Documentation Verification Report

Defs

šŸ“ Source: Mathlib/Algebra/Polynomial/Eval/Defs.lean

Statistics

MetricCount
DefinitionsIsRoot, decidable, comp, compRingHom, eval, evalRingHom, evalā‚‚, evalā‚‚AddMonoidHom, evalā‚‚RingHom, evalā‚‚RingHom', map, mapRingHom
12
TheoremsC_comp, C_mul_comp, def, dvd, eq_zero, X_comp, X_pow_comp, add_comp, associated_map_map, coe_compRingHom, coe_compRingHom_apply, coe_evalRingHom, coe_evalā‚‚RingHom, coe_mapRingHom, comp_C, comp_X, comp_assoc, comp_eq_sum_left, comp_one, comp_zero, eval_C, eval_C_mul, eval_X, eval_X_pow, eval_add, eval_comp, eval_dvd, eval_eq_sum, eval_eq_zero_of_dvd_of_eval_eq_zero, eval_finset_sum, eval_geom_sum, eval_intCast, eval_listSum, eval_list_prod, eval_map, eval_map_apply, eval_monomial, eval_mul, eval_mul_X, eval_mul_X_pow, eval_multisetSum, eval_multiset_prod, eval_natCast, eval_natCast_mul, eval_neg, eval_ofNat, eval_one, eval_pow, eval_prod, eval_sub, eval_sum, eval_surjective, eval_zero, evalā‚‚AddMonoidHom_apply, evalā‚‚RingHom'_apply, evalā‚‚_C, evalā‚‚_X, evalā‚‚_X_mul, evalā‚‚_X_pow, evalā‚‚_add, evalā‚‚_at_apply, evalā‚‚_at_intCast, evalā‚‚_at_natCast, evalā‚‚_at_ofNat, evalā‚‚_at_one, evalā‚‚_congr, evalā‚‚_def, evalā‚‚_dvd, evalā‚‚_eq_eval_map, evalā‚‚_eq_sum, evalā‚‚_eq_zero_of_dvd_of_evalā‚‚_eq_zero, evalā‚‚_finset_prod, evalā‚‚_finset_sum, evalā‚‚_id, evalā‚‚_list_prod, evalā‚‚_list_prod_noncomm, evalā‚‚_list_sum, evalā‚‚_monomial, evalā‚‚_mul, evalā‚‚_mul_C', evalā‚‚_mul_X, evalā‚‚_mul_eq_zero_of_left, evalā‚‚_mul_eq_zero_of_right, evalā‚‚_mul_noncomm, evalā‚‚_multiset_prod, evalā‚‚_multiset_sum, evalā‚‚_natCast, evalā‚‚_neg, evalā‚‚_ofFinsupp, evalā‚‚_ofNat, evalā‚‚_one, evalā‚‚_pow, evalā‚‚_sub, evalā‚‚_sum, evalā‚‚_zero, intCast_comp, isRoot_comp, isRoot_prod, list_prod_comp, mapRingHom_comp_C, map_C, map_X, map_add, map_comp, map_dvd, map_intCast, map_list_prod, map_monomial, map_mul, map_multiset_prod, map_natCast, map_neg, map_ofNat, map_one, map_pow, map_prod, map_sub, map_sum, map_zero, monomial_comp, mul_X_add_natCast_comp, mul_X_comp, mul_X_pow_comp, mul_X_sub_intCast_comp, mul_comp, mul_comp_neg_X, multiset_prod_comp, natCast_comp, natCast_mul_comp, neg_comp, not_isRoot_C, ofNat_comp, one_comp, pow_comp, prod_comp, root_X_sub_C, root_mul, root_mul_left_of_isRoot, root_mul_right_of_isRoot, root_or_root_of_root_mul, sub_comp, sum_comp, zero_comp
143
Total155

Polynomial

Definitions

NameCategoryTheorems
IsRoot šŸ“–MathDef
65 mathmath: mul_div_eq_iff_isRoot, mul_divByMonic_eq_iff_isRoot, root_X_sub_C, eventually_atBot_not_isRoot, Matrix.mem_spectrum_iff_isRoot_charpoly, not_isRoot_C, HenselianLocalRing.is_henselian, roots_eq_zero_iff_isRoot_eq_bot, Irreducible.subsingleton_isRoot, num_isRoot_scaleRoots_of_aeval_eq_zero, Real.Polynomial.isRoot_cos_pi_div_five, HenselianRing.is_henselian, isRoot_of_aeval_algebraMap_eq_zero, zero_isRoot_of_coeff_zero_eq_zero, Module.End.hasEigenvalue_iff_isRoot_charpoly, IsRoot.def, Irreducible.isRoot_eq_bot_of_natDegree_ne_one, isRoot_cyclotomic_iff_charZero, lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors, IsRealClosed.exists_isRoot_of_odd_natDegree, rootMultiplicity_pos, lt_rootMultiplicity_iff_isRoot_iterate_derivative, Complex.exists_root, isRoot_gcd_iff_isRoot_left_right, LinearMap.hasEigenvalue_zero_tfae, eventually_atTop_not_isRoot, IsCyclotomicExtension.zeta_isRoot, Module.End.isRoot_of_hasEigenvalue, subsingleton_isRoot_of_natDegree_eq_one, one_lt_rootMultiplicity_iff_isRoot_gcd, isRoot_iterate_derivative_of_lt_rootMultiplicity, exists_root_of_degree_eq_one, IsAlgClosed.exists_root, WittVector.RecursionMain.succNthVal_spec, Irreducible.not_isRoot_of_natDegree_ne_one, isRoot_of_mem_roots, mem_roots, mem_roots', zero_isRoot_iff_coeff_zero_eq_zero, Module.End.hasEigenvalue_iff_isRoot, WittVector.RecursionMain.root_exists, LinearRecurrence.geom_sol_iff_root_charPoly, root_mul, isRoot_prod, isRoot_map_iff, roots_eq_zero_iff_eq_zero_or_isRoot_eq_bot, one_lt_rootMultiplicity_iff_isRoot_iterate_derivative, IsPrimitiveRoot.pow_isRoot_minpoly, isRoot_comp, isRoot_cyclotomic_prime_pow_mul_iff_of_charP, IsSepClosed.exists_root, dvd_iff_isRoot, Module.End.mem_spectrum_iff_isRoot_charpoly, LinearMap.not_hasEigenvalue_zero_tfae, rootMultiplicity_pos', one_lt_rootMultiplicity_iff_isRoot, isRoot_of_unity_iff, isRoot_of_isRoot_iff_dvd_derivative_mul, isRoot_cyclotomic_iff, eventually_no_roots, finite_setOf_isRoot, lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors', AdjoinRoot.isRoot_root, isRoot_of_evalā‚‚_map_eq_zero, IsPrimitiveRoot.isRoot_cyclotomic
comp šŸ“–CompOp
129 mathmath: Splits.comp_of_degree_le_one_of_invertible, dickson_one_one_mul, comp_assoc, rootMultiplicity_eq_rootMultiplicity, rootMultiplicity_eq_natTrailingDegree, derivative_comp_one_sub_X, PolynomialModule.comp_smul, descPochhammer_succ_comp_X_sub_one, irreducible_comp, Chebyshev.S_eq_U_comp_half_mul_X, comp_neg_X_eq_zero_iff, chebyshev_U_eq_dickson_two_one, pow_comp, zero_comp, eval_divByMonic_eq_trailingCoeff_comp, Chebyshev.S_comp_two_mul_X, coe_compRingHom_apply, dvd_comp_X_add_C_iff, X_comp, dvd_comp_C_mul_X_add_C_iff, Monic.comp_X_sub_C, Splits.comp_of_map_degree_le_one, expand_eq_comp_X_pow, ascPochhammer_succ_comp_X_add_one, minpoly.sub_algebraMap, natDegree_comp, Matrix.charpoly_sub_scalar, splits_iff_comp_splits_of_natDegree_eq_one, aeval_comp, degree_comp, comp_C_mul_X_eq_zero_iff, ascPochhammer_mul, dickson_one_one_comp_comm, Chebyshev.T_mul, Splits.comp_X_sub_C, comp_C, splits_iff_comp_splits_of_degree_eq_one, natDegree_comp_eq_of_mul_ne_zero, bernsteinPolynomial.flip', list_prod_comp, multiset_prod_comp, sum_comp, taylor_apply, iterate_derivative_comp_one_sub_X, IsPrimitiveRoot.minpoly_sub_one_eq_cyclotomic_comp, Splits.comp_X_add_C, iterate_comp_eval, bernsteinPolynomial.flip, intCast_comp, Gal.restrictComp_surjective, comp_eq_zero_iff, descPochhammer_eq_ascPochhammer, comp_C_mul_X_coeff, descPochhammer_succ_left, comp_neg_X_leadingCoeff_eq, descPochhammer_mul, mul_comp_neg_X, Monic.comp, mul_X_pow_comp, bernoulli_comp_one_add_X, comp_X, derivative_comp, add_comp, natDegree_iterate_comp, leadingCoeff_comp, cyclotomic_prime_pow_comp_X_add_one_isEisensteinAt, eval_comp, minpoly.add_algebraMap, C_comp, comp_one, coe_compRingHom, Gal.splits_in_splittingField_of_comp, dickson_one_one_eq_chebyshev_T, Splits.comp_of_natDegree_le_one, ascPochhammer_eval_comp, chebyshev_T_eq_dickson_one_one, one_comp, IsMonicOfDegree.comp, Monic.comp_X_add_C, mul_X_add_natCast_comp, Chebyshev.C_comp_two_mul_X, comp_eq_aeval, ofNat_comp, smeval_comp, natCast_comp, prod_comp, degree_comp_neg_X, geom_sum_X_comp_X_add_one_eq_sum, LinearMap.charpoly_sub_smul, minpoly.neg, comp_zero, dvd_comp_neg_X_iff, dickson_two_one_eq_chebyshev_U, C_mul_comp, mul_X_comp, Chebyshev.C_eq_two_mul_T_comp_half_mul_X, iterate_comp_evalā‚‚, Chebyshev.T_eq_half_mul_C_comp_two_mul_X, mul_comp, comp_eq_sum_left, dvd_comp_X_sub_C_iff, isRoot_comp, cyclotomic_comp_X_add_one_isEisensteinAt, Chebyshev.C_mul, mul_X_sub_intCast_comp, evalā‚‚_comp, map_comp, neg_comp, comp_X_add_C_eq_zero_iff, Splits.comp_of_natDegree_le_one_of_monic, natCast_mul_comp, Splits.comp_neg_X, natDegree_comp_le, X_pow_comp, bernoulli_comp_one_sub_X, coeff_comp_degree_mul_degree, bernoulli_comp_neg_X, comp_neg_X_comp_neg_X, ascPochhammer_succ_left, Splits.comp_of_degree_le_one_of_monic, smul_comp, monomial_comp, neg_one_pow_mul_shiftedLegendre_comp_one_sub_X_eq, Splits.comp_of_natDegree_le_one_of_invertible, evalā‚‚_comp', sub_comp, X_sub_C_pow_dvd_iff, Monic.neg_one_pow_natDegree_mul_comp_neg_X, Splits.comp_of_degree_le_one
compRingHom šŸ“–CompOp
2 mathmath: coe_compRingHom_apply, coe_compRingHom
eval šŸ“–CompOp
478 mathmath: fderiv, ascPochhammer_ne_zero_eval_zero, Chebyshev.isExtrOn_T_real_iff, Chebyshev.S_two_mul_complex_cos, differentiableWithinAt, taylor_eval, Lagrange.eval_iterate_derivative_eq_sum, mahlerMeasure_def_of_ne_zero, Derivation.apply_eval_eq, ordinaryHypergeometric_sum_eq, bernoulli_eval_one_sub, eval_multiset_prod, Chebyshev.U_eval_zero, bernsteinPolynomial.eval_at_1, isEquivalent_atBot_div, Lagrange.eval_interpolate_not_at_node', resultant_X_add_C_right, Nat.cast_factorial, Lagrange.nodalWeight_eq_eval_nodal_erase_inv, Nat.cast_choose_eq_ascPochhammer_div, eval_minpolyDiv_self, Chebyshev.U_eval_one, Chebyshev.complex_ofReal_eval_S, expNegInvGlue.hasDerivAt_polynomial_eval_inv_mul, aeval_algebraMap_apply_eq_algebraMap_eval, HurwitzZeta.cosZeta_two_mul_nat', Chebyshev.algebraMap_eval_U, one_le_pow_mul_abs_eval_div, eval_prod, div_tendsto_atTop_leadingCoeff_div_of_degree_eq, mem_roots_sub_C', ascPochhammer_succ_eval, div_tendsto_atBot_leadingCoeff_div_of_degree_eq, eval_det_add_X_smul, bernoulli_eval_one, FirstOrder.Field.realize_genericMonicPolyHasRoot, ascPochhammer_eval_one, continuous, cyclotomic_pos', isCoveringMapOn_eval, HurwitzZeta.cosZeta_two_mul_nat, eval_map, Splits.eval_derivative, evalā‚‚_hom, sub_one_pow_totient_le_cyclotomic_eval, toContinuousMap_apply, coeff_zero_eq_eval_zero, eval_minpolyDiv_of_aeval_eq_zero, Lagrange.eval_interpolate_not_at_node, Chebyshev.eval_T_real_node, Chebyshev.complex_ofReal_eval_T, dvd_iterate_derivative_pow, map_sub_roots_sprod_eq_prod_map_eval, Chebyshev.eval_T_real_eq_neg_one_iff, Splits.eval_root_derivative, differentiable_descPochhammer_eval, bernoulli_succ_eval, Nat.cast_ascFactorial, div_tendsto_zero_iff_degree_lt, Chebyshev.integral_T_real_mul_self_measureT_of_ne_zero, Chebyshev.T_eval_zero, aeval_iterate_derivative_self, Chebyshev.eval_T_real_mem_Icc, eval_C, Chebyshev.iterate_derivative_T_eval_one_recurrence, evalā‚‚_id, eval_divByMonic_eq_trailingCoeff_comp, Chebyshev.isLocalMin_T_real, bernoulli_eval_zero, abs_div_tendsto_atTop_of_degree_gt, minpolyDiv_eval_eq_zero_of_ne_of_aeval_eq_zero, Matrix.derivative_det_one_add_X_smul, resultant_X_sub_C_right, cyclotomic.eval_apply_ofReal, descPochhammer_ne_zero_eval_zero, tendsto_atTop_iff_leadingCoeff_nonneg, Lagrange.coeff_eq_sum, cyclotomic_eval_lt_add_one_pow_totient, Splits.eval_derivative_eq_eval_mul_sum, map_rootOfSplits, eval_surjective, bernoulli_eval_one_add, exists_root_of_splits', Chebyshev.T_eval_two_mul_zero, isEquivalent_atTop_lead, ascPochhammer_nat_eq_descFactorial, eval_natCast_map, isLittleO_atTop_of_degree_lt, continuousWithinAt, Matrix.det_eval_matrixOfPolynomials_eq_det_vandermonde, monotoneOn_descPochhammer_eval, Lagrange.eq_interpolate_iff, eval_X, derivative_eval, abs_div_tendsto_atBot_atTop_of_degree_gt, Chebyshev.complex_ofReal_eval_C, Chebyshev.T_eval_neg, Matrix.det_one_add_smul, eval_pow, abs_div_tendsto_atTop_atTop_of_degree_gt, div_tendsto_atTop_of_degree_gt', FirstOrder.Field.lift_genericMonicPoly, Chebyshev.T_real_cos, descPochhammer_eval_div_factorial_le_sum_choose, Lagrange.eval_nodal_at_node, eval_X_pow, eval_derivative_of_splits, tendsto_atBot_iff_leadingCoeff_nonpos, ascPochhammer_eval_zero, mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero, Chebyshev.aeval_T, Chebyshev.U_eval_neg_one, eval_natCast, isClosedMap_eval, ofReal_eval, abs_tendsto_atTop_iff, MvPolynomial.eval_eq_eval_mv_eval', isUnit_iff', Module.reflection_mul_reflection_pow_apply, tendsto_abv_atTop, sub_one_pow_totient_lt_natAbs_cyclotomic_eval, resultant_eq_prod_eval, div_tendsto_atBot_zero_of_degree_lt, sub_one_lt_natAbs_cyclotomic_eval, abs_tendsto_atTop, descPochhammer_eval_cast, HurwitzZeta.hurwitzZeta_neg_nat, Chebyshev.isLocalMax_T_real, sum_range_pow_eq_bernoulli_sub, comp_C, bernsteinPolynomial.iterate_derivative_at_1_eq_zero_of_lt, eval_monomial_one_add_sub, Chebyshev.S_two_mul_real_cos, fwdDiff_iter_degree_add_one_eq_zero, FiniteField.card_image_polynomial_eval, PadicInt.norm_ascPochhammer_le, cfc_map_polynomial, ordinaryHypergeometricSeries_apply_eq', IsRoot.def, derivWithin, Chebyshev.T_eval_one, intervalIntegrable_mahlerMeasure, preHilbertPoly_eq_choose_sub_add, Lagrange.eval_nodal, abs_tendsto_atBot_iff, continuousOn, bernoulli_eval_neg, Chebyshev.T_complex_cosh, Chebyshev.C_two_mul_complex_cosh, eval_derivative_eq_eval_mul_sum_of_splits, evalEvalRingHom_apply, Chebyshev.abs_eval_T_real_le_one, Splits.eval_derivative_div_eval_of_ne_zero, ascPochhammer_nat_eq_natCast_descFactorial, Module.End.aeval_apply_of_hasEigenvector, eval_dvd, descPochhammer_eval_le_sum_descFactorial, HurwitzZeta.hurwitzZetaOdd_neg_two_mul_nat, exists_polynomial_near_of_continuousOn, iterate_comp_eval, Module.reflection_mul_reflection_pow, isBigO_atBot_of_degree_le, monotoneOn_deriv_descPochhammer_eval, Lagrange.eval_basisDivisor_right, eval_homogenize, quotientSpanXSubCAlgEquiv_mk, isProperMap_eval, eval_mul, eval_list_prod, Chebyshev.algebraMap_eval_C, Chebyshev.S_two_mul_real_cosh, Chebyshev.iterate_derivative_T_eval_zero_recurrence, Chebyshev.one_lt_abs_eval_T_real, fwdDiff_iter_eq_zero_of_degree_lt, Matrix.eval_charpolyRev, hasFDerivAt, hasSum_one_div_nat_pow_mul_cos, ascPochhammer_eval_eq_zero_iff, Chebyshev.aeval_S, cyclotomic_pos_and_nonneg, algebraMap_pi_self_eq_eval, evalā‚‚_at_natCast, Lagrange.eq_interpolate, map_sub_sprod_roots_eq_prod_map_eval, isBigO_of_degree_le, expNegInvGlue.tendsto_polynomial_inv_mul_zero, eval_intCast_map, Lagrange.leadingCoeff_eq_sum, Asymptotics.SuperpolynomialDecay.mul_polynomial, Splits.eval_eq_prod_roots_of_monic, smul_eval_smul, comp_eq_zero_iff, taylor_coeff_zero, ordinaryHypergeometric_eq_tsum, tendsto_norm_atTop, exists_forall_norm_le, descPochhammer_nonneg, isEquivalent_atTop_div, Chebyshev.U_eval_zero_of_odd, Nat.cast_choose_eq_descPochhammer_div, resultant_X_sub_C_pow_left, convexOn_descPochhammer_eval, eval_iterate_derivative_rootMultiplicity, SModEq.eval, logMahlerMeasure_def, Chebyshev.C_eval_two, Chebyshev.integral_eval_T_real_measureT_zero, eval_zero, div_tendsto_atBot_of_degree_gt, eval_one_cyclotomic_prime_pow, eval_eq_prod_roots_sub_of_splits_id, Chebyshev.derivative_U_eval_one, resultant_X_sub_C_pow_right, X_sub_C_dvd_sub_C_eval, spectrum.exists_mem_of_not_isUnit_aeval_prod, isEquivalent_atBot_lead, coeff_mul_invOneSubPow_eq_hilbertPoly_eval, HurwitzZeta.hurwitzZetaEven_one_sub_two_mul_nat, Chebyshev.iterate_derivative_U_eval_zero_recurrence, ordinaryHypergeometricSeries_apply_eq, Chebyshev.U_real_cos, evalā‚‚_at_intCast, spectrum.map_polynomial_aeval_of_nonempty, expand_zero, HurwitzZeta.sinZeta_two_mul_nat_add_one', eval_one_map, div_tendsto_leadingCoeff_div_of_degree_eq, LinearMap.eval_charpoly, eval_derivative_div_eval_of_ne_zero_of_splits, Chebyshev.one_sub_X_sq_mul_iterate_derivative_U_eval, Splits.eval_eq_prod_roots, Chebyshev.isMinOn_T_real, eval_C_X_evalā‚‚_map_C_X, IsPrimitiveRoot.sub_one_norm_eq_eval_cyclotomic, eval_finset_sum, sub_dvd_eval_sub, Chebyshev.isLocalExtr_T_real_iff, Module.reflection_mul_reflection_pow_apply_self, ascPochhammer_nat_eval_succ, tendsto_atBot_of_leadingCoeff_nonpos, MulSemiringAction.eval_charpoly, Algebra.Norm.Transitivity.eval_zero_comp_det, tendsto_nhds_iff, mem_roots_sub_C, descPochhammer_int_eq_ascFactorial, differentiableOn, Chebyshev.U_eval_two_mul_zero, eval_intCast, AnalyticOnNhd.eval_polynomial, cyclotomic.eval_apply, evalā‚‚_at_one, resultant_X_add_C_left, ascPochhammer_eval_neg_coe_nat_of_lt, eval_comp, Chebyshev.integral_eval_T_real_mul_eval_T_real_measureT, bernsteinPolynomial.iterate_derivative_succ_at_0_eq_zero, Lagrange.eval_basis_of_ne, eval_map_apply, Chebyshev.U_complex_cosh, eval_det, sum_sq_norm_coeff_eq_circleAverage, cfc_eval_C, div_tendsto_atTop_of_degree_gt, Chebyshev.iterate_derivative_U_eval_one_recurrence, descPochhammer_eval_eq_descFactorial, Lagrange.eval_basisDivisor_left_of_ne, eval_one_cyclotomic_not_prime_pow, ascPochhammer_pos, isBoundedUnder_abs_atBot_iff, WeierstrassCurve.Affine.equation_add_iff, eval_listSum, eval_mul_X_pow, spectrum.subset_polynomial_aeval, eval_one_cyclotomic_prime, Chebyshev.isMaxOn_T_real, comp_one, eval_eq_prod_roots_sub_of_monic_of_splits_id, Chebyshev.T_complex_cos, eval_natCast_mul, Chebyshev.algebraMap_eval_T, aeval_derivative_of_splits, exists_root_of_splits, eval_zero_map, eval_eq_sum_range', LindemannWeierstrass.integral_exp_mul_eval, eval_sumIDeriv_of_pos, aeval_continuousMap_apply, Chebyshev.U_eval_neg, Chebyshev.integral_eval_T_real_measureT_of_ne_zero, expNegInvGlue.continuous_polynomial_eval_inv_mul, cfc_polynomial, Chebyshev.iterate_derivative_U_eval_one, ascPochhammer_eval_comp, FiniteField.exists_root_sum_quadratic, HurwitzZeta.sinZeta_two_mul_nat_add_one, tendsto_atTop_of_leadingCoeff_nonneg, Chebyshev.S_two_mul_complex_cosh, descPochhammer_eval_coe_nat_of_lt, spectrum.map_polynomial_aeval_of_degree_pos, mirror_eval_one, taylor_coeff_one, Chebyshev.C_eval_neg_two, Matrix.eval_charpoly, fderivWithin, hasDerivAt, pow_le_descPochhammer_eval, Chebyshev.T_real_cosh, matPolyEquiv_eval_eq_map, eval_eq_sum_degreeLTEquiv, modByMonic_X_sub_C_eq_C_eval, Chebyshev.T_eval_zero_of_even, eval_eq_sum, aeval_sumIDeriv_eq_eval, eval_add, isBoundedUnder_abs_atTop_iff, leval_apply, isOpenQuotientMap_eval, descPochhammer_pos, Chebyshev.one_le_abs_eval_T_real, Module.reflection_mul_reflection_zpow_apply_self, expNegInvGlue.contDiff_polynomial_eval_inv_mul, aeval_ofReal, aeval_root_derivative_of_splits, Chebyshev.aeval_C, C_eq_or_isOpenQuotientMap_eval, MvPolynomial.eval_toMvPolynomial, taylor_eval_sub, Chebyshev.aeval_U, cyclotomic_nonneg, hasSum_one_div_nat_pow_mul_sin, mod_X_sub_C_eq_C_eval, div_tendsto_atBot_zero_iff_degree_lt, Chebyshev.complex_ofReal_eval_U, PolynomialModule.eval_smul, hasStrictDerivAt, Module.reflection_mul_reflection_zpow_apply, descPochhammer_eval_eq_ascPochhammer, descPochhammer_eval_eq_prod_range, Chebyshev.one_lt_eval_T_real, Chebyshev.U_complex_cos, differentiableAt, ascPochhammer_zero_eval_zero, ascPochhammer_nat_eq_natCast_ascFactorial, eval_one, abs_tendsto_atBot, PolynomialModule.comp_eval, modByMonic_X, map_rootOfSplits', eval_sum, Chebyshev.C_two_mul_complex_cos, ascPochhammer_eval_succ, eval_mul_X_sub_C, MvPolynomial.polynomial_eval_evalā‚‚, div_tendsto_atTop_zero_of_degree_lt, IsAlgClosed.eval_surjective, Chebyshev.one_le_eval_T_real, comp_zero, deriv, div_tendsto_zero_of_degree_lt, Real.iter_deriv_rpow_const, fwdDiff_iter_degree_eq_factorial, Chebyshev.eval_T_real_eq_one_iff, matPolyEquiv_symm_map_eval, evalā‚‚_at_apply, Chebyshev.U_real_cosh, Chebyshev.algebraMap_eval_S, evalā‚‚_derivative_of_splits, bernsteinPolynomial.eval_at_0, abs_isBoundedUnder_iff, ascPochhammer_smeval_eq_eval, Chebyshev.iterate_derivative_U_eval_one_eq_div, Splits.exists_eval_eq_zero, eval_map_algebraMap, Algebra.Norm.Transitivity.eval_zero_det_det, Chebyshev.iterate_derivative_T_eval_one, eval_eq_sum_range, ascPochhammer_eval_cast, Lagrange.eval_interpolate_at_node, matPolyEquiv_eval, eval_smul, Lagrange.interpolate_poly_eq_self, taylor_coeff, eval_ofNat, cyclotomic_eval_le_add_one_pow_totient, eval_neg, expand_eval, continuousAt, descPochhammer_succ_eval, Chebyshev.integral_eval_T_real_mul_eval_T_real_measureT_of_ne, eval_eq_smeval, evalEval_map_C, isRoot_comp, continuous_descPochhammer_eval, eval_mul_X, differentiable, Chebyshev.S_eval_two, IsRoot.eq_zero, deriv_descPochhammer_eval_eq_sum_prod_range_erase, coe_aeval_eq_eval, Asymptotics.SuperpolynomialDecay.polynomial_mul, sub_one_pow_totient_lt_cyclotomic_eval, Chebyshev.one_lt_negOnePow_mul_eval_T_real, eval_add_of_sq_eq_zero, isLittleO_atBot_of_degree_lt, smul_eval, eval_multisetSum, Chebyshev.integral_eval_T_real_mul_self_measureT_zero, ascPochhammer_nat_eq_ascFactorial, Chebyshev.one_le_negOnePow_mul_eval_T_real, Chebyshev.T_eval_neg_one, Chebyshev.isLocalExtr_T_real, evalā‚‚_at_ofNat, Lagrange.eval_nodal_derivative_eval_node_eq, Chebyshev.isExtrOn_T_real, resultant_X_sub_C_left, map_mapRingHom_eval_map, AnalyticOn.eval_polynomial, descPochhammer_zero_eval_zero, dickson_one_one_eval_add_inv, descPochhammer_eval_zero, eval_rootOfSplits, tendsto_div_exp_atTop, bernsteinPolynomial.iterate_derivative_at_0_eq_zero_of_lt, bernsteinPolynomial.iterate_derivative_at_0, Chebyshev.derivative_U_eval_one_eq_div, hasFDerivWithinAt, MvPolynomial.optionEquivLeft_elim_eval, Lagrange.eval_basis_self, preimage_eval_singleton, map_mapRingHom_eval_map_eval, polynomial_smul_apply, Chebyshev.S_eval_neg_two, Chebyshev.abs_eval_T_real_le_one_iff, eval_sub, cfc_eval_X, spectrum.map_polynomial_aeval, evalEval_C, evalā‚‚_eq_eval_map, map_evalRingHom_eval, scaleRoots_eval_mul, div_tendsto_atTop_zero_iff_degree_lt, expNegInvGlue.differentiable_polynomial_eval_inv_mul, Matrix.derivative_det_one_add_X_smul_aux, hasDerivWithinAt, bernoulli_three_eval_one_quarter, Matrix.eval_matrixOfPolynomials_eq_vandermonde_mul_matrixOfPolynomials, prodXSubSMul.eval, cyclotomic_pos, Chebyshev.one_sub_X_sq_mul_iterate_derivative_T_eval, eval_smul', ascPochhammer_evalā‚‚, Chebyshev.iterate_derivative_T_eval_one_eq_div, Chebyshev.derivative_T_eval_one, LindemannWeierstrass.hasDerivAt_cexp_mul_sumIDeriv, Module.reflection_mul_reflection_mul_reflection_pow_apply_self, coe_evalRingHom, eval_C_mul, Module.reflection_mul_reflection_mul_reflection_zpow_apply_self, Module.reflection_mul_reflection_zpow, Chebyshev.C_two_mul_real_cos, ascPochhammer_eval_neg_eq_descPochhammer, Nat.cast_descFactorial, Chebyshev.abs_eval_T_real_eq_one_iff, div_tendsto_atBot_of_degree_gt', Chebyshev.U_eval_zero_of_even, Chebyshev.eval_T_real_cos_int_mul_pi_div, eval_multiset_prod_X_sub_C_derivative, bernsteinPolynomial.iterate_derivative_at_1, Lagrange.nodalWeight_eq_eval_derivative_nodal, isBigO_atTop_of_degree_le, eval_geom_sum, Chebyshev.C_two_mul_real_cosh, Lagrange.eval_basis_not_at_node, eval_monomial, factorial_mul_ascPochhammer, Chebyshev.T_eval_zero_of_odd, aeval_sumIDeriv_of_pos, MvPolynomial.eval_polynomial_eval_finSuccEquiv
evalRingHom šŸ“–CompOp
14 mathmath: ker_evalRingHom, AdjoinRoot.evalEval_apply, MvPolynomial.eval_comp_toMvPolynomial, evalEvalRingHom_eq, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_map_eval, evalRingHom_mapMatrix_comp_polyToMatrix, evalRingHom_mapMatrix_comp_compRingEquiv, evalRingHom_zero, evalā‚‚_evalRingHom, eval_C_X_comp_evalā‚‚_map_C_X, MvPolynomial.polynomial_eval_evalā‚‚, coe_aeval_eq_evalRingHom, map_evalRingHom_eval, coe_evalRingHom
evalā‚‚ šŸ“–CompOp
106 mathmath: evalā‚‚_C_X_eq_coe, evalā‚‚_one_cyclotomic_prime, evalā‚‚_finset_prod, evalā‚‚_multiset_prod, evalā‚‚_intCastRingHom_X, evalā‚‚_minpolyDiv_self, evalā‚‚_homogenize_of_eq_one, tendsto_abv_evalā‚‚_atTop, MvPolynomial.pUnitAlgEquiv_symm_apply, eval_map, FixedPoints.minpoly.evalā‚‚', evalā‚‚_hom, evalā‚‚_mul_X, evalā‚‚_X_pow, PowerSeries.evalā‚‚_coe, evalā‚‚_one, evalā‚‚_restriction, evalā‚‚_zero, evalā‚‚_id, scaleRoots_evalā‚‚_mul, evalā‚‚_reflect_eq_zero_iff, evalā‚‚_ofFinsupp, evalā‚‚_monomial, IsAlgClosed.exists_evalā‚‚_eq_zero_of_injective, evalā‚‚_finset_sum, evalā‚‚_list_sum, hom_evalā‚‚, MvPolynomial.evalā‚‚_const_pUnitAlgEquiv_symm, evalā‚‚_mul', evalā‚‚_list_prod, evalā‚‚_dvd, evalā‚‚_natCast, scaleRoots_evalā‚‚_mul_of_commute, mem_roots_map_of_injective, evalā‚‚_sum, evalā‚‚_reflect_mul_pow, evalā‚‚_C_X, evalā‚‚_sub, evalā‚‚_map, evalā‚‚_at_natCast, eval_unique, int_evalā‚‚_eq, aeval_def, evalā‚‚_def, evalā‚‚_at_intCast, evalā‚‚_mul_C', eval_C_X_evalā‚‚_map_C_X, evalā‚‚_mul, evalā‚‚_at_one, evalā‚‚_evalRingHom, IsAlgClosed.exists_evalā‚‚_eq_zero, evalā‚‚_congr, LaurentPolynomial.evalā‚‚_toLaurent, evalā‚‚_at_zero, AdjoinRoot.evalā‚‚_root, derivative_evalā‚‚_C, ascPochhammer_eval_comp, coe_expand, MvPolynomial.evalā‚‚_const_pUnitAlgEquiv, evalā‚‚RingHom'_apply, evalā‚‚_pow, root_gcd_iff_root_left_right, IsSepClosed.exists_evalā‚‚_eq_zero_of_injective, evalā‚‚_X, evalā‚‚_X_mul, evalā‚‚AddMonoidHom_apply, mem_roots_map, polyEquivTensor_apply, MvPolynomial.evalā‚‚_pUnitAlgEquiv_symm, evalā‚‚_neg, evalā‚‚_C, evalā‚‚_pow', evalā‚‚_at_apply, integralNormalization_evalā‚‚_leadingCoeff_mul_of_commute, iterate_comp_evalā‚‚, algHom_evalā‚‚_algebraMap, evalā‚‚_multiset_sum, PowerSeries.evalā‚‚_trunc_eq_sum_range, evalā‚‚_eq_sum_range, evalā‚‚_ofNat, evalā‚‚_one_cyclotomic_prime_pow, evalā‚‚_reverse_mul_pow, evalā‚‚_comp, evalā‚‚_at_ofNat, ringHom_evalā‚‚_intCastRingHom, evalā‚‚AlgHom'_apply, evalā‚‚_eq_sum, evalā‚‚_eq_sum_range', evalā‚‚_smul, MvPolynomial.evalā‚‚_pUnitAlgEquiv, continuous_evalā‚‚, coe_evalā‚‚RingHom, evalā‚‚_eq_eval_map, FixedPoints.minpoly.evalā‚‚, ascPochhammer_evalā‚‚, evalā‚‚_list_prod_noncomm, IsSepClosed.exists_evalā‚‚_eq_zero, evalā‚‚_evalā‚‚RingHom_apply, evalā‚‚_mul_noncomm, evalā‚‚_comp', RatFunc.eval_algebraMap, evalā‚‚_algebraMap_X, integralNormalization_evalā‚‚_leadingCoeff_mul, evalā‚‚_reverse_eq_zero_iff, evalā‚‚_add, evalā‚‚_smulOneHom_eq_smeval
evalā‚‚AddMonoidHom šŸ“–CompOp
1 mathmath: evalā‚‚AddMonoidHom_apply
evalā‚‚RingHom šŸ“–CompOp
7 mathmath: evalā‚‚RingHom_evalā‚‚RingHom, AdjoinRoot.evalEval_apply, evalEvalRingHom_eq, eval_C_X_comp_evalā‚‚_map_C_X, coe_evalā‚‚RingHom, Ideal.evalā‚‚_C_mk_eq_zero, evalā‚‚_evalā‚‚RingHom_apply
evalā‚‚RingHom' šŸ“–CompOp
1 mathmath: evalā‚‚RingHom'_apply
map šŸ“–CompOp
374 mathmath: degree_map_le, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', WeierstrassCurve.map_Ļˆā‚‚, WeierstrassCurve.baseChange_ĪØSq, map_dickson, nextCoeff_map, map_one, homogenize_map, WeierstrassCurve.map_ĪØā‚‚Sq, Matrix.charpoly.univ_map_map, HurwitzZeta.cosZeta_two_mul_nat', Ideal.exists_mem_span_singleton_map_residueField_eq, WeierstrassCurve.map_φ, one_le_pow_mul_abs_eval_div, eq_rootMultiplicity_map, card_roots_le_map, lifts_and_degree_eq_and_monic, leadingCoeff_map', IsPrimitiveRoot.minpoly_dvd_pow_mod, PolynomialModule.map_smul, fiberEquivQuotient_tmul, aeval_map_algebraMap, map_mul, WeierstrassCurve.baseChange_preĪØ, Matrix.charpoly_map, map_div, monic_map_iff, coeff_map, HurwitzZeta.cosZeta_two_mul_nat, WeierstrassCurve.map_ĪØ, sum_smul_minpolyDiv_eq_X_pow, eval_map, IsDistinguishedAt.map_eq_X_pow, Normal.splits', PowerBasis.quotientEquivQuotientMinpolyMap_apply, sumIDeriv_map, map_injective_iff, WeierstrassCurve.baseChange_preĪØā‚„, map_modByMonic, Splits.roots_map_of_injective, matPolyEquiv_map_smul, roots_map_of_injective_of_card_eq_natDegree, ConjRootClass.minpoly.map_eq_prod, WeierstrassCurve.Affine.map_polynomialY, map_dvd, splits_map_iff, count_map_roots, map_list_prod, IsPrimitive.isUnit_iff_isUnit_map_of_injective, IsPrimitiveRoot.is_roots_of_minpoly, map_surjective, UniversalCoprimeFactorizationRing.homEquiv_comp_snd, isUnit_map, AdjoinRoot.quotEquivQuotMap_symm_apply_mk, eval_natCast_map, WeierstrassCurve.baseChange_ĪØā‚‚Sq, int_coeff_of_cyclotomic', map_expand, mapEquiv_symm_apply, Gal.restrictDvd_def, unique_int_coeff_of_cycl, map_mod, integralNormalization_map, reflect_map, Cubic.splits_iff_card_roots, card_roots_map_le_degree, natDegree_map_eq_iff, IsAlgClosed.splits_codomain, le_rootMultiplicity_map, IsLocalization.integerNormalization_map_to_map, WeierstrassCurve.Affine.map_linePolynomial, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, WeierstrassCurve.baseChange_preĪØ', Normal.splits, degree_map_eq_of_isUnit_leadingCoeff, map_monomial, WeierstrassCurve.baseChange_Ļˆā‚‚, WeierstrassCurve.Affine.baseChange_negPolynomial, IsAlgClosed.card_roots_map_eq_natDegree_of_isUnit_leadingCoeff, MvPolynomial.eval_eq_eval_mv_eval', PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, LinearMap.polyCharpoly_baseChange, AdjoinRoot.mul_div_root_cancel, minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow, LinearMap.polyCharpolyAux_map_eval, aroots_map, IsNormalClosure.splits, mem_roots_map_of_injective, AdjoinRoot.aeval_eq_of_algebra, natDegree_map, minpoly.map_eq_of_isSeparable_of_isPurelyInseparable, HurwitzZeta.hurwitzZeta_neg_nat, minpoly.frobenius_of_isSeparable, map_pow, int_cyclotomic_rw, map_taylor, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_map_eval, UniversalCoprimeFactorizationRing.homEquiv_comp_fst, IsPrimitive.irreducible_iff_irreducible_map_fraction_map, leadingCoeff_map_eq_of_isUnit_leadingCoeff, bUnion_roots_finite, natSepDegree_map, WeierstrassCurve.Affine.map_negPolynomial, IsCyclotomicExtension.splits_cyclotomic, count_map_roots_of_injective, map_contract, minpoly.isIntegrallyClosed_eq_field_fractions, exists_dvd_map_of_isAlgebraic, coeff_map_eq_comp, mem_lifts, associated_map_map, WeierstrassCurve.baseChange_φ, AdjoinRoot.quotEquivQuotMap_apply, map_add, splits_comp_of_splits, Separable.map_irreducible_of_isPurelyInseparable, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, IsAlgClosed.card_roots_map_eq_natDegree_from_simpleRing, descPochhammer_map, natDegree_map_lt', HurwitzZeta.hurwitzZetaOdd_neg_two_mul_nat, IsCyclotomicExtension.splits_X_pow_sub_one, map_X, aeval_X_left_eq_map, map_ofNat, Irreducible.exists_dvd_monic_irreducible_of_isIntegral, map_injective, one_le_mahlerMeasure_of_ne_zero, degree_map_eq_of_leadingCoeff_ne_zero, hasSum_one_div_nat_pow_mul_cos, IsSplittingField.splits, IsSplittingField.splits', StandardEtalePair.map_g, map_intCast, smul_eq_map, evalā‚‚_map, map_id, map_roots_le, mapAlg_eq_map, Splits.roots_map, natDegree_map_eq_of_isUnit_leadingCoeff, Function.Injective.monic_map_iff, IsPrimitive.Int.irreducible_iff_irreducible_map_cast, eval_intCast_map, WeierstrassCurve.baseChange_Φ, IsSepClosed.splits_domain, IsPrimitiveRoot.minpoly_dvd_mod_p, SplittingField.splits, splits_id_iff_splits, UniversalFactorizationRing.monicDegreeEq_coe, StandardEtalePair.map_f, LinearMap.polyCharpolyAux_map_eq_charpoly, ascPochhammer_map, Cubic.splits_iff_roots_eq_three, WeierstrassCurve.Affine.CoordinateRing.map_mk, IsPrimitiveRoot.separable_minpoly_mod, map_mapRingHom_evalEval, FiniteField.splits_X_pow_nat_card_sub_X, ConjRootClass.splits_minpoly, WeierstrassCurve.map_Φ, WeierstrassCurve.map_preĪØ', AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, AlgebraicClosure.Monics.splits_finsetProd, HurwitzZeta.hurwitzZetaEven_one_sub_two_mul_nat, HurwitzZeta.sinZeta_two_mul_nat_add_one', eval_one_map, sylvester_map_map, WeierstrassCurve.Affine.baseChange_addPolynomial, AdjoinRoot.quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, map_roots_le_of_injective, Bivariate.swap_map_C, IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree, minpoly.dvd_map_of_isScalarTower, degree_map_eq_of_injective, map_prod, WeierstrassCurve.baseChange_ĪØ, filter_roots_map_range_eq_map_roots, WeierstrassCurve.Affine.map_polynomial, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, derivativeFinsupp_map, monomial_mem_lifts_and_degree_eq, gcd_map, Separable.map, map_restriction, WeierstrassCurve.Affine.baseChange_polynomialX, LinearMap.polyCharpolyAux_baseChange, leadingCoeff_map_of_injective, AdjoinRoot.Polynomial.quotQuotEquivComm_mk, PerfectField.splits_of_natSepDegree_eq_one, eval_map_apply, contentIdeal_map_eq_map_contentIdeal, MonicDegreeEq.map_coe, minpoly.map_algebraMap, card_roots_map_le_natDegree, WeierstrassCurve.map_ĪØSq, IsPrimitive.Int.dvd_iff_map_cast_dvd_map_cast, coe_mapRingHom, LinearMap.polyCharpoly_eq_of_basis, PolyEquivTensor.toFunAlgHom_apply_tmul_eq_smul, Algebra.IsAlgebraic.isNormalClosure_iff, LinearMap.polyCharpolyAux_map_aeval, MulSemiringActionHom.coe_polynomial, Monic.natDegree_map, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, Gal.splits_in_splittingField_of_comp, minpoly.ofSubring, normal_iff, map_expand_pow_char, Ideal.polynomialQuotientEquivQuotientPolynomial_symm_mk, WeierstrassCurve.Affine.baseChange_polynomial, eval_zero_map, nextCoeff_map_eq, roots_map_of_map_ne_zero_of_card_eq_natDegree, IsPrimitiveRoot.squarefree_minpoly_mod, AlgebraicClosure.Monics.map_eq_prod, minpoly.dvd_map_of_isScalarTower', IsAlgClosed.card_roots_map_eq_natDegree_of_injective, map_zero, FiniteField.splits_X_pow_card_sub_X, WeierstrassCurve.baseChange_ψ, Chebyshev.map_C, polynomial_expand_eq, ascPochhammer_eval_comp, resultant_map_map, HurwitzZeta.sinZeta_two_mul_nat_add_one, map_smul, IsSepClosed.splits_codomain, map_cyclotomic_int, natDegree_map_of_leadingCoeff_ne_zero, nextCoeff_map_of_leadingCoeff_ne_zero, IntermediateField.isSplittingField_iff, Chebyshev.map_T, Splits.map_roots, aeval_sumIDeriv_eq_eval, Monic.roots_map_of_card_eq_natDegree, WeierstrassCurve.map_preĪØ, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, SplittingFieldAux.splits, mem_roots_map, LinearMap.polyCharpoly_map_eq_charpoly, WeierstrassCurve.map_ĪØā‚ƒ, PolyEquivTensor.toFunBilinear_apply_eq_smul, support_map_subset, splits_of_splits_id, hasSum_one_div_nat_pow_mul_sin, IsAlgClosed.card_roots_map_eq_natDegree_of_leadingCoeff_ne_zero, natDegree_map_le, degree_map_eq_iff, mem_lifts_and_degree_eq, AdjoinRoot.Polynomial.quotQuotEquivComm_symm_mk_mk, Bivariate.swap_C, map_sub, Matrix.charmatrix_map, IsPurelyInseparable.minpoly_eq_X_sub_C_pow, map_sum, WeierstrassCurve.Affine.map_polynomialX, minpolyDiv_spec, leadingCoeff_map_of_leadingCoeff_ne_zero, WeierstrassCurve.map_preĪØā‚„, eval_map_algebraMap, map_cyclotomic, AdjoinRoot.quotEquivQuotMap_symm_apply, IsWeaklyEisensteinAt.map, isIntegrallyClosed_iff', Ring.DirectLimit.Polynomial.exists_of, Normal.out, expand_char, Matrix.charpoly.univ_map_evalā‚‚Hom, isRoot_map_iff, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, card_roots_le_map_of_injective, MvPolynomial.finSuccEquiv_rename_finSuccEquiv, map_neg, map_eq_zero_iff, IntermediateField.adjoin_minpoly_coeff_of_exists_primitive_element, map_dvd_map, MvPolynomial.universalFactorizationMap_freeMonic, IsPrimitiveRoot.pow_isRoot_minpoly, evalEval_map_C, natDegree_map_eq_of_injective, map_frobenius_expand, leadingCoeff_map, degree_map, map_eq_zero, isCoprime_map, X_sub_C_mul_removeFactor, map_toSubring, bernsteinPolynomial.map, Cubic.map_roots, Monic.dvd_iff_fraction_map_dvd_fraction_map, derivative_map, map_C, WeierstrassCurve.Affine.map_addPolynomial, leadingCoeff_of_injective, map_comp, Splits.map, cyclotomic_mahlerMeasure_eq_one, lifts_iff_set_range, map_map, minpoly.iterateFrobenius_of_isSeparable, Monic.exists_splits_map, map_monic_eq_zero_iff, map_multiset_prod, map_mapRingHom_eval_map, MvPolynomial.coeff_eval_eq_eval_coeff, lifts_and_natDegree_eq_and_monic, Ideal.polynomialQuotientEquivQuotientPolynomial_map_mk, WeierstrassCurve.Affine.baseChange_polynomialY, map_surjective_iff, Monic.map, MvPolynomial.universalFactorizationMapPresentation_jacobiMatrix, mul_star_dvd_of_aeval_eq_zero_im_ne_zero, Chebyshev.map_U, iterate_derivative_map, Cubic.map_toPoly, WeierstrassCurve.map_ψ, Monic.irreducible_iff_irreducible_map_fraction_map, Splits.roots_map_of_ne_zero, map_natCast, MvPolynomial.optionEquivLeft_elim_eval, IsPrimitive.isUnit_iff_isUnit_map, degree_map_lt, mapEquiv_apply, map_mapRingHom_eval_map_eval, finite_mahlerMeasure_le, WeierstrassCurve.Affine.CoordinateRing.map_smul, aroots_def, map_map_freeMonic, matPolyEquiv_smul_one, evalā‚‚_eq_eval_map, PowerSeries.trunc_map, Gal.splits_ā„š_ā„‚, map_dvd_map', map_evalRingHom_eval, map_divByMonic, nextCoeff_map_eq_of_isUnit_leadingCoeff, IsGalois.splits, IsAlgClosed.splits_domain, Monic.degree_map, polynomial_map_coe, support_map_of_injective, isSplittingField_iff_intermediateField, map_aeval_eq_aeval_map, residueFieldMapCAlgEquiv_algebraMap, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_mk_of, natDegree_map_lt, WeierstrassCurve.baseChange_ĪØā‚ƒ, minpoly.map_eq_of_equiv_equiv, IsSplittingField.map, map_scaleRoots, LinearMap.charpoly_baseChange, separable_map, polyEquivTensor_symm_apply_tmul_eq_smul, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, roots_map, evalā‚‚_evalā‚‚RingHom_apply, IsPrimitive.dvd_iff_fraction_map_dvd_fraction_map, Chebyshev.map_S, coe_mapAlgHom, IsRoot.map, card_mahlerMeasure_le_prod, map_iterateFrobenius_expand, map_normalize, map_mod_divByMonic, AdjoinRoot.isRoot_root, MvPolynomial.universalFactorizationMapPresentation_jacobian, minpoly.isIntegrallyClosed_eq_field_fractions', coe_mapAlgEquiv, MvPolynomial.coe_mapEquivMonic_comp, LinearMap.polyCharpolyAux_map_eq_toMatrix_charpoly, isIntegral_isLocalization_polynomial_quotient, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply, int_cyclotomic_spec
mapRingHom šŸ“–CompOp
40 mathmath: WeierstrassCurve.map_Ļˆā‚‚, ker_mapRingHom, Ideal.exists_mem_span_singleton_map_residueField_eq, WeierstrassCurve.map_φ, fiberEquivQuotient_tmul, WeierstrassCurve.map_ĪØ, WeierstrassCurve.Affine.map_polynomialY, evalā‚‚RingHom_evalā‚‚RingHom, Ideal.injective_quotient_le_comap_map, algebraMap_def, WeierstrassCurve.baseChange_Ļˆā‚‚, WeierstrassCurve.Affine.baseChange_negPolynomial, WeierstrassCurve.Affine.map_negPolynomial, WeierstrassCurve.baseChange_φ, lifts_iff_ringHom_rangeS, WeierstrassCurve.Affine.CoordinateRing.map_mk, map_mapRingHom_evalEval, mapRingHom_comp_C, eval_C_X_evalā‚‚_map_C_X, WeierstrassCurve.baseChange_ĪØ, WeierstrassCurve.Affine.map_polynomial, WeierstrassCurve.Affine.baseChange_polynomialX, coe_mapRingHom, WeierstrassCurve.Affine.baseChange_polynomial, WeierstrassCurve.baseChange_ψ, mem_map_range, eval_C_X_comp_evalā‚‚_map_C_X, WeierstrassCurve.Affine.map_polynomialX, PrimeSpectrum.range_comap_algebraMap_localization_compl_eq_range_comap_quotientMk, mapAlgEquiv_coe_ringHom, mapRingHom_id, mapRingHom_comp, map_mapRingHom_eval_map, WeierstrassCurve.Affine.baseChange_polynomialY, Ideal.quotient_mk_maps_eq, WeierstrassCurve.map_ψ, mapAlgHom_coe_ringHom, map_mapRingHom_eval_map_eval, mem_map_rangeS, evalā‚‚_evalā‚‚RingHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
C_comp šŸ“–mathematical—comp
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
—evalā‚‚_C
C_mul_comp šŸ“–mathematical—comp
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
—induction_on'
mul_add
Distrib.leftDistribClass
add_comp
C_mul_monomial
monomial_comp
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_assoc
X_comp šŸ“–mathematical—comp
X
—evalā‚‚_X
X_pow_comp šŸ“–mathematical—comp
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
—pow_zero
one_comp
pow_succ
mul_X_comp
add_comp šŸ“–mathematical—comp
Polynomial
instAdd
—evalā‚‚_add
associated_map_map šŸ“–mathematicalAssociated
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
map—Associated.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coe_compRingHom šŸ“–mathematical—DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
compRingHom
comp
——
coe_compRingHom_apply šŸ“–mathematical—DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
compRingHom
comp
——
coe_evalRingHom šŸ“–mathematical—DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
evalRingHom
eval
——
coe_evalā‚‚RingHom šŸ“–mathematical—DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
CommSemiring.toSemiring
RingHom.instFunLike
evalā‚‚RingHom
evalā‚‚
——
coe_mapRingHom šŸ“–mathematical—DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
mapRingHom
map
——
comp_C šŸ“–mathematical—comp
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
—evalā‚‚_at_apply
comp_X šŸ“–mathematical—comp
X
—evalā‚‚_def
C_mul_X_pow_eq_monomial
sum_monomial_eq
comp_assoc šŸ“–mathematical—comp
CommSemiring.toSemiring
—induction_on
C_comp
add_comp
pow_succ
mul_comp
X_comp
comp_eq_sum_left šŸ“–mathematical—comp
sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
instMul
DFunLike.coe
RingHom
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—comp.eq_1
evalā‚‚_eq_sum
comp_one šŸ“–mathematical—comp
Polynomial
instOne
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
—C_1
comp_C
comp_zero šŸ“–mathematical—comp
Polynomial
instZero
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
—C_0
comp_C
eval_C šŸ“–mathematical—eval
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
—evalā‚‚_C
eval_C_mul šŸ“–mathematical—eval
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
—induction_on'
mul_add
Distrib.leftDistribClass
eval_add
C_mul_monomial
eval_monomial
mul_assoc
eval_X šŸ“–mathematical—eval
X
—evalā‚‚_X
eval_X_pow šŸ“–mathematical—eval
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
—evalā‚‚_X_pow
eval_add šŸ“–mathematical—eval
Polynomial
instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—evalā‚‚_add
eval_comp šŸ“–mathematical—eval
CommSemiring.toSemiring
comp
—induction_on'
add_comp
eval_add
monomial_comp
eval_mul
eval_C
eval_pow
eval_monomial
eval_dvd šŸ“–mathematicalPolynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
eval—evalā‚‚_dvd
eval_eq_sum šŸ“–mathematical—eval
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—eval.eq_1
evalā‚‚_eq_sum
eval_eq_zero_of_dvd_of_eval_eq_zero šŸ“–ā€”Polynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
——evalā‚‚_eq_zero_of_dvd_of_evalā‚‚_eq_zero
eval_finset_sum šŸ“–mathematical—eval
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
—evalā‚‚_finset_sum
eval_geom_sum šŸ“–mathematical—eval
CommSemiring.toSemiring
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
—eval_finset_sum
Finset.sum_congr
eval_pow
eval_X
eval_intCast šŸ“–mathematical—eval
Ring.toSemiring
Polynomial
instIntCast
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
—eval_C
eval_listSum šŸ“–mathematical—eval
Polynomial
instAdd
instZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
—evalā‚‚_list_sum
eval_list_prod šŸ“–mathematical—eval
CommSemiring.toSemiring
Polynomial
instMul
instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
—map_list_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
eval_map šŸ“–mathematical—eval
map
evalā‚‚
—evalā‚‚_eq_eval_map
eval_map_apply šŸ“–mathematical—eval
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
map
—evalā‚‚_at_apply
eval_map
eval_monomial šŸ“–mathematical—eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—evalā‚‚_monomial
eval_mul šŸ“–mathematical—eval
CommSemiring.toSemiring
Polynomial
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—evalā‚‚_mul
eval_mul_X šŸ“–mathematical—eval
Polynomial
instMul
X
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—evalā‚‚_mul_X
eval_mul_X_pow šŸ“–mathematical—eval
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—pow_zero
mul_one
pow_succ
eval_mul_X
eval_multisetSum šŸ“–mathematical—eval
Multiset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Multiset.map
—evalā‚‚_multiset_sum
eval_multiset_prod šŸ“–mathematical—eval
CommSemiring.toSemiring
Multiset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
Multiset.map
—MonoidHom.map_multiset_prod
eval_natCast šŸ“–mathematical—eval
Polynomial
instNatCast
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
—eval_C
eval_natCast_mul šŸ“–mathematical—eval
Polynomial
instMul
instNatCast
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
—C_eq_natCast
eval_C_mul
eval_neg šŸ“–mathematical—eval
Ring.toSemiring
Polynomial
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
—evalā‚‚_neg
eval_ofNat šŸ“–mathematical—eval—eval_natCast
eval_one šŸ“–mathematical—eval
Polynomial
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
—evalā‚‚_one
eval_pow šŸ“–mathematical—eval
CommSemiring.toSemiring
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
—evalā‚‚_pow
eval_prod šŸ“–mathematical—eval
CommSemiring.toSemiring
Finset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
—map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
eval_sub šŸ“–mathematical—eval
Ring.toSemiring
Polynomial
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
—evalā‚‚_sub
eval_sum šŸ“–mathematical—eval
sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
—evalā‚‚_sum
eval_surjective šŸ“–mathematical—Polynomial
eval
—eval_C
eval_zero šŸ“–mathematical—eval
Polynomial
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—evalā‚‚_zero
evalā‚‚AddMonoidHom_apply šŸ“–mathematical—DFunLike.coe
AddMonoidHom
Polynomial
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
semiring
AddMonoidHom.instFunLike
evalā‚‚AddMonoidHom
evalā‚‚
——
evalā‚‚RingHom'_apply šŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial
semiring
evalā‚‚RingHom'
evalā‚‚
——
evalā‚‚_C šŸ“–mathematical—evalā‚‚
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
—evalā‚‚_eq_sum
sum_C_index
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
pow_zero
mul_one
evalā‚‚_X šŸ“–mathematical—evalā‚‚
X
—evalā‚‚_eq_sum
sum_X_index
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
pow_one
MulZeroClass.zero_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
one_mul
evalā‚‚_X_mul šŸ“–mathematical—evalā‚‚
Polynomial
instMul
X
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—X_mul
evalā‚‚_mul_X
evalā‚‚_X_pow šŸ“–mathematical—evalā‚‚
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
—X_pow_eq_monomial
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
evalā‚‚_monomial
evalā‚‚_add šŸ“–mathematical—evalā‚‚
Polynomial
instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—evalā‚‚_eq_sum
sum_add_index
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
add_mul
Distrib.rightDistribClass
evalā‚‚_at_apply šŸ“–mathematical—evalā‚‚
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
eval
—evalā‚‚_eq_sum
eval_eq_sum
sum.eq_1
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Finset.sum_congr
RingHom.map_mul
RingHom.map_pow
evalā‚‚_at_intCast šŸ“–mathematical—evalā‚‚
Ring.toSemiring
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
eval
—map_intCast
RingHom.instRingHomClass
evalā‚‚_at_apply
evalā‚‚_at_natCast šŸ“–mathematical—evalā‚‚
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
eval
—map_natCast
RingHom.instRingHomClass
evalā‚‚_at_apply
evalā‚‚_at_ofNat šŸ“–mathematical—evalā‚‚
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
eval
—evalā‚‚_at_natCast
evalā‚‚_at_one šŸ“–mathematical—evalā‚‚
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
eval
—map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
evalā‚‚_at_apply
evalā‚‚_congr šŸ“–mathematical—eval₂——
evalā‚‚_def šŸ“–mathematical—evalā‚‚
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
RingHom
RingHom.instFunLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
——
evalā‚‚_dvd šŸ“–mathematicalPolynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
evalā‚‚
CommSemiring.toSemiring
—map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
evalā‚‚_eq_eval_map šŸ“–mathematical—evalā‚‚
eval
map
—induction_on'
evalā‚‚_add
map_add
eval_add
evalā‚‚_monomial
map_monomial
eval_monomial
evalā‚‚_eq_sum šŸ“–mathematical—evalā‚‚
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
RingHom
RingHom.instFunLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—evalā‚‚_def
evalā‚‚_eq_zero_of_dvd_of_evalā‚‚_eq_zero šŸ“–ā€”Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
evalā‚‚
CommSemiring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
——zero_dvd_iff
evalā‚‚_dvd
evalā‚‚_finset_prod šŸ“–mathematical—evalā‚‚
CommSemiring.toSemiring
Finset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
—map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
evalā‚‚_finset_sum šŸ“–mathematical—evalā‚‚
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
—map_sum
AddMonoidHom.instAddMonoidHomClass
evalā‚‚_id šŸ“–mathematical—evalā‚‚
RingHom.id
Semiring.toNonAssocSemiring
eval
——
evalā‚‚_list_prod šŸ“–mathematical—evalā‚‚
CommSemiring.toSemiring
Polynomial
instMul
instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
—map_list_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
evalā‚‚_list_prod_noncomm šŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
coeff
evalā‚‚
Polynomial
instMul
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
—evalā‚‚_one
Semigroup.to_isLawfulIdentity
Semigroup.to_isAssociative
mul_one
evalā‚‚_mul_noncomm
evalā‚‚_list_sum šŸ“–mathematical—evalā‚‚
Polynomial
instAdd
instZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
—map_list_sum
AddMonoidHom.instAddMonoidHomClass
evalā‚‚_monomial šŸ“–mathematical—evalā‚‚
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
RingHom
RingHom.instFunLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—evalā‚‚_eq_sum
sum_monomial_index
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
evalā‚‚_mul šŸ“–mathematical—evalā‚‚
CommSemiring.toSemiring
Polynomial
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—evalā‚‚_mul_noncomm
Commute.all
evalā‚‚_mul_C' šŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
evalā‚‚
Polynomial
instMul
semiring
C
—evalā‚‚_mul_noncomm
coeff_C_zero
coeff_C_ne_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
evalā‚‚_C
evalā‚‚_mul_X šŸ“–mathematical—evalā‚‚
Polynomial
instMul
X
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
evalā‚‚_mul_noncomm
em
coeff_X_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coeff_X_of_ne_one
map_zero
MonoidWithZeroHomClass.toZeroHomClass
evalā‚‚_X
evalā‚‚_mul_eq_zero_of_left šŸ“–mathematicalevalā‚‚
CommSemiring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Polynomial
instMul
—evalā‚‚_mul
mul_eq_zero_of_left
evalā‚‚_mul_eq_zero_of_right šŸ“–mathematicalevalā‚‚
CommSemiring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Polynomial
instMul
—evalā‚‚_mul
mul_eq_zero_of_right
evalā‚‚_mul_noncomm šŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
coeff
evalā‚‚
Polynomial
instMul
—RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
evalā‚‚_ofFinsupp
AddMonoidAlgebra.liftNC_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Commute.pow_right
evalā‚‚_multiset_prod šŸ“–mathematical—evalā‚‚
CommSemiring.toSemiring
Multiset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
Multiset.map
—map_multiset_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
evalā‚‚_multiset_sum šŸ“–mathematical—evalā‚‚
Multiset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Multiset.map
—map_multiset_sum
AddMonoidHom.instAddMonoidHomClass
evalā‚‚_natCast šŸ“–mathematical—evalā‚‚
Polynomial
instNatCast
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
—Nat.cast_zero
evalā‚‚_zero
Nat.cast_succ
evalā‚‚_add
evalā‚‚_one
evalā‚‚_neg šŸ“–mathematical—evalā‚‚
Ring.toSemiring
Polynomial
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
—eq_neg_iff_add_eq_zero
evalā‚‚_add
neg_add_cancel
evalā‚‚_zero
evalā‚‚_ofFinsupp šŸ“–mathematical—evalā‚‚
ofFinsupp
DFunLike.coe
AddMonoidHom
AddMonoidAlgebra
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidAlgebra.addAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
AddMonoidAlgebra.liftNC
AddMonoidHomClass.toAddMonoidHom
RingHom
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
RingHom.instFunLike
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
Nat.instAddMonoid
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
powersHom
—RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
evalā‚‚_eq_sum
Finset.sum_congr
evalā‚‚_ofNat šŸ“–mathematical—eval₂—evalā‚‚_natCast
evalā‚‚_one šŸ“–mathematical—evalā‚‚
Polynomial
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
—C_1
evalā‚‚_C
RingHom.map_one
evalā‚‚_pow šŸ“–mathematical—evalā‚‚
CommSemiring.toSemiring
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
—RingHom.map_pow
evalā‚‚_sub šŸ“–mathematical—evalā‚‚
Ring.toSemiring
Polynomial
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
—sub_eq_add_neg
evalā‚‚_add
evalā‚‚_neg
evalā‚‚_sum šŸ“–mathematical—evalā‚‚
sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
—evalā‚‚_zero
evalā‚‚_add
sum.eq_1
map_sum
AddMonoidHom.instAddMonoidHomClass
evalā‚‚_zero šŸ“–mathematical—evalā‚‚
Polynomial
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
—evalā‚‚_eq_sum
sum_zero_index
intCast_comp šŸ“–mathematical—comp
Ring.toSemiring
Polynomial
instIntCast
—Int.cast_natCast
natCast_comp
Int.cast_negSucc
Nat.cast_add
Nat.cast_one
neg_add_rev
add_comp
neg_comp
one_comp
isRoot_comp šŸ“–mathematical—IsRoot
CommSemiring.toSemiring
comp
eval
—eval_comp
isRoot_prod šŸ“–mathematical—IsRoot
CommSemiring.toSemiring
Finset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
Finset
Finset.instMembership
—eval_prod
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
list_prod_comp šŸ“–mathematical—comp
CommSemiring.toSemiring
Polynomial
instMul
instOne
—map_list_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mapRingHom_comp_C šŸ“–mathematical—RingHom.comp
Polynomial
Semiring.toNonAssocSemiring
semiring
mapRingHom
C
—RingHom.ext
ext
map_C
map_C šŸ“–mathematical—map
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
—evalā‚‚_C
map_X šŸ“–mathematical—map
X
—evalā‚‚_X
map_add šŸ“–mathematical—map
Polynomial
instAdd
—evalā‚‚_add
map_comp šŸ“–mathematical—map
comp
—induction_on
C_comp
map_C
Zero.instNonempty
add_comp
map_add
map_mul
pow_succ
evalā‚‚_mul_X
map_X
map_dvd šŸ“–mathematicalPolynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
semiring
map—map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_intCast šŸ“–mathematical—map
Ring.toSemiring
Polynomial
instIntCast
—map_intCast
RingHom.instRingHomClass
map_list_prod šŸ“–mathematical—map
Polynomial
instMul
instOne
—List.prod_hom
MonoidHom.instMonoidHomClass
map_monomial šŸ“–mathematical—map
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
RingHom
RingHom.instFunLike
—evalā‚‚_monomial
C_mul_X_pow_eq_monomial
map_mul šŸ“–mathematical—map
Polynomial
instMul
—map.eq_1
evalā‚‚_mul_noncomm
Commute.symm
commute_X
map_multiset_prod šŸ“–mathematical—map
CommSemiring.toSemiring
Multiset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
Multiset.map
—Multiset.prod_hom
MonoidHom.instMonoidHomClass
map_natCast šŸ“–mathematical—map
Polynomial
instNatCast
—map_natCast
RingHom.instRingHomClass
map_neg šŸ“–mathematical—map
Ring.toSemiring
Polynomial
instNeg
—RingHom.map_neg
map_ofNat šŸ“–mathematical—map—map_natCast
map_one šŸ“–mathematical—map
Polynomial
instOne
—evalā‚‚_one
map_pow šŸ“–mathematical—map
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
—RingHom.map_pow
map_prod šŸ“–mathematical—map
CommSemiring.toSemiring
Finset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
—map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_sub šŸ“–mathematical—map
Ring.toSemiring
Polynomial
instSub
—RingHom.map_sub
map_sum šŸ“–mathematical—map
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
—map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_zero šŸ“–mathematical—map
Polynomial
instZero
—evalā‚‚_zero
monomial_comp šŸ“–mathematical—comp
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
instMul
RingHom
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—evalā‚‚_monomial
mul_X_add_natCast_comp šŸ“–mathematical—comp
Polynomial
instMul
instAdd
X
instNatCast
—mul_add
Distrib.leftDistribClass
add_comp
mul_X_comp
Nat.cast_comm
natCast_mul_comp
mul_X_comp šŸ“–mathematical—comp
Polynomial
instMul
X
—induction_on'
add_mul
Distrib.rightDistribClass
add_comp
monomial_mul_X
monomial_comp
pow_succ
mul_assoc
mul_X_pow_comp šŸ“–mathematical—comp
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
—pow_zero
mul_one
pow_succ
mul_X_comp
mul_X_sub_intCast_comp šŸ“–mathematical—comp
Ring.toSemiring
Polynomial
instMul
instSub
X
instNatCast
—mul_sub
sub_comp
mul_X_comp
Nat.cast_comm
natCast_mul_comp
mul_comp šŸ“–mathematical—comp
CommSemiring.toSemiring
Polynomial
instMul
—evalā‚‚_mul
mul_comp_neg_X šŸ“–mathematical—comp
Ring.toSemiring
Polynomial
instMul
instNeg
X
—evalā‚‚_mul_noncomm
Commute.symm
Commute.neg_left
commute_X
multiset_prod_comp šŸ“–mathematical—comp
CommSemiring.toSemiring
Multiset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
Multiset.map
—map_multiset_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
natCast_comp šŸ“–mathematical—comp
Polynomial
instNatCast
—C_eq_natCast
C_comp
natCast_mul_comp šŸ“–mathematical—comp
Polynomial
instMul
instNatCast
—C_eq_natCast
C_mul_comp
neg_comp šŸ“–mathematical—comp
Ring.toSemiring
Polynomial
instNeg
—evalā‚‚_neg
not_isRoot_C šŸ“–mathematical—IsRoot
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
—eval_C
ofNat_comp šŸ“–mathematical—comp
Polynomial
instNatCast
—natCast_comp
one_comp šŸ“–mathematical—comp
Polynomial
instOne
—C_1
C_comp
pow_comp šŸ“–mathematical—comp
CommSemiring.toSemiring
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
—MonoidHom.map_pow
one_comp
mul_comp
prod_comp šŸ“–mathematical—comp
CommSemiring.toSemiring
Finset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
—map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
root_X_sub_C šŸ“–mathematical—IsRoot
Ring.toSemiring
Polynomial
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
—IsRoot.def
eval_sub
eval_X
eval_C
sub_eq_zero
root_mul šŸ“–mathematical—IsRoot
CommSemiring.toSemiring
Polynomial
instMul
—eval_mul
root_mul_left_of_isRoot šŸ“–mathematicalIsRoot
CommSemiring.toSemiring
Polynomial
instMul
—IsRoot.eq_1
eval_mul
IsRoot.def
MulZeroClass.mul_zero
root_mul_right_of_isRoot šŸ“–mathematicalIsRoot
CommSemiring.toSemiring
Polynomial
instMul
—IsRoot.eq_1
eval_mul
IsRoot.def
MulZeroClass.zero_mul
root_or_root_of_root_mul šŸ“–ā€”IsRoot
CommSemiring.toSemiring
Polynomial
instMul
——root_mul
sub_comp šŸ“–mathematical—comp
Ring.toSemiring
Polynomial
instSub
—evalā‚‚_sub
sum_comp šŸ“–mathematical—comp
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
—evalā‚‚_finset_sum
zero_comp šŸ“–mathematical—comp
Polynomial
instZero
—C_0
C_comp

Polynomial.IsRoot

Definitions

NameCategoryTheorems
decidable šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
def šŸ“–mathematical—Polynomial.IsRoot
Polynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
——
dvd šŸ“–ā€”Polynomial.IsRoot
CommSemiring.toSemiring
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Polynomial.commSemiring
——eq_1
Polynomial.eval.eq_1
Polynomial.evalā‚‚_eq_zero_of_dvd_of_evalā‚‚_eq_zero
eq_zero šŸ“–mathematicalPolynomial.IsRootPolynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
——

---

← Back to Index