Documentation Verification Report

EraseLead

πŸ“ Source: Mathlib/Algebra/Polynomial/EraseLead.lean

Statistics

MetricCount
DefinitionseraseLead
1
Theoremscard_support_eq, card_support_eq', card_support_eq_one, card_support_eq_one_of_eraseLead_eq_zero, card_support_eq_three, card_support_eq_two, card_support_eraseLead, card_support_eraseLead', card_support_eraseLead_add_one, card_support_le_one_of_eraseLead_eq_zero, degree_eraseLead_lt, eraseLead_C, eraseLead_C_mul_X, eraseLead_C_mul_X_pow, eraseLead_X, eraseLead_X_pow, eraseLead_add_C_mul_X_pow, eraseLead_add_monomial_natDegree_leadingCoeff, eraseLead_add_of_degree_lt_left, eraseLead_add_of_degree_lt_right, eraseLead_add_of_natDegree_lt_left, eraseLead_add_of_natDegree_lt_right, eraseLead_coeff, eraseLead_coeff_natDegree, eraseLead_coeff_of_ne, eraseLead_degree_le, eraseLead_monomial, eraseLead_mul_eq_mul_eraseLead_of_nextCoeff_zero, eraseLead_natDegree_le, eraseLead_natDegree_le_aux, eraseLead_natDegree_lt, eraseLead_natDegree_lt_or_eraseLead_eq_zero, eraseLead_ne_zero, eraseLead_support, eraseLead_support_card_lt, eraseLead_zero, induction_with_natDegree_le, leadingCoeff_eraseLead_eq_nextCoeff, lt_natDegree_of_mem_eraseLead_support, map_natDegree_eq_natDegree, map_natDegree_eq_sub, mono_map_natDegree_eq, natDegree_eraseLead, natDegree_eraseLead_add_one, natDegree_eraseLead_le_of_nextCoeff_eq_zero, natDegree_notMem_eraseLead_support, natDegree_pos_of_eraseLead_ne_zero, ne_natDegree_of_mem_eraseLead_support, nextCoeff_eq_zero_of_eraseLead_eq_zero, self_sub_C_mul_X_pow, self_sub_monomial_natDegree_leadingCoeff, two_le_natDegree_of_nextCoeff_eraseLead
52
Total53

Polynomial

Definitions

NameCategoryTheorems
eraseLead πŸ“–CompOp
45 mathmath: eraseLead_monomial, eraseLead_natDegree_lt_or_eraseLead_eq_zero, eraseLead_X_pow, eraseLead_support, eraseLead_add_C_mul_X_pow, card_support_eraseLead_add_one, signVariations_le_eraseLead_succ, natDegree_notMem_eraseLead_support, natDegree_eraseLead_add_one, self_sub_monomial_natDegree_leadingCoeff, card_support_eraseLead', leadingCoeff_cons_eraseLead, eraseLead_natDegree_le, eraseLead_coeff, coeffList_eraseLead, degree_eraseLead_lt, signVariations_eraseLead, eraseLead_C_mul_X, signVariations_eraseLead_le, content_mul_aux, eraseLead_add_of_degree_lt_right, eraseLead_add_of_degree_lt_left, eraseLead_add_monomial_natDegree_leadingCoeff, eraseLead_zero, eraseLead_degree_le, eraseLead_C_mul_X_pow, eraseLead_X, signVariations_eraseLead_mul_X_sub_C, card_support_eraseLead, eraseLead_C, natDegree_eraseLead, eraseLead_support_card_lt, leadingCoeff_eraseLead_eq_nextCoeff, eraseLead_mul_eq_mul_eraseLead_of_nextCoeff_zero, eraseLead_coeff_natDegree, signVariations_X_sub_C_mul_eraseLead_le, eraseLead_natDegree_lt, signVariations_eq_eraseLead_add_ite, content_eq_gcd_leadingCoeff_content_eraseLead, eraseLead_coeff_of_ne, eraseLead_natDegree_le_aux, eraseLead_add_of_natDegree_lt_left, natDegree_eraseLead_le_of_nextCoeff_eq_zero, eraseLead_add_of_natDegree_lt_right, self_sub_C_mul_X_pow

Theorems

NameKindAssumesProvesValidatesDepends On
card_support_eq πŸ“–mathematicalβ€”Finset.card
support
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Finset.univ
Fin.fintype
instMul
DFunLike.coe
RingHom
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”card_support_eq_zero
card_support_eraseLead'
LT.lt.ne
Fin.range_castSucc
lt_of_lt_of_le
Function.Injective.extend_apply
StrictMono.injective
Fin.strictMono_castSucc
StrictMono.lt_iff_lt
Function.extend_apply'
lt_natDegree_of_mem_eraseLead_support
mem_support_iff
finset_sum_coeff
Finset.sum_eq_single
coeff_C_mul
coeff_X_pow
MulZeroClass.mul_zero
Finset.mem_univ
coeff_X_pow_self
mul_one
leadingCoeff_eq_zero
Fin.sum_univ_castSucc
Finset.sum_congr
eraseLead_add_C_mul_X_pow
card_support_eq'
card_support_eq' πŸ“–mathematicalβ€”Finset.card
support
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Finset.univ
Fin.fintype
instMul
DFunLike.coe
RingHom
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”finset_sum_coeff
Finset.sum_congr
coeff_C_mul_X_pow
Finset.exists_ne_zero_of_sum_ne_zero
ite_ne_right_iff
Finset.sum_eq_single_of_mem
Finset.mem_univ
Finset.card_image_of_injective
Finset.card_fin
card_support_eq_one πŸ“–mathematicalβ€”Finset.card
support
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”card_support_eq
Fin.sum_univ_one
support_C_mul_X_pow
Finset.card_singleton
card_support_eq_one_of_eraseLead_eq_zero πŸ“–mathematicaleraseLead
Polynomial
instZero
Finset.card
support
β€”card_support_eraseLead_add_one
card_support_eq_zero
card_support_eq_three πŸ“–mathematicalβ€”Finset.card
support
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”card_support_eq
Fin.sum_univ_castSucc
Fin.sum_univ_one
card_support_trinomial
card_support_eq_two πŸ“–mathematicalβ€”Finset.card
support
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”card_support_eq
Fin.sum_univ_castSucc
Fin.sum_univ_one
card_support_binomial
LT.lt.ne
card_support_eraseLead πŸ“–mathematicalβ€”Finset.card
support
eraseLead
β€”eraseLead_zero
support_zero
Finset.card_empty
card_support_eraseLead_add_one
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
card_support_eraseLead' πŸ“–mathematicalFinset.card
support
eraseLeadβ€”card_support_eraseLead
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
card_support_eraseLead_add_one πŸ“–mathematicalβ€”Finset.card
support
eraseLead
β€”card_support_eq_zero
eraseLead_support
Finset.card_erase_of_mem
natDegree_mem_support_of_nonzero
card_support_le_one_of_eraseLead_eq_zero πŸ“–mathematicaleraseLead
Polynomial
instZero
Finset.card
support
β€”Nat.instCanonicallyOrderedAdd
le_of_eq
card_support_eq_one_of_eraseLead_eq_zero
degree_eraseLead_lt πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
eraseLead
β€”degree_erase_lt
eraseLead_C πŸ“–mathematicalβ€”eraseLead
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instZero
β€”eraseLead_monomial
eraseLead_C_mul_X πŸ“–mathematicalβ€”eraseLead
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
instZero
β€”pow_one
eraseLead_C_mul_X_pow
eraseLead_C_mul_X_pow πŸ“–mathematicalβ€”eraseLead
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
instZero
β€”C_mul_X_pow_eq_monomial
eraseLead_monomial
eraseLead_X πŸ“–mathematicalβ€”eraseLead
X
Polynomial
instZero
β€”eraseLead_monomial
eraseLead_X_pow πŸ“–mathematicalβ€”eraseLead
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instZero
β€”X_pow_eq_monomial
eraseLead_monomial
eraseLead_add_C_mul_X_pow πŸ“–mathematicalβ€”Polynomial
instAdd
eraseLead
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
natDegree
β€”C_mul_X_pow_eq_monomial
eraseLead_add_monomial_natDegree_leadingCoeff
eraseLead_add_monomial_natDegree_leadingCoeff πŸ“–mathematicalβ€”Polynomial
instAdd
eraseLead
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
natDegree
leadingCoeff
β€”add_comm
monomial_add_erase
eraseLead_add_of_degree_lt_left πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
eraseLead
Polynomial
instAdd
β€”ext
eraseLead_coeff
natDegree_add_eq_left_of_degree_lt
coeff_add
eraseLead_coeff_natDegree
zero_add
coeff_eq_zero_of_degree_lt
lt_of_lt_of_le
degree_le_natDegree
eraseLead_add_of_degree_lt_right πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
eraseLead
Polynomial
instAdd
β€”ext
eraseLead_coeff
natDegree_add_eq_right_of_degree_lt
coeff_add
eraseLead_coeff_natDegree
add_zero
coeff_eq_zero_of_degree_lt
lt_of_lt_of_le
degree_le_natDegree
eraseLead_add_of_natDegree_lt_left πŸ“–mathematicalnatDegreeeraseLead
Polynomial
instAdd
β€”eraseLead_add_of_degree_lt_left
degree_lt_degree
eraseLead_add_of_natDegree_lt_right πŸ“–mathematicalnatDegreeeraseLead
Polynomial
instAdd
β€”eraseLead_add_of_degree_lt_right
degree_lt_degree
eraseLead_coeff πŸ“–mathematicalβ€”coeff
eraseLead
natDegree
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”coeff_erase
eraseLead_coeff_natDegree πŸ“–mathematicalβ€”coeff
eraseLead
natDegree
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eraseLead_coeff
eraseLead_coeff_of_ne πŸ“–mathematicalβ€”coeff
eraseLead
β€”eraseLead_coeff
eraseLead_degree_le πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
eraseLead
β€”degree_erase_le
eraseLead_monomial πŸ“–mathematicalβ€”eraseLead
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
instZero
β€”monomial_zero_right
eraseLead_zero
eraseLead.eq_1
natDegree_monomial
erase_monomial
eraseLead_mul_eq_mul_eraseLead_of_nextCoeff_zero πŸ“–mathematicalnextCoeff
Ring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
eraseLead
Polynomial
instMul
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”MulZeroClass.mul_zero
eraseLead_zero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
pow_one
one_mul
map_neg
RingHomClass.toAddMonoidHomClass
pow_zero
mul_one
card_support_binomial
one_ne_zero
NeZero.one
neg_ne_zero
card_support_mul_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_mul
Mathlib.Tactic.Linarith.mul_nonpos
Nat.cast_one
card_support_le_one_of_eraseLead_eq_zero
Mathlib.Meta.NormNum.isNat_lt_true
Int.instCharZero
card_support_eq_zero
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.natCast_nonneg
Nat.cast_zero
eraseLead_support_card_lt
mul_ne_zero
instNoZeroDivisors
X_sub_C_ne_zero
natDegree_mul
natDegree_X_sub_C
add_comm
two_le_natDegree_of_nextCoeff_eraseLead
nextCoeff.eq_1
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
coeff_X_sub_C_mul
zero_sub
ext
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_eq_zero
sub_eq_zero_of_eq
Nat.cast_add
natDegree_eraseLead_add_one
self_sub_monomial_natDegree_leadingCoeff
coeff_sub
coeff_monomial
LT.lt.ne'
mul_sub
sub_zero
eq_sub_iff_add_eq
add_eq_left
mul_coeff_zero
coeff_X_zero
coeff_C_zero
mul_ite
neg_mul
coeff_eq_zero_of_natDegree_lt
lt_imp_lt_of_le_of_le
eraseLead_natDegree_le
le_refl
add_le_add_right
natDegree_eraseLead_le_of_nextCoeff_eq_zero
natDegree_sub_C
natDegree_X
eraseLead_natDegree_le πŸ“–mathematicalβ€”natDegree
eraseLead
β€”eraseLead_natDegree_lt_or_eraseLead_eq_zero
Nat.instCanonicallyOrderedAdd
eraseLead_natDegree_le_aux πŸ“–mathematicalβ€”natDegree
eraseLead
β€”natDegree_le_natDegree
eraseLead_degree_le
eraseLead_natDegree_lt πŸ“–mathematicalFinset.card
support
natDegree
eraseLead
β€”lt_of_le_of_ne
eraseLead_natDegree_le_aux
ne_natDegree_of_mem_eraseLead_support
natDegree_mem_support_of_nonzero
eraseLead_ne_zero
eraseLead_natDegree_lt_or_eraseLead_eq_zero πŸ“–mathematicalβ€”natDegree
eraseLead
Polynomial
instZero
β€”C_mul_X_pow_eq_self
eraseLead_C_mul_X_pow
eraseLead_natDegree_lt
eraseLead_ne_zero πŸ“–β€”Finset.card
support
β€”β€”card_support_eq_zero
eraseLead_support
LT.lt.ne
LT.lt.trans_le
zero_lt_one
Nat.instZeroLEOneClass
LE.le.trans
tsub_le_tsub_right
Nat.instOrderedSub
Finset.pred_card_le_card_erase
eraseLead_support πŸ“–mathematicalβ€”support
eraseLead
Finset.erase
natDegree
β€”support_erase
eraseLead_support_card_lt πŸ“–mathematicalβ€”Finset.card
support
eraseLead
β€”eraseLead_support
Finset.card_lt_card
Finset.erase_ssubset
natDegree_mem_support_of_nonzero
eraseLead_zero πŸ“–mathematicalβ€”eraseLead
Polynomial
instZero
β€”erase_zero
induction_with_natDegree_le πŸ“–β€”Polynomial
instZero
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
instAdd
natDegree
β€”β€”eraseLead_add_C_mul_X_pow
card_support_eq_zero
card_support_eraseLead'
zero_add
leadingCoeff_ne_zero
zero_ne_one
LT.lt.trans_le
eraseLead_natDegree_lt
LE.le.trans
Eq.ge
le_of_eq
natDegree_C_mul_X_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
natDegree_C_mul_X_pow_le
eraseLead_natDegree_le_aux
leadingCoeff_eq_zero
leadingCoeff_eraseLead_eq_nextCoeff πŸ“–mathematicalβ€”leadingCoeff
eraseLead
nextCoeff
β€”natDegree_pos_of_nextCoeff_ne_zero
leadingCoeff.eq_1
nextCoeff.eq_1
natDegree_eraseLead
ne_of_gt
eraseLead_coeff_of_ne
LT.lt.ne
tsub_lt_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
lt_natDegree_of_mem_eraseLead_support πŸ“–mathematicalFinset
Finset.instMembership
support
eraseLead
natDegreeβ€”LE.le.lt_of_ne
le_natDegree_of_mem_supp
Finset.mem_erase
eraseLead_support
map_natDegree_eq_natDegree πŸ“–β€”natDegree
DFunLike.coe
Polynomial
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”β€”map_natDegree_eq_sub
tsub_zero
Nat.instOrderedSub
map_natDegree_eq_sub πŸ“–β€”DFunLike.coe
Polynomial
instZero
natDegree
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”β€”mono_map_natDegree_eq
tsub_lt_tsub_iff_right
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mono_map_natDegree_eq πŸ“–β€”DFunLike.coe
Polynomial
instZero
natDegree
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”β€”induction_with_natDegree_le
map_zero
AddMonoidHomClass.toZeroHomClass
Nat.instCanonicallyOrderedAdd
natDegree_C_mul_X_pow
C_mul_X_pow_eq_monomial
natDegree_add_eq_right_of_natDegree_lt
map_add
AddMonoidHomClass.toAddHomClass
zero_add
Eq.le
natDegree_eraseLead πŸ“–mathematicalβ€”natDegree
eraseLead
β€”natDegree_pos_of_nextCoeff_ne_zero
LE.le.antisymm
eraseLead_natDegree_le
le_natDegree_of_ne_zero
eraseLead_coeff_of_ne
LT.lt.ne
tsub_lt_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
nextCoeff_of_natDegree_pos
natDegree_eraseLead_add_one πŸ“–mathematicalβ€”natDegree
eraseLead
β€”natDegree_eraseLead
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
natDegree_pos_of_nextCoeff_ne_zero
natDegree_eraseLead_le_of_nextCoeff_eq_zero πŸ“–mathematicalnextCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
natDegree
eraseLead
β€”natDegree_le_pred
eraseLead_natDegree_le
natDegree_eq_zero
nextCoeff_eq_zero
eraseLead_C
natDegree_C
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
eraseLead_coeff_of_ne
LT.lt.ne
tsub_lt_self
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
zero_lt_one
Nat.instZeroLEOneClass
nextCoeff_of_natDegree_pos
natDegree_notMem_eraseLead_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
eraseLead
natDegree
β€”ne_natDegree_of_mem_eraseLead_support
natDegree_pos_of_eraseLead_ne_zero πŸ“–mathematicalβ€”natDegreeβ€”eraseLead_C
eq_C_of_natDegree_eq_zero
ne_natDegree_of_mem_eraseLead_support πŸ“–β€”Finset
Finset.instMembership
support
eraseLead
β€”β€”LT.lt.ne
lt_natDegree_of_mem_eraseLead_support
nextCoeff_eq_zero_of_eraseLead_eq_zero πŸ“–mathematicaleraseLead
Polynomial
instZero
nextCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”leadingCoeff_ne_zero
leadingCoeff_eraseLead_eq_nextCoeff
self_sub_C_mul_X_pow πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
instSub
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
natDegree
eraseLead
β€”C_mul_X_pow_eq_monomial
self_sub_monomial_natDegree_leadingCoeff
self_sub_monomial_natDegree_leadingCoeff πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
instSub
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
natDegree
leadingCoeff
eraseLead
β€”eq_sub_iff_add_eq
eraseLead_add_monomial_natDegree_leadingCoeff
two_le_natDegree_of_nextCoeff_eraseLead πŸ“–mathematicalnextCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
natDegreeβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
natDegree_eq_one
natDegree_eq_zero
eraseLead_C
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
add_zero
eraseLead_C_mul_X
nextCoeff_C_mul_X_add_C

---

← Back to Index