📁 Source: Mathlib/Algebra/Polynomial/Eval/Degree.lean
mapEquiv
coeff_comp_degree_mul_degree
comp_C_mul_X_coeff
comp_C_mul_X_eq_zero_iff
degree_map_eq_of_leadingCoeff_ne_zero
degree_map_le
degree_map_lt
eval_eq_sum_range
eval_eq_sum_range'
eval_monomial_one_add_sub
eval₂_comp
eval₂_eq_sum_range
eval₂_eq_sum_range'
isUnit_of_isUnit_leadingCoeff_of_isUnit_map
iterate_comp_eval
iterate_comp_eval₂
leadingCoeff_map_of_leadingCoeff_ne_zero
mapEquiv_apply
mapEquiv_symm_apply
map_monic_eq_zero_iff
map_monic_ne_zero
natDegree_map_le
natDegree_map_lt
natDegree_map_lt'
natDegree_map_of_leadingCoeff_ne_zero
nextCoeff_map_of_leadingCoeff_ne_zero
coeff
comp
natDegree
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
leadingCoeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
comp.eq_1
eval₂_def
coeff_sum
Finset.sum_eq_single
coeff_eq_zero_of_natDegree_lt
LE.le.trans_lt
natDegree_mul_le
natDegree_C
zero_add
natDegree_pow_le
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
lt_of_le_of_ne
le_natDegree_of_mem_supp
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
pow_zero
mul_one
MulZeroClass.zero_mul
coeff_C_mul
coeff_pow_mul_natDegree
Polynomial
instMul
DFunLike.coe
RingHom
semiring
RingHom.instFunLike
C
X
Finset.sum_congr
Commute.mul_pow
Commute.symm
commute_X
finset_sum_coeff
coeff_X_pow
MulZeroClass.mul_zero
not_le
Finset.mem_range_succ_iff
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
instZero
coeff_zero
mul_right_mem_nonZeroDivisors_eq_zero_iff
pow_mem
Submonoid.instSubmonoidClass
degree
map
LE.le.antisymm
leadingCoeff_ne_zero
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
RingHom.map_zero
degree_eq_natDegree
le_degree_of_ne_zero
coeff_map
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree_le_iff_coeff_zero
degree_lt_iff_coeff_zero
le_rfl
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Preorder.toLT
LE.le.lt_of_ne
degree_eq_bot
leadingCoeff_eq_zero
leadingCoeff.eq_1
natDegree_eq_natDegree
degree_zero
eval
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
eval_eq_sum
sum_over_range
sum_over_range'
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toAdd
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
LinearMap
RingHom.id
Semiring.toModule
module
LinearMap.instFunLike
monomial
AddMonoidWithOne.toNatCast
Nat.choose
Nat.cast_succ
eval_monomial
add_comm
add_pow
one_pow
mul_comm
Finset.sum_range_succ
mul_add
Distrib.leftDistribClass
Nat.choose_self
Nat.cast_one
one_mul
add_sub_cancel_right
Finset.mul_sum
Finset.sum_range_succ'
Nat.cast_zero
add_zero
mul_assoc
Nat.cast_mul
Nat.add_one_mul_choose_eq
eval₂
as_sum_range
eval₂_finset_sum
eval₂_monomial
eval₂_mul
eval₂_C
eval₂_pow
eval₂_eq_sum
IsUnit
degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
eq_C_of_degree_eq_zero
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
NeZero.one
degree_eq_iff_natDegree_eq
nontrivial
Nat.iterate
Function.iterate_succ_apply'
RingEquiv
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingHomClass.toRingHom
RingEquiv.symm
Monic
Monic.leadingCoeff
RingHom.map_one
ext
RingHom.map_one_ne_zero
natDegree_le_natDegree
natDegree_lt_natDegree
natDegree_zero
natDegree_eq_of_degree_eq
nextCoeff
---
← Back to Index