π Source: Mathlib/Algebra/Polynomial/Div.lean
decidableDvdMonic
divByMonic
divModByMonicAux
modByMonic
rootMultiplicity
Β«term_%β_Β»
Β«term_/β_Β»
isRoot_eq_bot_of_natDegree_ne_one
not_isRoot_of_natDegree_ne_one
subsingleton_isRoot
dvd_coeff_zero
X_dvd_iff
X_dvd_sub_C
X_pow_dvd_iff
X_sub_C_dvd_sub_C_eval
add_modByMonic
associated_of_dvd_of_degree_eq
associated_of_dvd_of_natDegree_le
associated_of_dvd_of_natDegree_le_of_leadingCoeff
coeff_divByMonic_X_sub_C
coeff_divByMonic_X_sub_C_rec
degree_add_divByMonic
degree_divByMonic_le
degree_divByMonic_lt
degree_eq_one_of_irreducible_of_root
degree_modByMonic_le
degree_modByMonic_le_left
degree_modByMonic_lt
divByMonic_eq_of_not_monic
divByMonic_eq_zero_iff
divByMonic_one
divByMonic_zero
div_modByMonic_unique
div_wf_lemma
dvd_iff_isRoot
eq_leadingCoeff_mul_of_monic_of_dvd_of_natDegree_le
eq_mul_leadingCoeff_of_monic_of_dvd_of_natDegree_le
eq_of_dvd_of_natDegree_le_of_leadingCoeff
eq_of_monic_of_dvd_of_natDegree_le
eval_divByMonic_eq_trailingCoeff_comp
eval_divByMonic_pow_rootMultiplicity_ne_zero
evalβ_modByMonic_eq_self_of_root
exists_eq_pow_rootMultiplicity_mul_and_not_dvd
finiteMultiplicity_X_sub_C
finiteMultiplicity_of_degree_pos_of_monic
le_rootMultiplicity_iff
le_rootMultiplicity_mul
leadingCoeff_divByMonic_X_sub_C
leadingCoeff_divByMonic_of_monic
map_divByMonic
map_dvd_map
map_modByMonic
map_mod_divByMonic
modByMonic_X
modByMonic_X_sub_C_eq_C_eval
modByMonic_add_div
modByMonic_eq_of_dvd_sub
modByMonic_eq_of_not_monic
modByMonic_eq_self_iff
modByMonic_eq_sub_mul_div
modByMonic_eq_zero_iff_dvd
modByMonic_one
modByMonic_zero
mul_divByMonic_cancel_left
mul_divByMonic_eq_iff_isRoot
mul_modByMonic
mul_self_modByMonic
natDegree_divByMonic
natDegree_modByMonic_le
natDegree_modByMonic_le_left
natDegree_modByMonic_lt
neg_modByMonic
not_isField
pow_mul_divByMonic_rootMultiplicity_eq
pow_rootMultiplicity_dvd
pow_rootMultiplicity_not_dvd
rootMultiplicity_C
rootMultiplicity_add
rootMultiplicity_eq_multiplicity
rootMultiplicity_eq_natFind_of_ne_zero
rootMultiplicity_eq_natTrailingDegree'
rootMultiplicity_eq_nat_find_of_nonzero
rootMultiplicity_eq_zero
rootMultiplicity_eq_zero_iff
rootMultiplicity_le_iff
rootMultiplicity_le_rootMultiplicity_of_dvd
rootMultiplicity_pos
rootMultiplicity_pos'
rootMultiplicity_zero
self_mul_modByMonic
sub_dvd_eval_sub
sub_modByMonic
sum_modByMonic_coeff
zero_divByMonic
zero_modByMonic
Irreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.IsRoot
Bot.bot
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
le_bot_iff
Polynomial.natDegree_eq_of_degree_eq_some
Polynomial.degree_eq_one_of_irreducible_of_root
Set.Subsingleton
setOf
Polynomial.subsingleton_isRoot_of_natDegree_eq_one
div_def
isCoprime_of_is_root_of_eval_derivative_ne_zero
divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative
isUnit_iff'
degreeLT.addLinearEquiv_apply_snd
X_sub_C_mul_divByMonic_eq_sub_modByMonic
degreeLT.addLinearEquiv_apply
eval_iterate_derivative_rootMultiplicity
degreeLT.addLinearEquiv_apply'
divByMonic_eq_div
coeff_divByMonic_mem_pow_natDegree_mul
cyclotomic_eq_X_pow_sub_one_div
cyclotomic'_eq_X_pow_sub_one_div
coeff_divModByMonicAux_mem_span_pow_mul_span
Matrix.pow_eq_aeval_mod_charpoly
degreeLT.addLinearEquiv_apply_fst
modByMonic_eq_zero_iff_quotient_eq_zero
IsAdjoinRootMonic.map_modByMonic
modByMonicHom_apply
idealSpan_range_update_divByMonic
LinearMap.pow_eq_aeval_mod_charpoly
IsAdjoinRootMonic.modByMonicHom_map
coeff_modByMonic_mem_pow_natDegree_mul
aeval_modByMonic_eq_self_of_root
AdjoinRoot.modByMonicHom_mk
LinearMap.aeval_eq_aeval_mod_charpoly
smul_modByMonic
Matrix.aeval_eq_aeval_mod_charpoly
mod_def
IsAdjoinRootMonic.modByMonic_repr_map
modByMonic_eq_mod
rootMultiplicity_eq_rootMultiplicity
rootMultiplicity_eq_natTrailingDegree
eq_rootMultiplicity_map
rootMultiplicity_scaleRoots
rootMultiplicity_sub_one_le_derivative_rootMultiplicity_of_ne_zero
rootMultiplicity_expand_pow
rootMultiplicity_sub_one_le_derivative_rootMultiplicity
count_map_roots
rootMultiplicity_X_sub_C_pow
derivative_rootMultiplicity_of_root
le_rootMultiplicity_map
rootMultiplicity_mul
prod_multiset_root_eq_finset_root
LinearMap.finrank_genEigenspace_le
count_map_roots_of_injective
lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors
rootMultiplicity_mul_X_sub_C_pow
count_roots
lt_rootMultiplicity_iff_isRoot_iterate_derivative
exists_multiset_roots
natDegree_hilbertPoly_of_ne_zero
Chebyshev.rootMultiplicity_T_real
rootMultiplicity_le_one_of_separable
rootMultiplicity_expand
one_lt_rootMultiplicity_iff_isRoot_gcd
Chebyshev.rootMultiplicity_U_real
lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors
rootMultiplicity_mul'
rootMultiplicity_X_sub_C_self
one_lt_rootMultiplicity_iff_isRoot_iterate_derivative
rootMultiplicity_X_sub_C
LinearMap.finrank_maxGenEigenspace_eq
one_lt_rootMultiplicity_iff_isRoot
lt_rootMultiplicity_of_isRoot_iterate_derivative
lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors'
LinearMap.finrank_eigenspace_le
lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors'
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
X
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
coeff_X_mul_zero
add_zero
C_0
X_mul_divX_add
Ring.toSemiring
instSub
DFunLike.coe
RingHom
RingHom.instFunLike
C
coeff_sub
coeff_C
sub_self
Monoid.toNatPow
coeff_X_pow_mul'
not_le_of_gt
instIsEmptyFalse
pow_zero
coeff_X_pow_mul
zero_add
pow_succ
mul_assoc
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
CommRing.toRing
eval
IsRoot.eq_1
eval_sub
eval_C
instAdd
subsingleton_or_nontrivial
Unique.instSubsingleton
mul_add
Distrib.leftDistribClass
add_left_comm
add_assoc
add_comm
LE.le.trans_lt
degree_add_le
max_lt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Field.toCommRing
degree
Associated
Associated.refl
natDegree_le_natDegree
Eq.ge
natDegree
instIsDomain
IsUnit.dvd
isUnit_iff_ne_zero
leadingCoeff_ne_zero
leadingCoeff
associated_of_dvd_dvd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
leadingCoeff_mul
IsDomain.to_noZeroDivisors
Units.mul_right_dvd
natDegree_mul_C
IsDomain.toNontrivial
leadingCoeff_C
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.Icc
Nat.instPreorder
Nat.instLocallyFiniteOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Finset.Icc_eq_empty
LT.lt.not_ge
Finset.sum_empty
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
monic_X_sub_C
degree_lt_degree
natDegree_X_sub_C
Nat.instZeroLEOneClass
coeff_zero
coeff_eq_zero_of_natDegree_lt
LT.lt.trans_le
Finset.left_notMem_Ioc
Finset.Icc_eq_cons_Ioc
Finset.sum_cons
one_mul
Finset.mul_sum
Finset.sum_congr
Finset.ext
Nat.instNoMaxOrder
pow_succ'
Finset.mem_Icc
le_of_not_ge
le_rfl
Distrib.toAdd
degree_X_sub_C
WithBot.coe_le_coe
le_add_self
Nat.instCanonicallyOrderedAdd
sub_mul
add_sub
coeff_add
coeff_eq_zero_of_degree_lt
coeff_X_mul
coeff_C_mul
sub_add_cancel
Monic
WithBot
Preorder.toLE
WithBot.instPreorder
WithBot.add
degree_of_subsingleton
WithBot.add_bot
not_lt
Monic.def
leadingCoeff_eq_zero
degree_mul'
degree_eq_natDegree
Monic.ne_zero
Nat.cast_add
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
WithBot.charZero
Nat.instCharZero
degree_add_eq_right_of_degree_lt
Nontrivial.of_polynomial_ne
divModByMonicAux.eq_def
bot_le
Preorder.toLT
WithBot.zero
Nat.instMulZeroClass
WithBot.bot_lt_coe
Nat.cast_lt
Nat.cast_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instNontrivial
WithBot.instIsOrderedRing
IsStrictOrderedRing.toIsOrderedRing
WithBot.nontrivial
IsRoot
WithBot.one
Nat.instOne
Irreducible.isUnit_or_isUnit
degree_eq_zero_of_isUnit
degree_mul
LT.lt.le
lt_or_ge
le_refl
LE.le.trans
instZero
MulZeroClass.mul_zero
instOne
monic_one
monic_zero_iff_subsingleton
instMul
eq_of_sub_eq_zero
sub_eq_zero_of_eq
sub_eq_add_neg
neg_mul
mul_neg
neg_neg
neg_add_rev
degree_neg
degree_sub_le
max_lt_iff
by_contradiction
Monic.ne_zero_of_polynomial_ne
degree_sub_lt
Monic.degree_mul_comm
Monic.degree_mul
degree_C_mul_X_pow
tsub_add_cancel_of_le
Nat.instOrderedSub
leadingCoeff_monic_mul
leadingCoeff_mul_X_pow
CommSemiring.toNonUnitalCommSemiring
commSemiring
mul_comm
eq_or_ne
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Monic.natDegree_mul'
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
eq_C_of_natDegree_eq_zero
LE.le.antisymm
natDegree_le_of_dvd
left_eq_add
natDegree_mul
mul_ne_zero_iff
instNoZeroDivisors
mul_eq_leftβ
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
mul_one
Monic.leadingCoeff
trailingCoeff
comp
eval_zero
zero_comp
trailingCoeff_zero
coeff_zero_eq_eval_zero
eval_comp
eval_add
eval_X
mul_comp
pow_comp
sub_comp
X_comp
C_comp
add_sub_cancel_right
reverse_leadingCoeff
reverse_X_pow_mul
trailingCoeff.eq_1
natTrailingDegree_le_of_ne_zero
FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt
dvd_of_mul_right_eq
evalβ
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
evalβ_sub
evalβ_mul
MulZeroClass.zero_mul
sub_zero
FiniteMultiplicity.exists_eq_pow_mul_and_not_dvd
FiniteMultiplicity
zero_ne_one
NeZero.one
one_pow
leadingCoeff_pow'
ne_of_lt
lt_add_of_le_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
le_mul_of_one_le_right
IsOrderedRing.toPosMulMono
add_pos_of_pos_of_nonneg
add_mul
Distrib.rightDistribClass
natDegree_pow'
natDegree_mul'
one_dvd
Dvd.dvd.trans
pow_dvd_pow
pow_add
mul_dvd_mul
Ne.lt_or_gt
degree_eq_bot
Nat.WithBot.lt_zero_iff
Nat.WithBot.one_le_iff_zero_lt
leadingCoeff_add_of_degree_lt
map
Monic.map
map_injective
map_mul
map_add
degree_map_le
RingHom.domain_nontrivial
degree_map_eq_of_leadingCoeff_ne_zero
RingHom.map_one
one_ne_zero
eval_mul
WithBot.coe_lt_coe
eq_C_of_degree_le_zero
eq_sub_iff_add_eq
sub_eq_iff_eq_add
dvd_mul_right
exists_eq_mul_right_of_dvd
mul_sub
leadingCoeff_zero
not_lt_of_ge
degree_zero
Ne.bot_lt
IsRoot.def
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
dvd_add
dvd_mul_of_dvd_right
sub_sub_cancel
dvd_mul_left
natDegree_of_subsingleton
tsub_self
natDegree_zero
tsub_eq_zero_iff_le
le_of_lt
add_tsub_cancel_left
Mathlib.Tactic.Contrapose.contraposeβ
eq_one_of_monic_natDegree_zero
natDegree_lt_natDegree
instNeg
eq_neg_iff_add_eq_zero
neg_add_cancel
IsField
natDegree_X
natDegree_one
Monic.eq_one_of_isUnit
monic_X
Ne.isUnit
Monic.pow
pow_multiplicity_dvd
natDegree_C
natDegree_sub_C
multiplicity_eq_zero
Monic.not_dvd_of_natDegree_lt
min_pow_dvd_add
instDecidableEq
multiplicity
ENat.some_eq_coe
WithTop.untopD_coe
Nat.find
Monoid.toSemigroup
natTrailingDegree
le_antisymm
trailingCoeff_nonzero_iff_nonzero
coeff_eq_zero_of_lt_natTrailingDegree
Iff.not
not_le
pos_iff_ne_zero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
ring
Finset.univ
Fin.fintype
LinearMap
RingHom.id
Semiring.toModule
module
LinearMap.instFunLike
monomial
sum_fin
monomial_zero_right
sum_monomial_eq
Polynomial.coeff
Polynomial.coeff_zero_eq_eval_zero
zero_sub
eq_zero
Polynomial.sub_dvd_eval_sub
---
β Back to Index