Documentation Verification Report

Expand

πŸ“ Source: Mathlib/Algebra/Polynomial/Expand.lean

Statistics

MetricCount
Definitionscontract, expand
2
Theoremsexpand, coe_expand, coeff_contract, coeff_expand, coeff_expand_mul, coeff_expand_mul', contract_C, contract_add, contract_expand, contract_mul_expand, contract_one, derivative_expand, expand_C, expand_X, expand_aeval, expand_char, expand_contract, expand_contract', expand_eq_C, expand_eq_comp_X_pow, expand_eq_sum, expand_eq_zero, expand_eval, expand_expand, expand_inj, expand_injective, expand_monomial, expand_mul, expand_ne_zero, expand_one, expand_pow, expand_zero, isCoprime_expand, isLocalHom_expand, leadingCoeff_expand, map_contract, map_expand, map_expand_pow_char, map_frobenius_expand, map_iterateFrobenius_expand, monic_expand_iff, natDegree_expand, of_irreducible_expand, of_irreducible_expand_pow, rootMultiplicity_expand, rootMultiplicity_expand_pow
46
Total48

Polynomial

Definitions

NameCategoryTheorems
contract πŸ“–CompOp
9 mathmath: expand_contract, contract_expand, map_contract, contract_add, contract_one, contract_C, coeff_contract, expand_contract', contract_mul_expand
expand πŸ“–CompOp
66 mathmath: roots_expand, expand_contract, expand_eq_sum, contract_expand, Irreducible.natSepDegree_eq_one_iff_of_monic', rootMultiplicity_expand_pow, derivative_expand, Monic.natSepDegree_eq_one_iff_of_irreducible', cyclotomic_expand_eq_cyclotomic_mul, rootsExpandPowEquivRoots_apply, map_expand, expand_eq_comp_X_pow, expand_one, separable_or, rootsExpandEquivRoots_apply, expand_C, roots_expand_map_frobenius, roots_expand_image_frobenius, rootsExpandPowToRoots_apply, isCoprime_expand, expand_inj, expand_expand, IsPrimitiveRoot.minpoly_dvd_expand, roots_expand_image_frobenius_subset, expand_eq_zero, expand_zero, roots_expand_pow_map_iterateFrobenius_le, rootMultiplicity_expand, expand_X, expand_monomial, monic_expand_iff, natSepDegree_expand, roots_expand_pow_map_iterateFrobenius, map_expand_pow_char, coeff_expand_mul, not_irreducible_expand, expand_mul, polynomial_expand_eq, coe_expand, coeff_expand, rootsExpandToRoots_apply, leadingCoeff_expand, expand_eq_C, expand_contract', ZMod.expand_card, exists_separable_of_irreducible, roots_expand_image_iterateFrobenius, expand_char, roots_expand_pow_image_iterateFrobenius_subset, expand_eval, FiniteField.expand_card, coeff_expand_mul', roots_expand_pow, contract_mul_expand, map_frobenius_expand, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, Monic.expand, natDegree_expand, cyclotomic_expand_eq_cyclotomic, expand_aeval, isLocalHom_expand, matPolyEquiv_eq_X_pow_sub_C, roots_expand_map_frobenius_le, expand_injective, map_iterateFrobenius_expand, expand_pow

Theorems

NameKindAssumesProvesValidatesDepends On
coe_expand πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
evalβ‚‚
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”β€”
coeff_contract πŸ“–mathematicalβ€”coeff
CommSemiring.toSemiring
contract
β€”finset_sum_coeff
Finset.sum_congr
coeff_monomial
Finset.sum_ite_eq'
coeff_eq_zero_of_natDegree_lt
mul_one
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Ne.bot_lt
zero_le
Nat.instCanonicallyOrderedAdd
coeff_expand πŸ“–mathematicalβ€”coeff
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”expand_eq_sum
coeff_sum
C_mul_X_pow_eq_monomial
coeff_monomial
Finset.sum_congr
Finset.sum_eq_single
notMem_support_iff
Finset.sum_eq_zero
coeff_expand_mul πŸ“–mathematicalβ€”coeff
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”coeff_expand
dvd_mul_left
coeff_expand_mul' πŸ“–mathematicalβ€”coeff
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”mul_comm
coeff_expand_mul
contract_C πŸ“–mathematicalβ€”contract
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”Finset.sum_congr
natDegree_C
zero_add
Finset.sum_singleton
MulZeroClass.zero_mul
coeff_C_zero
contract_add πŸ“–mathematicalβ€”contract
Polynomial
CommSemiring.toSemiring
instAdd
β€”ext
coeff_add
coeff_contract
contract_expand πŸ“–mathematicalβ€”contract
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”ext
coeff_contract
coeff_expand
Ne.bot_lt
contract_mul_expand πŸ“–mathematicalβ€”contract
Polynomial
CommSemiring.toSemiring
instMul
DFunLike.coe
AlgHom
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”ext
coeff_contract
coeff_mul
Finset.sum_subset
add_mul
Distrib.rightDistribClass
dvd_mul_left
Ne.bot_lt
mul_comm
mul_add
Distrib.leftDistribClass
coeff_expand
MulZeroClass.mul_zero
Finset.sum_image
Finset.sum_congr
coeff_expand_mul
contract_one πŸ“–mathematicalβ€”contractβ€”ext
coeff_contract
one_ne_zero
mul_one
derivative_expand πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
AlgHom
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
instMul
instNatCast
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”coe_expand
derivative_evalβ‚‚_C
derivative_pow
C_eq_natCast
derivative_X
mul_one
expand_C πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”evalβ‚‚_C
expand_X πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
X
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”evalβ‚‚_X
expand_aeval πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
expand
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”induction_on
expand_C
aeval_C
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
aeval_add
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
expand_X
aeval_X
expand_char πŸ“–mathematicalβ€”map
CommSemiring.toSemiring
frobenius
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”map_frobenius_expand
expand_contract πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
instZero
AlgHom
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
contract
β€”ext
coeff_expand
Ne.bot_lt
coeff_contract
dvd_zero
coeff_derivative
zero_eq_mul
coeff_zero
CharP.cast_eq_zero_iff
Nat.cast_succ
expand_contract' πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
instZero
AlgHom
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
contract
β€”expand_one
contract_one
expand_contract
Nat.Prime.ne_zero
expand_eq_C πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”expand_C
expand_eq_comp_X_pow πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
comp
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”β€”
expand_eq_sum πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMul
RingHom
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”evalβ‚‚_def
expand_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
instZero
β€”expand_injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
expand_eval πŸ“–mathematicalβ€”eval
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”induction_on
expand_C
eval_C
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
eval_add
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
expand_X
eval_mul
eval_pow
eval_X
expand_expand πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”induction_on
expand_C
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
expand_X
pow_mul
expand_inj πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”expand_injective
expand_injective πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
DFunLike.coe
AlgHom
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”ext
coeff_expand_mul
expand_monomial πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
β€”map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
expand_X
mul_comm
pow_mul
expand_mul πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”expand_expand
expand_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
expand_eq_zero
expand_one πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”induction_on
expand_C
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
expand_X
pow_one
expand_pow πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
Nat.iterate
β€”pow_zero
expand_one
Function.iterate_zero
Function.iterate_succ_apply'
pow_succ'
expand_mul
expand_zero πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
eval
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”pow_zero
evalβ‚‚_at_one
isCoprime_expand πŸ“–mathematicalβ€”IsCoprime
Polynomial
CommSemiring.toSemiring
commSemiring
DFunLike.coe
AlgHom
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”contract_mul_expand
contract_add
contract_C
IsCoprime.map
isLocalHom_expand πŸ“–mathematicalβ€”IsLocalHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgHom
semiring
algebraOfAlgebra
Algebra.id
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
expand
β€”eq_C_of_degree_eq_zero
degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
expand_eq_C
dvd_zero
coeff_expand
isUnit_C
leadingCoeff_expand πŸ“–mathematicalβ€”leadingCoeff
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”natDegree_expand
coeff_expand_mul
map_contract πŸ“–mathematicalβ€”map
CommSemiring.toSemiring
contract
β€”ext
coeff_map
coeff_contract
map_expand πŸ“–mathematicalβ€”map
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”expand_zero
map_C
eval_one_map
ext
coeff_map
coeff_expand
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_expand_pow_char πŸ“–mathematicalβ€”map
CommSemiring.toSemiring
iterateFrobenius
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”map_iterateFrobenius_expand
map_frobenius_expand πŸ“–mathematicalβ€”map
CommSemiring.toSemiring
frobenius
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”induction_on'
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_add
add_pow_expChar
instExpChar
expand_monomial
map_monomial
C_mul_X_pow_eq_monomial
mul_pow
RingHom.map_pow
frobenius_def
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
map_iterateFrobenius_expand πŸ“–mathematicalβ€”map
CommSemiring.toSemiring
iterateFrobenius
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”iterateFrobenius_zero
pow_zero
expand_one
map_id
pow_one
pow_succ
pow_mul
map_frobenius_expand
pow_succ'
iterateFrobenius.congr_simp
add_comm
iterateFrobenius_add
iterateFrobenius_one
monic_expand_iff πŸ“–mathematicalβ€”Monic
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”leadingCoeff_expand
natDegree_expand πŸ“–mathematicalβ€”natDegree
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”coe_expand
pow_zero
MulZeroClass.mul_zero
C_1
evalβ‚‚_hom
natDegree_C
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
natDegree_zero
MulZeroClass.zero_mul
expand_eq_zero
WithBot.charZero
Nat.instCharZero
degree_eq_natDegree
le_antisymm
degree_le_iff_coeff_zero
coeff_expand
coeff_eq_zero_of_natDegree_lt
Mathlib.Tactic.Contrapose.contrapose₁
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
le_degree_of_ne_zero
coeff_expand_mul
leadingCoeff.eq_1
leadingCoeff_eq_zero
of_irreducible_expand πŸ“–β€”Irreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
AlgHom
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”β€”isLocalHom_expand
Ne.bot_lt
Irreducible.of_map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
of_irreducible_expand_pow πŸ“–β€”Irreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
AlgHom
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
β€”β€”expand_one
pow_zero
of_irreducible_expand
expand_expand
pow_succ'
rootMultiplicity_expand πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_one
rootMultiplicity_expand_pow
rootMultiplicity_expand_pow πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”eq_or_ne
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
rootMultiplicity_zero
MulZeroClass.mul_zero
exists_eq_pow_rootMultiplicity_mul_and_not_dvd
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
expand_X
expand_C
RingHom.instRingHomClass
sub_pow_expChar_pow
instExpChar
pow_mul
mul_comm
rootMultiplicity_mul_X_sub_C_pow
expand_ne_zero
expChar_pow_pos
right_ne_zero_of_mul
rootMultiplicity_eq_zero
expand_eq_comp_X_pow
isRoot_comp
eval_pow
eval_X
dvd_iff_isRoot
zero_add

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
expand πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.expand
β€”Polynomial.monic_expand_iff

---

← Back to Index