IsUnit.exists_right_inv
natDegree_mul
left_ne_zero_of_mul_eq_one
nontrivial
right_ne_zero_of_mul_eq_one
add_eq_zero
Unique.instSubsingleton
natDegree_one
natDegree_pos_of_not_isUnit_of_dvd_monic πŸ“–mathematicalMonic
CommSemiring.toSemiring
IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
natDegreeβ€”natDegree_pos_iff_degree_pos
degree_pos_of_not_isUnit_of_dvd_monic
not_isUnit_of_degree_pos πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”subsingleton_or_nontrivial
Unique.instSubsingleton
degree_eq_zero_of_isUnit
not_isUnit_of_natDegree_pos πŸ“–mathematicalnatDegreeIsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”not_isUnit_of_degree_pos
natDegree_pos_iff_degree_pos

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
C_dvd_iff_isUnit πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Polynomial.commSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”isUnit_iff_dvd_one
Polynomial.C_dvd_iff_dvd_coeff
coeff_natDegree
IsUnit.dvd
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
degree_pos_of_not_isUnit πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial.degree
β€”degree_pos
isUnit_one
natDegree_pos_of_not_isUnit πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
IsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natDegreeβ€”natDegree_pos
isUnit_one

---

← Back to Index