Documentation Verification Report

Div

πŸ“ Source: Mathlib/Algebra/Polynomial/Div.lean

Statistics

MetricCount
DefinitionsdecidableDvdMonic, divByMonic, divModByMonicAux, modByMonic, rootMultiplicity, Β«term_%β‚˜_Β», Β«term_/β‚˜_Β»
7
TheoremsisRoot_eq_bot_of_natDegree_ne_one, not_isRoot_of_natDegree_ne_one, subsingleton_isRoot, dvd_coeff_zero, X_dvd_iff, X_dvd_sub_C, X_pow_dvd_iff, X_sub_C_dvd_sub_C_eval, add_modByMonic, associated_of_dvd_of_degree_eq, associated_of_dvd_of_natDegree_le, associated_of_dvd_of_natDegree_le_of_leadingCoeff, coeff_divByMonic_X_sub_C, coeff_divByMonic_X_sub_C_rec, degree_add_divByMonic, degree_divByMonic_le, degree_divByMonic_lt, degree_eq_one_of_irreducible_of_root, degree_modByMonic_le, degree_modByMonic_le_left, degree_modByMonic_lt, divByMonic_eq_of_not_monic, divByMonic_eq_zero_iff, divByMonic_one, divByMonic_zero, div_modByMonic_unique, div_wf_lemma, dvd_iff_isRoot, eq_leadingCoeff_mul_of_monic_of_dvd_of_natDegree_le, eq_mul_leadingCoeff_of_monic_of_dvd_of_natDegree_le, eq_of_dvd_of_natDegree_le_of_leadingCoeff, eq_of_monic_of_dvd_of_natDegree_le, eval_divByMonic_eq_trailingCoeff_comp, eval_divByMonic_pow_rootMultiplicity_ne_zero, evalβ‚‚_modByMonic_eq_self_of_root, exists_eq_pow_rootMultiplicity_mul_and_not_dvd, finiteMultiplicity_X_sub_C, finiteMultiplicity_of_degree_pos_of_monic, le_rootMultiplicity_iff, le_rootMultiplicity_mul, leadingCoeff_divByMonic_X_sub_C, leadingCoeff_divByMonic_of_monic, map_divByMonic, map_dvd_map, map_modByMonic, map_mod_divByMonic, modByMonic_X, modByMonic_X_sub_C_eq_C_eval, modByMonic_add_div, modByMonic_eq_of_dvd_sub, modByMonic_eq_of_not_monic, modByMonic_eq_self_iff, modByMonic_eq_sub_mul_div, modByMonic_eq_zero_iff_dvd, modByMonic_one, modByMonic_zero, mul_divByMonic_cancel_left, mul_divByMonic_eq_iff_isRoot, mul_modByMonic, mul_self_modByMonic, natDegree_divByMonic, natDegree_modByMonic_le, natDegree_modByMonic_le_left, natDegree_modByMonic_lt, neg_modByMonic, not_isField, pow_mul_divByMonic_rootMultiplicity_eq, pow_rootMultiplicity_dvd, pow_rootMultiplicity_not_dvd, rootMultiplicity_C, rootMultiplicity_add, rootMultiplicity_eq_multiplicity, rootMultiplicity_eq_natFind_of_ne_zero, rootMultiplicity_eq_natTrailingDegree', rootMultiplicity_eq_nat_find_of_nonzero, rootMultiplicity_eq_zero, rootMultiplicity_eq_zero_iff, rootMultiplicity_le_iff, rootMultiplicity_le_rootMultiplicity_of_dvd, rootMultiplicity_pos, rootMultiplicity_pos', rootMultiplicity_zero, self_mul_modByMonic, sub_dvd_eval_sub, sub_modByMonic, sum_modByMonic_coeff, zero_divByMonic, zero_modByMonic
88
Total95

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
isRoot_eq_bot_of_natDegree_ne_one πŸ“–mathematicalIrreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.IsRoot
Bot.bot
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”le_bot_iff
not_isRoot_of_natDegree_ne_one
not_isRoot_of_natDegree_ne_one πŸ“–mathematicalIrreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.IsRootβ€”Polynomial.natDegree_eq_of_degree_eq_some
Polynomial.degree_eq_one_of_irreducible_of_root
subsingleton_isRoot πŸ“–mathematicalIrreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Set.Subsingleton
setOf
Polynomial.IsRoot
β€”Polynomial.subsingleton_isRoot_of_natDegree_eq_one
Polynomial.natDegree_eq_of_degree_eq_some
Polynomial.degree_eq_one_of_irreducible_of_root

Polynomial

Definitions

NameCategoryTheorems
decidableDvdMonic πŸ“–CompOpβ€”
divByMonic πŸ“–CompOp
35 mathmath: mul_divByMonic_cancel_left, mul_divByMonic_eq_iff_isRoot, div_def, divByMonic_eq_of_not_monic, isCoprime_of_is_root_of_eval_derivative_ne_zero, coeff_divByMonic_X_sub_C_rec, divByMonic_eq_zero_iff, eval_divByMonic_eq_trailingCoeff_comp, natDegree_divByMonic, divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative, zero_divByMonic, isUnit_iff', degreeLT.addLinearEquiv_apply_snd, X_sub_C_mul_divByMonic_eq_sub_modByMonic, modByMonic_eq_sub_mul_div, degreeLT.addLinearEquiv_apply, degree_divByMonic_le, eval_iterate_derivative_rootMultiplicity, degreeLT.addLinearEquiv_apply', div_modByMonic_unique, leadingCoeff_divByMonic_of_monic, divByMonic_eq_div, divByMonic_zero, degree_add_divByMonic, modByMonic_add_div, coeff_divByMonic_mem_pow_natDegree_mul, degree_divByMonic_lt, pow_mul_divByMonic_rootMultiplicity_eq, map_divByMonic, cyclotomic_eq_X_pow_sub_one_div, coeff_divByMonic_X_sub_C, leadingCoeff_divByMonic_X_sub_C, divByMonic_one, map_mod_divByMonic, cyclotomic'_eq_X_pow_sub_one_div
divModByMonicAux πŸ“–CompOp
1 mathmath: coeff_divModByMonicAux_mem_span_pow_mul_span
modByMonic πŸ“–CompOp
48 mathmath: modByMonic_eq_self_iff, Matrix.pow_eq_aeval_mod_charpoly, map_modByMonic, modByMonic_one, natDegree_modByMonic_le, degreeLT.addLinearEquiv_apply_fst, modByMonic_eq_of_not_monic, modByMonic_eq_zero_iff_quotient_eq_zero, IsAdjoinRootMonic.map_modByMonic, degree_modByMonic_le, modByMonicHom_apply, X_sub_C_mul_divByMonic_eq_sub_modByMonic, modByMonic_eq_zero_iff_dvd, idealSpan_range_update_divByMonic, LinearMap.pow_eq_aeval_mod_charpoly, IsAdjoinRootMonic.modByMonicHom_map, coeff_modByMonic_mem_pow_natDegree_mul, natDegree_modByMonic_lt, aeval_modByMonic_eq_self_of_root, modByMonic_eq_sub_mul_div, degreeLT.addLinearEquiv_apply, neg_modByMonic, self_mul_modByMonic, AdjoinRoot.modByMonicHom_mk, modByMonic_zero, degreeLT.addLinearEquiv_apply', LinearMap.aeval_eq_aeval_mod_charpoly, mul_self_modByMonic, div_modByMonic_unique, sub_modByMonic, modByMonic_X_sub_C_eq_C_eval, degree_modByMonic_lt, evalβ‚‚_modByMonic_eq_self_of_root, modByMonic_add_div, modByMonic_eq_of_dvd_sub, natDegree_modByMonic_le_left, modByMonic_X, sum_modByMonic_coeff, smul_modByMonic, add_modByMonic, zero_modByMonic, mul_modByMonic, Matrix.aeval_eq_aeval_mod_charpoly, mod_def, degree_modByMonic_le_left, map_mod_divByMonic, IsAdjoinRootMonic.modByMonic_repr_map, modByMonic_eq_mod
rootMultiplicity πŸ“–CompOp
58 mathmath: pow_rootMultiplicity_dvd, rootMultiplicity_eq_rootMultiplicity, rootMultiplicity_eq_natTrailingDegree, eq_rootMultiplicity_map, rootMultiplicity_scaleRoots, rootMultiplicity_eq_natTrailingDegree', rootMultiplicity_sub_one_le_derivative_rootMultiplicity_of_ne_zero, rootMultiplicity_expand_pow, rootMultiplicity_sub_one_le_derivative_rootMultiplicity, count_map_roots, eval_divByMonic_eq_trailingCoeff_comp, rootMultiplicity_eq_zero_iff, rootMultiplicity_X_sub_C_pow, derivative_rootMultiplicity_of_root, pow_rootMultiplicity_not_dvd, le_rootMultiplicity_map, rootMultiplicity_mul, prod_multiset_root_eq_finset_root, rootMultiplicity_eq_natFind_of_ne_zero, LinearMap.finrank_genEigenspace_le, rootMultiplicity_eq_nat_find_of_nonzero, count_map_roots_of_injective, rootMultiplicity_add, le_rootMultiplicity_iff, lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors, rootMultiplicity_mul_X_sub_C_pow, count_roots, rootMultiplicity_pos, lt_rootMultiplicity_iff_isRoot_iterate_derivative, exists_multiset_roots, eval_iterate_derivative_rootMultiplicity, rootMultiplicity_C, natDegree_hilbertPoly_of_ne_zero, Chebyshev.rootMultiplicity_T_real, rootMultiplicity_le_one_of_separable, rootMultiplicity_expand, exists_eq_pow_rootMultiplicity_mul_and_not_dvd, one_lt_rootMultiplicity_iff_isRoot_gcd, Chebyshev.rootMultiplicity_U_real, rootMultiplicity_le_rootMultiplicity_of_dvd, rootMultiplicity_eq_multiplicity, rootMultiplicity_le_iff, rootMultiplicity_eq_zero, lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors, rootMultiplicity_mul', rootMultiplicity_X_sub_C_self, one_lt_rootMultiplicity_iff_isRoot_iterate_derivative, rootMultiplicity_X_sub_C, pow_mul_divByMonic_rootMultiplicity_eq, rootMultiplicity_zero, LinearMap.finrank_maxGenEigenspace_eq, le_rootMultiplicity_mul, rootMultiplicity_pos', one_lt_rootMultiplicity_iff_isRoot, lt_rootMultiplicity_of_isRoot_iterate_derivative, lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors', LinearMap.finrank_eigenspace_le, lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors'
Β«term_%β‚˜_Β» πŸ“–CompOpβ€”
Β«term_/β‚˜_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
X_dvd_iff πŸ“–mathematicalβ€”Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
X
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_X_mul_zero
add_zero
C_0
X_mul_divX_add
X_dvd_sub_C πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
X
instSub
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
coeff
β€”coeff_sub
coeff_C
sub_self
X_pow_dvd_iff πŸ“–mathematicalβ€”Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_X_pow_mul'
not_le_of_gt
instIsEmptyFalse
pow_zero
coeff_X_pow_mul
X_dvd_iff
zero_add
pow_succ
mul_assoc
X_sub_C_dvd_sub_C_eval πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
β€”dvd_iff_isRoot
IsRoot.eq_1
eval_sub
eval_C
sub_self
add_modByMonic πŸ“–mathematicalβ€”modByMonic
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
Ring.toSemiring
β€”subsingleton_or_nontrivial
Unique.instSubsingleton
div_modByMonic_unique
mul_add
Distrib.leftDistribClass
add_left_comm
add_assoc
modByMonic_add_div
add_comm
LE.le.trans_lt
degree_add_le
max_lt
degree_modByMonic_lt
modByMonic_eq_of_not_monic
associated_of_dvd_of_degree_eq πŸ“–mathematicalPolynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Field.toCommRing
degree
Associated
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”Associated.refl
associated_of_dvd_of_natDegree_le
natDegree_le_natDegree
Eq.ge
associated_of_dvd_of_natDegree_le πŸ“–mathematicalPolynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Field.toCommRing
natDegree
Associated
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”associated_of_dvd_of_natDegree_le_of_leadingCoeff
instIsDomain
IsUnit.dvd
isUnit_iff_ne_zero
leadingCoeff_ne_zero
associated_of_dvd_of_natDegree_le_of_leadingCoeff πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
natDegree
leadingCoeff
Associated
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”associated_of_dvd_dvd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
leadingCoeff_mul
IsDomain.to_noZeroDivisors
eq_of_dvd_of_natDegree_le_of_leadingCoeff
Units.mul_right_dvd
natDegree_mul_C
IsDomain.toNontrivial
leadingCoeff_C
coeff_divByMonic_X_sub_C πŸ“–mathematicalβ€”coeff
Ring.toSemiring
divByMonic
Polynomial
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.Icc
Nat.instPreorder
Nat.instLocallyFiniteOrder
natDegree
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Finset.Icc_eq_empty
LT.lt.not_ge
Finset.sum_empty
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
divByMonic_eq_zero_iff
monic_X_sub_C
degree_lt_degree
natDegree_X_sub_C
Nat.instZeroLEOneClass
coeff_zero
coeff_eq_zero_of_natDegree_lt
natDegree_divByMonic
LT.lt.trans_le
Finset.left_notMem_Ioc
Finset.Icc_eq_cons_Ioc
Finset.sum_cons
pow_zero
one_mul
Finset.mul_sum
Finset.sum_congr
Finset.ext
Nat.instNoMaxOrder
mul_assoc
pow_succ'
add_comm
Finset.mem_Icc
le_of_not_ge
le_rfl
coeff_divByMonic_X_sub_C_rec πŸ“–mathematicalβ€”coeff
Ring.toSemiring
divByMonic
Polynomial
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
monic_X_sub_C
modByMonic_add_div
LT.lt.trans_le
degree_modByMonic_lt
degree_X_sub_C
WithBot.coe_le_coe
le_add_self
Nat.instCanonicallyOrderedAdd
sub_mul
add_sub
coeff_sub
coeff_add
coeff_eq_zero_of_degree_lt
coeff_X_mul
zero_add
coeff_C_mul
sub_add_cancel
degree_add_divByMonic πŸ“–mathematicalMonic
Ring.toSemiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.add
divByMonic
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
degree_of_subsingleton
WithBot.add_bot
divByMonic_eq_zero_iff
not_lt
Monic.def
one_mul
leadingCoeff_eq_zero
degree_modByMonic_lt
degree_mul'
degree_eq_natDegree
Monic.ne_zero
Nat.cast_add
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
degree_add_eq_right_of_degree_lt
modByMonic_add_div
degree_divByMonic_le πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
Ring.toSemiring
divByMonic
β€”zero_divByMonic
degree_add_divByMonic
degree_eq_natDegree
Monic.ne_zero
Nontrivial.of_polynomial_ne
divByMonic_eq_zero_iff
not_lt
WithBot.coe_le_coe
div_wf_lemma
divModByMonicAux.eq_def
bot_le
divByMonic_eq_of_not_monic
degree_divByMonic_lt πŸ“–mathematicalMonic
Ring.toSemiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
divByMonicβ€”divByMonic_eq_zero_iff
Nontrivial.of_polynomial_ne
degree_eq_natDegree
WithBot.bot_lt_coe
degree_add_divByMonic
not_lt
Monic.ne_zero
Nat.cast_lt
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Nat.cast_zero
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instNontrivial
WithBot.instIsOrderedRing
IsStrictOrderedRing.toIsOrderedRing
WithBot.nontrivial
degree_eq_one_of_irreducible_of_root πŸ“–mathematicalIrreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
IsRoot
degree
WithBot
WithBot.one
Nat.instOne
β€”dvd_iff_isRoot
Irreducible.isUnit_or_isUnit
degree_X_sub_C
IsDomain.toNontrivial
degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
degree_mul
add_zero
degree_modByMonic_le πŸ“–mathematicalMonic
Ring.toSemiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
modByMonic
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
degree_of_subsingleton
LT.lt.le
degree_modByMonic_lt
degree_modByMonic_le_left πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
Ring.toSemiring
modByMonic
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
degree_of_subsingleton
lt_or_ge
modByMonic_eq_self_iff
le_refl
LE.le.trans
degree_modByMonic_le
modByMonic_eq_of_not_monic
degree_modByMonic_lt πŸ“–mathematicalMonic
Ring.toSemiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
modByMonic
β€”β€”
divByMonic_eq_of_not_monic πŸ“–mathematicalMonic
Ring.toSemiring
divByMonic
Polynomial
instZero
β€”β€”
divByMonic_eq_zero_iff πŸ“–mathematicalMonic
Ring.toSemiring
divByMonic
Polynomial
instZero
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
β€”modByMonic_add_div
modByMonic_eq_self_iff
add_zero
MulZeroClass.mul_zero
not_le_of_gt
div_wf_lemma
divModByMonicAux.eq_def
divByMonic_one πŸ“–mathematicalβ€”divByMonic
Polynomial
Ring.toSemiring
instOne
β€”modByMonic_add_div
monic_one
modByMonic_one
one_mul
zero_add
divByMonic_zero πŸ“–mathematicalβ€”divByMonic
Polynomial
Ring.toSemiring
instZero
β€”Unique.instSubsingleton
monic_zero_iff_subsingleton
div_wf_lemma
divModByMonicAux.eq_def
div_modByMonic_unique πŸ“–mathematicalMonic
Ring.toSemiring
Polynomial
instAdd
instMul
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
divByMonic
modByMonic
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
eq_of_sub_eq_zero
sub_eq_zero_of_eq
modByMonic_add_div
sub_eq_add_neg
mul_add
Distrib.leftDistribClass
neg_mul
mul_neg
neg_neg
neg_add_rev
add_comm
add_left_comm
add_assoc
degree_neg
degree_sub_le
max_lt_iff
degree_modByMonic_lt
by_contradiction
not_le_of_gt
degree_eq_natDegree
Monic.ne_zero
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
degree_mul'
Monic.def
one_mul
MulZeroClass.mul_zero
div_wf_lemma πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
Ring.toSemiring
Monic
Preorder.toLT
Polynomial
instSub
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
natDegree
β€”leadingCoeff_eq_zero
Monic.ne_zero_of_polynomial_ne
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
degree_eq_natDegree
degree_sub_lt
Monic.degree_mul_comm
Monic.degree_mul
degree_C_mul_X_pow
Nat.cast_add
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
leadingCoeff_monic_mul
leadingCoeff_mul_X_pow
leadingCoeff_C
dvd_iff_isRoot πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
IsRoot
β€”C_0
modByMonic_X_sub_C_eq_C_eval
modByMonic_eq_zero_iff_dvd
monic_X_sub_C
mul_divByMonic_eq_iff_isRoot
eq_leadingCoeff_mul_of_monic_of_dvd_of_natDegree_le πŸ“–mathematicalMonic
CommSemiring.toSemiring
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
natDegree
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
β€”mul_comm
eq_mul_leadingCoeff_of_monic_of_dvd_of_natDegree_le
eq_mul_leadingCoeff_of_monic_of_dvd_of_natDegree_le πŸ“–mathematicalMonic
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
natDegree
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
leadingCoeff
β€”eq_or_ne
MulZeroClass.mul_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Monic.natDegree_mul'
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
eq_C_of_natDegree_eq_zero
leadingCoeff_monic_mul
leadingCoeff_C
eq_of_dvd_of_natDegree_le_of_leadingCoeff πŸ“–β€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
natDegree
leadingCoeff
β€”β€”eq_or_ne
LE.le.antisymm
natDegree_le_of_dvd
IsDomain.to_noZeroDivisors
eq_C_of_natDegree_eq_zero
left_eq_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
natDegree_mul
mul_ne_zero_iff
instNoZeroDivisors
mul_eq_leftβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
leadingCoeff_ne_zero
leadingCoeff_C
leadingCoeff_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
eq_of_monic_of_dvd_of_natDegree_le πŸ“–β€”Monic
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
natDegree
β€”β€”eq_mul_leadingCoeff_of_monic_of_dvd_of_natDegree_le
Monic.leadingCoeff
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
eval_divByMonic_eq_trailingCoeff_comp πŸ“–mathematicalβ€”eval
Ring.toSemiring
CommRing.toRing
divByMonic
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
rootMultiplicity
trailingCoeff
comp
instAdd
β€”eq_or_ne
zero_divByMonic
eval_zero
zero_comp
trailingCoeff_zero
pow_mul_divByMonic_rootMultiplicity_eq
coeff_zero_eq_eval_zero
eval_comp
eval_add
eval_X
eval_C
zero_add
mul_comp
pow_comp
sub_comp
X_comp
C_comp
add_sub_cancel_right
reverse_leadingCoeff
reverse_X_pow_mul
trailingCoeff.eq_1
natTrailingDegree_le_of_ne_zero
eval_divByMonic_pow_rootMultiplicity_ne_zero
eval_divByMonic_pow_rootMultiplicity_ne_zero πŸ“–β€”β€”β€”β€”IsRoot.eq_1
dvd_iff_isRoot
pow_mul_divByMonic_rootMultiplicity_eq
FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt
finiteMultiplicity_of_degree_pos_of_monic
degree_X_sub_C
Nontrivial.of_polynomial_ne
monic_X_sub_C
dvd_of_mul_right_eq
rootMultiplicity_eq_multiplicity
pow_succ
mul_assoc
evalβ‚‚_modByMonic_eq_self_of_root πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
modByMonic
CommRing.toRing
β€”modByMonic_eq_sub_mul_div
evalβ‚‚_sub
evalβ‚‚_mul
MulZeroClass.zero_mul
sub_zero
exists_eq_pow_rootMultiplicity_mul_and_not_dvd πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
rootMultiplicity
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
β€”rootMultiplicity_eq_multiplicity
FiniteMultiplicity.exists_eq_pow_mul_and_not_dvd
finiteMultiplicity_X_sub_C
finiteMultiplicity_X_sub_C πŸ“–mathematicalβ€”FiniteMultiplicity
Polynomial
Ring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”finiteMultiplicity_of_degree_pos_of_monic
degree_X_sub_C
Nontrivial.of_polynomial_ne
monic_X_sub_C
finiteMultiplicity_of_degree_pos_of_monic πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
Monic
FiniteMultiplicity
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”zero_ne_one
NeZero.one
Nontrivial.of_polynomial_ne
MulZeroClass.mul_zero
one_pow
leadingCoeff_pow'
one_mul
Nat.cast_lt
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
degree_eq_natDegree
ne_of_lt
lt_add_of_le_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
le_mul_of_one_le_right
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
add_pos_of_pos_of_nonneg
add_assoc
add_mul
Distrib.rightDistribClass
natDegree_pow'
natDegree_mul'
le_rootMultiplicity_iff πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”finiteMultiplicity_X_sub_C
pow_zero
one_dvd
Dvd.dvd.trans
pow_dvd_pow
le_rootMultiplicity_mul πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
β€”le_rootMultiplicity_iff
pow_add
mul_dvd_mul
pow_rootMultiplicity_dvd
leadingCoeff_divByMonic_X_sub_C πŸ“–mathematicalβ€”leadingCoeff
Ring.toSemiring
CommRing.toRing
divByMonic
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”Ne.lt_or_gt
degree_eq_bot
Nat.WithBot.lt_zero_iff
zero_divByMonic
leadingCoeff_divByMonic_of_monic
monic_X_sub_C
degree_X_sub_C
IsDomain.toNontrivial
Nat.WithBot.one_le_iff_zero_lt
leadingCoeff_divByMonic_of_monic πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
leadingCoeff
Ring.toSemiring
CommRing.toRing
divByMonic
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Monic.leadingCoeff
one_mul
divByMonic_eq_zero_iff
modByMonic_add_div
leadingCoeff_add_of_degree_lt
degree_mul'
degree_add_divByMonic
LT.lt.trans_le
degree_modByMonic_lt
leadingCoeff_monic_mul
map_divByMonic πŸ“–mathematicalMonic
Ring.toSemiring
map
divByMonic
β€”map_mod_divByMonic
map_dvd_map πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
Monic
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
map
β€”modByMonic_eq_zero_iff_dvd
Monic.map
map_modByMonic
map_injective
map_zero
map_modByMonic πŸ“–mathematicalMonic
Ring.toSemiring
map
modByMonic
β€”map_mod_divByMonic
map_mod_divByMonic πŸ“–mathematicalMonic
Ring.toSemiring
map
divByMonic
modByMonic
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
div_modByMonic_unique
Monic.map
map_mul
map_add
modByMonic_add_div
degree_map_le
degree_modByMonic_lt
RingHom.domain_nontrivial
degree_map_eq_of_leadingCoeff_ne_zero
Monic.def
RingHom.map_one
one_ne_zero
NeZero.one
modByMonic_X πŸ“–mathematicalβ€”modByMonic
CommRing.toRing
X
Ring.toSemiring
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”modByMonic_X_sub_C_eq_C_eval
C_0
sub_zero
modByMonic_X_sub_C_eq_C_eval πŸ“–mathematicalβ€”modByMonic
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
modByMonic_eq_sub_mul_div
monic_X_sub_C
eval_sub
eval_mul
eval_X
eval_C
sub_self
MulZeroClass.zero_mul
sub_zero
degree_modByMonic_lt
degree_X_sub_C
bot_le
WithBot.coe_le_coe
WithBot.coe_lt_coe
eq_C_of_degree_le_zero
modByMonic_add_div πŸ“–mathematicalMonic
Ring.toSemiring
Polynomial
instAdd
modByMonic
instMul
divByMonic
β€”eq_sub_iff_add_eq
modByMonic_eq_sub_mul_div
modByMonic_eq_of_dvd_sub πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
instSub
CommRing.toRing
modByMonicβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
div_modByMonic_unique
sub_eq_iff_eq_add
mul_add
Distrib.leftDistribClass
add_assoc
modByMonic_add_div
add_comm
degree_modByMonic_lt
modByMonic_eq_of_not_monic πŸ“–mathematicalMonic
Ring.toSemiring
modByMonicβ€”β€”
modByMonic_eq_self_iff πŸ“–mathematicalMonic
Ring.toSemiring
modByMonic
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
β€”degree_modByMonic_lt
not_le_of_gt
div_wf_lemma
divModByMonicAux.eq_def
modByMonic_eq_sub_mul_div πŸ“–mathematicalMonic
Ring.toSemiring
modByMonic
Polynomial
instSub
instMul
divByMonic
β€”β€”
modByMonic_eq_zero_iff_dvd πŸ“–mathematicalMonic
Ring.toSemiring
modByMonic
Polynomial
instZero
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
β€”modByMonic_add_div
zero_add
dvd_mul_right
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
exists_eq_mul_right_of_dvd
modByMonic_eq_sub_mul_div
mul_sub
degree_modByMonic_lt
leadingCoeff_eq_zero
MulZeroClass.mul_zero
leadingCoeff_zero
Monic.def
one_mul
not_lt_of_ge
WithBot.coe_lt_coe
degree_eq_natDegree
Monic.ne_zero
degree_mul'
modByMonic_one πŸ“–mathematicalβ€”modByMonic
Polynomial
Ring.toSemiring
instOne
instZero
β€”modByMonic_eq_zero_iff_dvd
monic_one
one_dvd
modByMonic_zero πŸ“–mathematicalβ€”modByMonic
Polynomial
Ring.toSemiring
instZero
β€”Unique.instSubsingleton
monic_zero_iff_subsingleton
div_wf_lemma
divModByMonicAux.eq_def
mul_divByMonic_cancel_left πŸ“–mathematicalMonic
Ring.toSemiring
divByMonic
Polynomial
instMul
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
div_modByMonic_unique
zero_add
degree_zero
Ne.bot_lt
Monic.ne_zero
degree_eq_bot
mul_divByMonic_eq_iff_isRoot πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
CommRing.toRing
instMul
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
divByMonic
IsRoot
β€”eval_mul
eval_sub
eval_X
eval_C
sub_self
MulZeroClass.zero_mul
modByMonic_add_div
monic_X_sub_C
modByMonic_X_sub_C_eq_C_eval
C_0
zero_add
IsRoot.def
mul_modByMonic πŸ“–mathematicalβ€”modByMonic
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
Ring.toSemiring
β€”modByMonic_eq_of_not_monic
modByMonic_eq_of_dvd_sub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
dvd_add
Distrib.leftDistribClass
dvd_mul_of_dvd_right
modByMonic_eq_sub_mul_div
sub_sub_cancel
mul_self_modByMonic πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
modByMonic
CommRing.toRing
Polynomial
instMul
Ring.toSemiring
instZero
β€”modByMonic_eq_zero_iff_dvd
dvd_mul_left
natDegree_divByMonic πŸ“–mathematicalMonic
Ring.toSemiring
natDegree
divByMonic
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
natDegree_of_subsingleton
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
natDegree_zero
tsub_eq_zero_iff_le
natDegree_le_natDegree
le_of_lt
divByMonic_eq_zero_iff
degree_add_divByMonic
zero_divByMonic
WithBot.charZero
Nat.instCharZero
Nat.cast_add
degree_eq_natDegree
Monic.ne_zero
add_tsub_cancel_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
natDegree_modByMonic_le πŸ“–mathematicalMonic
Ring.toSemiring
natDegree
modByMonic
β€”natDegree_le_natDegree
degree_modByMonic_le
natDegree_modByMonic_le_left πŸ“–mathematicalβ€”natDegree
Ring.toSemiring
modByMonic
β€”natDegree_le_natDegree
degree_modByMonic_le_left
natDegree_modByMonic_lt πŸ“–mathematicalMonic
Ring.toSemiring
natDegree
modByMonic
β€”natDegree_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
eq_one_of_monic_natDegree_zero
natDegree_lt_natDegree
degree_modByMonic_lt
Nontrivial.of_polynomial_ne
neg_modByMonic πŸ“–mathematicalβ€”modByMonic
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instNeg
Ring.toSemiring
β€”eq_neg_iff_add_eq_zero
add_modByMonic
neg_add_cancel
zero_modByMonic
not_isField πŸ“–mathematicalβ€”IsField
Polynomial
Ring.toSemiring
semiring
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
natDegree_X
natDegree_one
Monic.eq_one_of_isUnit
monic_X
Ne.isUnit
Monic.ne_zero
pow_mul_divByMonic_rootMultiplicity_eq πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
rootMultiplicity
divByMonic
β€”Monic.pow
monic_X_sub_C
modByMonic_add_div
modByMonic_eq_zero_iff_dvd
pow_rootMultiplicity_dvd
zero_add
pow_rootMultiplicity_dvd πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
rootMultiplicity
β€”rootMultiplicity_zero
pow_zero
rootMultiplicity_eq_multiplicity
pow_multiplicity_dvd
pow_rootMultiplicity_not_dvd πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
rootMultiplicity
β€”rootMultiplicity_le_iff
le_refl
rootMultiplicity_C πŸ“–mathematicalβ€”rootMultiplicity
DFunLike.coe
RingHom
Polynomial
Ring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”subsingleton_or_nontrivial
Unique.instSubsingleton
rootMultiplicity_zero
rootMultiplicity_eq_multiplicity
natDegree_C
natDegree_sub_C
natDegree_X
Nat.instZeroLEOneClass
multiplicity_eq_zero
Monic.not_dvd_of_natDegree_lt
monic_X_sub_C
rootMultiplicity_add πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
β€”le_rootMultiplicity_iff
min_pow_dvd_add
pow_rootMultiplicity_dvd
rootMultiplicity_eq_multiplicity πŸ“–mathematicalβ€”rootMultiplicity
Polynomial
Ring.toSemiring
instZero
instDecidableEq
multiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”finiteMultiplicity_X_sub_C
ENat.some_eq_coe
WithTop.untopD_coe
rootMultiplicity_eq_natFind_of_ne_zero πŸ“–mathematicalβ€”rootMultiplicity
Nat.find
Polynomial
Ring.toSemiring
semigroupDvd
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Monoid.toNatPow
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
finiteMultiplicity_X_sub_C
β€”finiteMultiplicity_X_sub_C
rootMultiplicity_eq_natTrailingDegree' πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
natTrailingDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”rootMultiplicity_zero
le_antisymm
rootMultiplicity_le_iff
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
sub_zero
X_pow_dvd_iff
trailingCoeff_nonzero_iff_nonzero
le_rootMultiplicity_iff
coeff_eq_zero_of_lt_natTrailingDegree
rootMultiplicity_eq_nat_find_of_nonzero πŸ“–mathematicalβ€”rootMultiplicity
Nat.find
Polynomial
Ring.toSemiring
semigroupDvd
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Monoid.toNatPow
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
finiteMultiplicity_X_sub_C
β€”rootMultiplicity_eq_natFind_of_ne_zero
rootMultiplicity_eq_zero πŸ“–mathematicalIsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
rootMultiplicity
CommRing.toRing
β€”rootMultiplicity_eq_zero_iff
rootMultiplicity_eq_zero_iff πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
β€”rootMultiplicity_eq_multiplicity
rootMultiplicity_le_iff πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”Iff.not
le_rootMultiplicity_iff
not_le
rootMultiplicity_le_rootMultiplicity_of_dvd πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
rootMultiplicity
CommRing.toRing
β€”le_rootMultiplicity_mul
rootMultiplicity_pos πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”rootMultiplicity_pos'
rootMultiplicity_pos' πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
rootMultiplicity_eq_zero_iff
rootMultiplicity_zero πŸ“–mathematicalβ€”rootMultiplicity
Polynomial
Ring.toSemiring
instZero
β€”finiteMultiplicity_X_sub_C
self_mul_modByMonic πŸ“–mathematicalMonic
Ring.toSemiring
modByMonic
Polynomial
instMul
instZero
β€”modByMonic_eq_zero_iff_dvd
dvd_mul_right
sub_dvd_eval_sub πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
eval
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”eval_sub
eval_C
sub_self
eval_X
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
sub_modByMonic πŸ“–mathematicalβ€”modByMonic
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
Ring.toSemiring
β€”sub_eq_add_neg
add_modByMonic
neg_modByMonic
sum_modByMonic_coeff πŸ“–mathematicalMonic
Ring.toSemiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ring
Finset.univ
Fin.fintype
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
coeff
modByMonic
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
sum_fin
monomial_zero_right
LT.lt.trans_le
degree_modByMonic_lt
sum_monomial_eq
zero_divByMonic πŸ“–mathematicalβ€”divByMonic
Polynomial
Ring.toSemiring
instZero
β€”β€”
zero_modByMonic πŸ“–mathematicalβ€”modByMonic
Polynomial
Ring.toSemiring
instZero
β€”β€”

Polynomial.IsRoot

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_coeff_zero πŸ“–mathematicalPolynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.coeff
β€”Polynomial.coeff_zero_eq_eval_zero
zero_sub
eq_zero
sub_zero
Polynomial.sub_dvd_eval_sub

---

← Back to Index