Documentation Verification Report

FieldDivision

πŸ“ Source: Mathlib/Algebra/Polynomial/FieldDivision.lean

Statistics

MetricCount
Definitionsdiv, instDiv, instEuclideanDomain, instMod, instNormalizationMonoid
5
Theoremsdegree_pos, natDegree_pos, C_div, C_mul_dvd, mul_div_eq, normalize_eq_self, X_eq_normalize, X_sub_C_dvd_derivative_of_X_sub_C_dvd_divByMonic, X_sub_C_mul_divByMonic_eq_sub_modByMonic, add_mod, coe_normUnit, coe_normUnit_of_ne_zero, coeff_inv_units, degree_add_div, degree_div_le, degree_div_lt, degree_map, degree_mod_lt, degree_normalize, degree_pos_of_irreducible, degree_pos_of_ne_zero_of_nonunit, derivative_rootMultiplicity_of_root, derivative_rootMultiplicity_of_root_of_mem_nonZeroDivisors, divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative, divByMonic_eq_div, div_C, div_C_mul, div_def, div_eq_zero_iff, dvd_C_mul, eval_gcd_eq_zero, eval_iterate_derivative_rootMultiplicity, evalβ‚‚_gcd_eq_zero, exists_root_of_degree_eq_one, gcd_map, irreducible_iff_degree_lt, irreducible_iff_lt_natDegree_lt, irreducible_of_degree_eq_one, isCoprime_map, isCoprime_of_is_root_of_eval_derivative_ne_zero, isRoot_gcd_iff_isRoot_left_right, isRoot_iterate_derivative_of_lt_rootMultiplicity, isRoot_of_isRoot_of_dvd_derivative_mul, isUnit_iff_degree_eq_zero, isUnit_map, leadingCoeff_div, leadingCoeff_map, leadingCoeff_mul_prod_normalizedFactors, leadingCoeff_normalize, lt_rootMultiplicity_iff_isRoot_iterate_derivative, lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors, lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors', lt_rootMultiplicity_of_isRoot_iterate_derivative, lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors, lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors', map_div, map_dvd_map', map_eq_zero, map_mod, map_ne_zero, map_normalize, mem_normalizedFactors_iff, mem_roots_map, modByMonic_eq_mod, mod_X_sub_C_eq_C_eval, mod_def, mod_eq_of_dvd_sub, mod_eq_self_iff, monic_mapAlg_iff, monic_map_iff, monic_normalize, mul_div_eq_iff_isRoot, mul_mod, natDegree_map, natDegree_mod_lt, nextCoeff_map_eq, normUnit_X, normalize_eq_self_iff_monic, not_irreducible_C, one_lt_rootMultiplicity_iff_isRoot, one_lt_rootMultiplicity_iff_isRoot_gcd, one_lt_rootMultiplicity_iff_isRoot_iterate_derivative, prime_of_degree_eq_one, rootMultiplicity_sub_one_le_derivative_rootMultiplicity, rootMultiplicity_sub_one_le_derivative_rootMultiplicity_of_ne_zero, rootSet_C_mul_X_pow, rootSet_X_pow, rootSet_monomial, rootSet_prod, root_gcd_iff_root_left_right, root_left_of_root_gcd, root_right_of_root_gcd, roots_C_mul_X_add_C, roots_C_mul_X_sub_C, roots_degree_eq_one, roots_normalize, sub_mod
97
Total102

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
degree_pos πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial.degree
β€”Polynomial.natDegree_pos_iff_degree_pos
natDegree_pos
natDegree_pos πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natDegreeβ€”Polynomial.natDegree_eq_zero
not_irreducible_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
not_isUnit
Polynomial.isUnit_C
Ne.isUnit

Polynomial

Definitions

NameCategoryTheorems
div πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
21 mathmath: mul_div_eq_iff_isRoot, degree_add_div, RatFunc.num_div, div_def, map_div, Lagrange.interpolate_eq_nodalWeight_mul_nodal_div_X_sub_C, AdjoinRoot.mul_div_root_cancel, RatFunc.numDenom_div, Lagrange.basis_eq_prod_sub_inv_mul_nodal_div, IsRoot.mul_div_eq, div_eq_zero_iff, RatFunc.denom_div, div_C, C_div, divByMonic_eq_div, RatFunc.num_div_dvd', degree_div_lt, leadingCoeff_div, degree_div_le, div_C_mul, Lagrange.nodal_erase_eq_nodal_div
instEuclideanDomain πŸ“–CompOp
34 mathmath: splits_of_splits_gcd_right, abc, splits_of_splits_gcd_left, valuation_of_mk, cardPowDegree_isEuclidean, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, PowerSeries.intValuation_eq_of_coe, divRadical_dvd_derivative, leadingCoeff_mul_prod_normalizedFactors, PowerSeries.normalized_count_X_eq_of_coe, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, RatFunc.valuation_eq_LaurentSeries_valuation, isRoot_gcd_iff_isRoot_left_right, natDegree_radical_le, gcd_map, RatFunc.v_def, divRadical_dvd_wronskian_right, LaurentSeries.powerSeries_ext_subring, separable_gcd_right, separable_gcd_left, LaurentSeries.powerSeriesRingEquiv_coe_apply, root_gcd_iff_root_left_right, mem_normalizedFactors_iff, Ideal.factors_span_eq, LaurentSeries.tendsto_valuation, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, evalβ‚‚_gcd_eq_zero, divRadical_dvd_wronskian_left, LaurentSeries.mem_integers_of_powerSeries, instFiniteDimensionalQuotientPolynomialIdealSpanSingletonSetSmithCoeffs, eval_gcd_eq_zero, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, degree_radical_le, valuation_X_eq_neg_one
instMod πŸ“–CompOp
14 mathmath: exists_partition_polynomial, mod_eq_self_iff, exists_partition_polynomial_aux, add_mod, map_mod, sub_mod, mod_eq_of_dvd_sub, exists_approx_polynomial, mul_mod, mod_X_sub_C_eq_C_eval, natDegree_mod_lt, degree_mod_lt, mod_def, modByMonic_eq_mod
instNormalizationMonoid πŸ“–CompOp
24 mathmath: degree_normalize, coe_normUnit_of_ne_zero, roots_normalize, abc, Monic.normalize_eq_self, divRadical_dvd_derivative, leadingCoeff_mul_prod_normalizedFactors, leadingCoeff_normalize, PowerSeries.normalized_count_X_eq_of_coe, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, natDegree_radical_le, divRadical_dvd_wronskian_right, normalize_eq_self_iff_monic, mem_normalizedFactors_iff, coe_normUnit, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, divRadical_dvd_wronskian_left, normUnit_X, monic_normalize, normalizedFactors_cyclotomic_card, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, X_eq_normalize, map_normalize, degree_radical_le

Theorems

NameKindAssumesProvesValidatesDepends On
C_div πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
instDiv
β€”div_C
C_mul
div_eq_mul_inv
C_mul_dvd πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”dvd_trans
dvd_mul_left
mul_assoc
mul_left_comm
RingHom.map_mul
mul_inv_cancelβ‚€
RingHom.map_one
one_mul
X_eq_normalize πŸ“–mathematicalβ€”X
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
MonoidWithZeroHom
Polynomial
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
commSemiring
MonoidWithZeroHom.funLike
normalize
instNormalizationMonoid
β€”normUnit_X
mul_one
X_sub_C_dvd_derivative_of_X_sub_C_dvd_divByMonic πŸ“–mathematicalPolynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
divByMonic
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative
mul_add
Distrib.leftDistribClass
X_sub_C_mul_divByMonic_eq_sub_modByMonic πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
instMul
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
divByMonic
modByMonic
β€”eq_sub_iff_add_eq
eq_sub_iff_add_eq'
modByMonic_eq_sub_mul_div
monic_X_sub_C
add_mod πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMod
instAdd
β€”add_modByMonic
coe_normUnit πŸ“–mathematicalβ€”Units.val
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
commSemiring
NormalizationMonoid.normUnit
instNormalizationMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
β€”β€”
coe_normUnit_of_ne_zero πŸ“–mathematicalβ€”Units.val
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
commSemiring
NormalizationMonoid.normUnit
instNormalizationMonoid
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
leadingCoeff
β€”leadingCoeff_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
coe_normUnit
CommGroupWithZero.coe_normUnit
coeff_inv_units πŸ“–mathematicalβ€”InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
coeff
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Units.val
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Units
Units.instInv
β€”eq_C_of_degree_eq_zero
degree_coe_units
IsDomain.to_noZeroDivisors
instIsDomain
EuclideanDomain.toNontrivial
coeff_C
inv_eq_one_div
div_eq_iff_mul_eq
coeff_coe_units_zero_ne_zero
coeff_zero_eq_eval_zero
eval_mul
Units.val_mul
inv_mul_cancel
eval_one
div_zero
degree_add_div πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot.add
Polynomial
instDiv
β€”EuclideanDomain.mod_lt
degree_le_mul_left
IsDomain.to_noZeroDivisors
instIsDomain
div_eq_zero_iff
not_lt_of_ge
EuclideanDomain.div_add_mod
degree_add_eq_left_of_degree_lt
degree_mul
degree_div_le πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instDiv
β€”EuclideanDomain.div_zero
div_def
mul_comm
degree_mul_leadingCoeff_inv
degree_divByMonic_le
degree_div_lt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instDiv
β€”div_def
mul_comm
degree_mul_leadingCoeff_inv
degree_divByMonic_lt
monic_mul_leadingCoeff_inv
degree_map πŸ“–mathematicalβ€”degree
map
Ring.toSemiring
β€”degree_map_eq_of_injective
RingHom.injective
degree_mod_lt πŸ“–mathematicalβ€”WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instMod
β€”mod_def
LT.lt.trans_eq
degree_modByMonic_lt
EuclideanDomain.toNontrivial
Monic.leadingCoeff
leadingCoeff_mul
IsDomain.to_noZeroDivisors
instIsDomain
leadingCoeff_C
mul_inv_cancelβ‚€
degree_mul
degree_add_degree_leadingCoeff_inv
degree_normalize πŸ“–mathematicalβ€”degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
MonoidWithZeroHom
Polynomial
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
MonoidWithZeroHom.funLike
normalize
instNormalizationMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
β€”IsDomain.to_noZeroDivisors
instIsDomain
coe_normUnit
degree_mul
degree_C
EuclideanDomain.toNontrivial
add_zero
degree_pos_of_irreducible πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
β€”lt_of_not_ge
eq_C_of_degree_le_zero
not_irreducible_C
degree_pos_of_ne_zero_of_nonunit πŸ“–mathematicalIsUnit
Polynomial
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
β€”lt_of_not_ge
eq_C_of_degree_le_zero
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
nontrivial
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
derivative_rootMultiplicity_of_root πŸ“–mathematicalIsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
rootMultiplicity
CommRing.toRing
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
rootMultiplicity_zero
derivative_rootMultiplicity_of_root_of_mem_nonZeroDivisors
mem_nonZeroDivisors_of_ne_zero
Nat.cast_ne_zero
LT.lt.ne'
rootMultiplicity_pos
derivative_rootMultiplicity_of_root_of_mem_nonZeroDivisors πŸ“–mathematicalIsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
rootMultiplicity
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
rootMultiplicity_zero
exists_eq_pow_rootMultiplicity_mul_and_not_dvd
rootMultiplicity_pos
derivative_mul
dvd_add_left
dvd_mul_right
derivative_X_sub_C_pow
pow_succ
mul_comm
mul_assoc
dvd_cancel_left_mem_nonZeroDivisors
Monic.mem_nonZeroDivisors
Monic.pow
monic_X_sub_C
dvd_iff_isRoot
IsRoot.eq_1
eval_mul
eval_C
mul_left_mem_nonZeroDivisors_eq_zero_iff
dvd_zero
le_antisymm
rootMultiplicity_le_iff
rootMultiplicity_sub_one_le_derivative_rootMultiplicity_of_ne_zero
divByMonic_add_X_sub_C_mul_derivative_divByMonic_eq_derivative πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
CommRing.toRing
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
divByMonic
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instMul
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”X_sub_C_mul_divByMonic_eq_sub_modByMonic
derivative_mul
derivative_sub
derivative_X
derivative_C
sub_zero
one_mul
modByMonic_X_sub_C_eq_C_eval
divByMonic_eq_div πŸ“–mathematicalMonic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
divByMonic
DivisionRing.toRing
Field.toDivisionRing
Polynomial
instDiv
β€”Monic.def
inv_one
mul_one
one_mul
div_C πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instDiv
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”mul_comm
one_mul
EuclideanDomain.div_one
div_C_mul
div_C_mul πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instDiv
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
EuclideanDomain.div_zero
inv_zero
leadingCoeff_mul
IsDomain.to_noZeroDivisors
instIsDomain
leadingCoeff_C
mul_inv
RingHom.map_mul
mul_assoc
mul_left_comm
mul_inv_cancelβ‚€
RingHom.map_one
one_mul
div_def πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instDiv
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
leadingCoeff
divByMonic
β€”β€”
div_eq_zero_iff πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instDiv
instZero
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
β€”EuclideanDomain.div_add_mod
mod_eq_self_iff
zero_add
MulZeroClass.mul_zero
degree_mul_leadingCoeff_inv
monic_mul_leadingCoeff_inv
div_def
divByMonic_eq_zero_iff
EuclideanDomain.toNontrivial
dvd_C_mul πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”mul_left_comm
mul_assoc
RingHom.map_mul
inv_mul_cancelβ‚€
RingHom.map_one
one_mul
dvd_trans
dvd_mul_left
eval_gcd_eq_zero πŸ“–mathematicaleval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
EuclideanDomain.gcd
Polynomial
instEuclideanDomain
instDecidableEq
β€”evalβ‚‚_gcd_eq_zero
eval_iterate_derivative_rootMultiplicity πŸ“–mathematicalβ€”eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
rootMultiplicity
CommRing.toRing
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.factorial
Ring.toSemiring
divByMonic
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSub
X
RingHom
RingHom.instFunLike
C
β€”pow_mul_divByMonic_rootMultiplicity_eq
iterate_derivative_mul
eval_finset_sum
Finset.sum_eq_single_of_mem
Finset.mem_range
iterate_derivative_X_sub_pow
eval_smul
IsScalarTower.right
eval_mul
eval_pow
Finset.mem_range_succ_iff
eval_sub
eval_X
eval_C
sub_self
zero_pow
smul_zero
MulZeroClass.zero_mul
Nat.choose_zero_right
one_smul
iterate_derivative_X_sub_pow_self
eval_natCast
nsmul_eq_mul
evalβ‚‚_gcd_eq_zero πŸ“–mathematicalevalβ‚‚
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
EuclideanDomain.gcd
Polynomial
instEuclideanDomain
instDecidableEq
β€”EuclideanDomain.gcd_eq_gcd_ab
evalβ‚‚_add
evalβ‚‚_mul
MulZeroClass.zero_mul
zero_add
exists_root_of_degree_eq_one πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
WithBot.one
Nat.instOne
IsRootβ€”instIsDomain
mem_roots
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
roots_degree_eq_one
gcd_map πŸ“–mathematicalβ€”EuclideanDomain.gcd
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instEuclideanDomain
instDecidableEq
map
β€”EuclideanDomain.GCD.induction
map_zero
EuclideanDomain.gcd_zero_left
EuclideanDomain.gcd_val
map_mod
irreducible_iff_degree_lt πŸ“–mathematicalIsUnit
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Irreducibleβ€”irreducible_mul_leadingCoeff_inv
Monic.irreducible_iff_degree_lt
instIsDomain
monic_mul_leadingCoeff_inv
Mathlib.Tactic.Contrapose.contraposeβ‚„
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
natDegree_mul_leadingCoeff_inv
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
instIsLocalHomOfMonoidWithZeroHomClassOfNontrivial
nontrivial
EuclideanDomain.toNontrivial
irreducible_iff_lt_natDegree_lt πŸ“–mathematicalIsUnit
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Irreducible
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
irreducible_mul_leadingCoeff_inv
Monic.irreducible_iff_lt_natDegree_lt
IsDomain.to_noZeroDivisors
instIsDomain
monic_mul_leadingCoeff_inv
natDegree_mul_leadingCoeff_inv
IsUnit.dvd_mul_right
isUnit_C
inv_ne_zero
leadingCoeff_ne_zero
irreducible_of_degree_eq_one πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
WithBot.one
Nat.instOne
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”Prime.irreducible
instIsCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsDomain.toIsCancelMulZero
instIsDomain
prime_of_degree_eq_one
isCoprime_map πŸ“–mathematicalβ€”IsCoprime
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
commSemiring
Semifield.toCommSemiring
map
β€”EuclideanDomain.gcd_isUnit_iff
gcd_map
isUnit_map
isCoprime_of_is_root_of_eval_derivative_ne_zero πŸ“–mathematicalβ€”IsCoprime
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
commSemiring
Semifield.toCommSemiring
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
divByMonic
Ring.toSemiring
β€”EuclideanDomain.dvd_or_coprime
irreducible_of_degree_eq_one
degree_X_sub_C
EuclideanDomain.toNontrivial
Mathlib.Tactic.Contrapose.contraposeβ‚„
X_sub_C_dvd_derivative_of_X_sub_C_dvd_divByMonic
C_0
modByMonic_X_sub_C_eq_C_eval
modByMonic_eq_zero_iff_dvd
monic_X_sub_C
isRoot_gcd_iff_isRoot_left_right πŸ“–mathematicalβ€”IsRoot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
EuclideanDomain.gcd
Polynomial
instEuclideanDomain
instDecidableEq
β€”root_gcd_iff_root_left_right
isRoot_iterate_derivative_of_lt_rootMultiplicity πŸ“–mathematicalrootMultiplicity
CommRing.toRing
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”dvd_iff_isRoot
Dvd.dvd.trans
dvd_pow_self
pow_sub_dvd_iterate_derivative_of_pow_dvd
pow_rootMultiplicity_dvd
isRoot_of_isRoot_of_dvd_derivative_mul πŸ“–β€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
IsRoot
β€”β€”Mathlib.Tactic.Contrapose.contrapose₃
eq_C_of_derivative_eq_zero
IsAddTorsionFree.of_isCancelMulZero_charZero
NoZeroDivisors.to_isCancelMulZero
not_isRoot_C
C_ne_zero
mul_ne_zero
instNoZeroDivisors
eval_zero
instNontrivialOfCharZero
rootMultiplicity_pos
add_comm
rootMultiplicity_mul
add_zero
rootMultiplicity_eq_zero
derivative_rootMultiplicity_of_root
isUnit_iff_degree_eq_zero πŸ“–mathematicalβ€”IsUnit
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
degree
WithBot
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
instIsDomain
EuclideanDomain.toNontrivial
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
eq_C_of_degree_le_zero
isUnit_iff_dvd_one
C_mul
mul_inv_cancelβ‚€
C_1
isUnit_map πŸ“–mathematicalβ€”IsUnit
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
map
β€”degree_map
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
leadingCoeff_div πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
leadingCoeff
Polynomial
instDiv
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
β€”EuclideanDomain.div_zero
div_zero
div_def
leadingCoeff_mul
IsDomain.to_noZeroDivisors
instIsDomain
leadingCoeff_C
leadingCoeff_divByMonic_of_monic
monic_mul_leadingCoeff_inv
degree_mul_leadingCoeff_inv
mul_comm
div_eq_mul_inv
leadingCoeff_map πŸ“–mathematicalβ€”leadingCoeff
map
Ring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”leadingCoeff_map_of_injective
RingHom.injective
leadingCoeff_mul_prod_normalizedFactors πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
instNormalizationMonoid
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
EuclideanDomain.to_principal_ideal_domain
instEuclideanDomain
β€”IsDomain.to_noZeroDivisors
instIsDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
UniqueFactorizationMonoid.normalizedFactors.congr_simp
UniqueFactorizationMonoid.normalizedFactors_zero
mul_one
UniqueFactorizationMonoid.prod_normalizedFactors_eq
normalize_apply
coe_normUnit
CommGroupWithZero.coe_normUnit
mul_comm
mul_assoc
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
inv_mul_cancelβ‚€
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
leadingCoeff_normalize πŸ“–mathematicalβ€”leadingCoeff
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
MonoidWithZeroHom
Polynomial
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
commSemiring
MonoidWithZeroHom.funLike
normalize
instNormalizationMonoid
β€”coe_normUnit
leadingCoeff_mul
leadingCoeff_C
lt_rootMultiplicity_iff_isRoot_iterate_derivative πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”isRoot_iterate_derivative_of_lt_rootMultiplicity
lt_rootMultiplicity_of_isRoot_iterate_derivative
lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.factorial
rootMultiplicity
IsRoot
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”isRoot_iterate_derivative_of_lt_rootMultiplicity
LE.le.trans_lt
lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors
lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors' πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
rootMultiplicity
IsRoot
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”isRoot_iterate_derivative_of_lt_rootMultiplicity
lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors'
lt_rootMultiplicity_of_isRoot_iterate_derivative πŸ“–mathematicalIsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
rootMultiplicity
CommRing.toRing
β€”lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors
mem_nonZeroDivisors_of_ne_zero
Nat.cast_ne_zero
ne_of_gt
Nat.factorial_pos
lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors πŸ“–mathematicalIsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.factorial
rootMultiplicityβ€”Nat.cast_dvd_cast
Nat.factorial_dvd_factorial
eval_divByMonic_pow_rootMultiplicity_ne_zero
mul_left_mem_nonZeroDivisors_eq_zero_iff
mul_mem_nonZeroDivisors
nsmul_eq_mul
eval_iterate_derivative_rootMultiplicity
lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors' πŸ“–mathematicalIsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
rootMultiplicityβ€”lt_rootMultiplicity_of_isRoot_iterate_derivative_of_mem_nonZeroDivisors
Nat.cast_one
Submonoid.one_mem
Nat.factorial_succ
Nat.cast_mul
mul_mem_nonZeroDivisors
le_rfl
LE.le.trans
map_div πŸ“–mathematicalβ€”map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instDiv
β€”EuclideanDomain.div_zero
map_zero
div_def
map_mul
map_divByMonic
monic_mul_leadingCoeff_inv
map_C
leadingCoeff_map
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_dvd_map' πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
map
β€”map_zero
zero_dvd_iff
map_eq_zero
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
IsDomain.to_noZeroDivisors
instIsDomain
normalize_dvd_iff
normalize_apply
coe_normUnit_of_ne_zero
leadingCoeff_map
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_C
map_mul
map_dvd_map
RingHom.injective
monic_mul_leadingCoeff_inv
map_eq_zero πŸ“–mathematicalβ€”map
Ring.toSemiring
Polynomial
instZero
β€”map_eq_zero_iff
RingHom.injective
map_mod πŸ“–mathematicalβ€”map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instMod
β€”EuclideanDomain.mod_zero
map_zero
mod_def
leadingCoeff_map
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_C
map_mul
map_modByMonic
monic_mul_leadingCoeff_inv
map_ne_zero πŸ“–β€”β€”β€”β€”map_eq_zero
map_normalize πŸ“–mathematicalβ€”map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
MonoidWithZeroHom
Polynomial
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
MonoidWithZeroHom.funLike
normalize
instNormalizationMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
β€”IsDomain.to_noZeroDivisors
instIsDomain
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
map_zero
inv_inv
Units.val_inv_eq_inv_val
map_mul
map_C
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
leadingCoeff_map
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
mem_normalizedFactors_iff πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Multiset
Multiset.instMembership
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
instNormalizationMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
PrincipalIdealRing.to_uniqueFactorizationMonoid
commRing
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
EuclideanDomain.to_principal_ideal_domain
instEuclideanDomain
Irreducible
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Monic
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
β€”IsDomain.to_noZeroDivisors
instIsDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
EuclideanDomain.toNontrivial
UniqueFactorizationMonoid.zero_notMem_normalizedFactors
UniqueFactorizationMonoid.mem_normalizedFactors_iff'
normalize_eq_self_iff_monic
mem_roots_map πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
roots
map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_roots
map_ne_zero
DivisionRing.isSimpleRing
IsDomain.toNontrivial
IsRoot.eq_1
eval_map
modByMonic_eq_mod πŸ“–mathematicalMonic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
modByMonic
DivisionRing.toRing
Field.toDivisionRing
Polynomial
instMod
β€”Monic.def
inv_one
mul_one
mod_X_sub_C_eq_C_eval πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMod
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
β€”modByMonic_X_sub_C_eq_C_eval
modByMonic_eq_mod
monic_X_sub_C
mod_def πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMod
modByMonic
DivisionRing.toRing
Field.toDivisionRing
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
leadingCoeff
β€”β€”
mod_eq_of_dvd_sub πŸ“–mathematicalPolynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instSub
DivisionRing.toRing
Field.toDivisionRing
instModβ€”eq_or_ne
EuclideanDomain.mod_zero
modByMonic_eq_of_dvd_sub
Monic.leadingCoeff
leadingCoeff_mul
IsDomain.to_noZeroDivisors
instIsDomain
leadingCoeff_C
mul_inv_cancelβ‚€
mul_comm
C_mul_dvd
mod_eq_self_iff πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMod
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
β€”EuclideanDomain.mod_lt
not_le_of_gt
degree_mul_leadingCoeff_inv
mod_def
modByMonic.eq_1
monic_mul_leadingCoeff_inv
div_wf_lemma
divModByMonicAux.eq_def
monic_mapAlg_iff πŸ“–mathematicalβ€”Monic
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
mapAlg
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”mapAlg_eq_map
DivisionRing.isSimpleRing
monic_map_iff πŸ“–mathematicalβ€”Monic
map
Ring.toSemiring
β€”Function.Injective.monic_map_iff
RingHom.injective
monic_normalize πŸ“–mathematicalβ€”Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
MonoidWithZeroHom
Polynomial
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
MonoidWithZeroHom.funLike
normalize
instNormalizationMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
β€”IsDomain.to_noZeroDivisors
instIsDomain
Monic.eq_1
leadingCoeff_normalize
normalize_eq_one
isUnit_iff_ne_zero
leadingCoeff_eq_zero
mul_div_eq_iff_isRoot πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMul
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instDiv
IsRoot
β€”mul_divByMonic_eq_iff_isRoot
divByMonic_eq_div
monic_X_sub_C
mul_mod πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMod
instMul
β€”mul_modByMonic
natDegree_map πŸ“–mathematicalβ€”natDegree
map
Ring.toSemiring
β€”natDegree_map_eq_of_injective
RingHom.injective
natDegree_mod_lt πŸ“–mathematicalβ€”natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instMod
β€”leadingCoeff_ne_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
mod_def
LT.lt.trans_le
natDegree_modByMonic_lt
monic_mul_C_of_leadingCoeff_mul_eq_one
mul_inv_eq_oneβ‚€
natDegree_mul_C_eq_of_mul_eq_one
inv_mul_eq_oneβ‚€
natDegree_one
natDegree_mul_C_le
nextCoeff_map_eq πŸ“–mathematicalβ€”nextCoeff
map
Ring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”nextCoeff_map
RingHom.injective
normUnit_X πŸ“–mathematicalβ€”NormalizationMonoid.normUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
instNormalizationMonoid
X
Units
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Units.instOne
β€”coe_normUnit
Units.val_eq_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Units.val_one
normUnit_one
leadingCoeff_X
normalize_eq_self_iff_monic πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
MonoidWithZeroHom.funLike
normalize
instNormalizationMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
Monic
β€”IsDomain.to_noZeroDivisors
instIsDomain
monic_normalize
Monic.normalize_eq_self
not_irreducible_C πŸ“–mathematicalβ€”Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”C_0
not_irreducible_zero
Irreducible.not_isUnit
isUnit_C
isUnit_iff_ne_zero
one_lt_rootMultiplicity_iff_isRoot πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”one_lt_rootMultiplicity_iff_isRoot_iterate_derivative
Nat.instCanonicallyOrderedAdd
one_lt_rootMultiplicity_iff_isRoot_gcd πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
GCDMonoid.gcd
Polynomial
CommSemiring.toCommMonoidWithZero
commSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”one_lt_rootMultiplicity_iff_isRoot
one_lt_rootMultiplicity_iff_isRoot_iterate_derivative πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.iterate
Polynomial
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”lt_rootMultiplicity_iff_isRoot_iterate_derivative_of_mem_nonZeroDivisors
Nat.factorial_one
Nat.cast_one
Submonoid.one_mem
prime_of_degree_eq_one πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
WithBot.one
Nat.instOne
Prime
Polynomial
CommSemiring.toCommMonoidWithZero
commSemiring
Semifield.toCommSemiring
β€”IsDomain.to_noZeroDivisors
instIsDomain
Monic.prime_of_degree_eq_one
degree_normalize
monic_normalize
Associated.prime
normalize_associated
rootMultiplicity_sub_one_le_derivative_rootMultiplicity πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”Eq.le
derivative_rootMultiplicity_of_root
rootMultiplicity_eq_zero
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
zero_le
rootMultiplicity_sub_one_le_derivative_rootMultiplicity_of_ne_zero πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”le_rootMultiplicity_iff
pow_sub_one_dvd_derivative_of_pow_dvd
pow_rootMultiplicity_dvd
rootSet_C_mul_X_pow πŸ“–mathematicalβ€”rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”C_mul_X_pow_eq_monomial
rootSet_monomial
rootSet_X_pow πŸ“–mathematicalβ€”rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”one_mul
C_1
rootSet_C_mul_X_pow
one_ne_zero
NeZero.one
EuclideanDomain.toNontrivial
rootSet_monomial πŸ“–mathematicalβ€”rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”rootSet.eq_1
aroots_monomial
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Multiset.toFinset_nsmul
Multiset.toFinset_singleton
Finset.coe_singleton
rootSet_prod πŸ“–mathematicalβ€”rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finset.prod
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommRing.toCommMonoid
commRing
Set.iUnion
Finset
Finset.instMembership
β€”Set.iUnion_congr_Prop
map_prod
roots_prod
map_eq_zero
DivisionRing.isSimpleRing
IsDomain.toNontrivial
Finset.bind_toFinset
Finset.val_toFinset
Finset.coe_biUnion
root_gcd_iff_root_left_right πŸ“–mathematicalβ€”evalβ‚‚
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
EuclideanDomain.gcd
Polynomial
instEuclideanDomain
instDecidableEq
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”root_left_of_root_gcd
root_right_of_root_gcd
evalβ‚‚_gcd_eq_zero
root_left_of_root_gcd πŸ“–β€”evalβ‚‚
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
EuclideanDomain.gcd
Polynomial
instEuclideanDomain
instDecidableEq
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”EuclideanDomain.gcd_dvd_left
evalβ‚‚_mul
MulZeroClass.zero_mul
root_right_of_root_gcd πŸ“–β€”evalβ‚‚
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
EuclideanDomain.gcd
Polynomial
instEuclideanDomain
instDecidableEq
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”EuclideanDomain.gcd_dvd_right
evalβ‚‚_mul
MulZeroClass.zero_mul
roots_C_mul_X_add_C πŸ“–mathematicalβ€”roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
Multiset
Multiset.instSingleton
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”instIsDomain
roots_C_mul_X_add_C_of_IsUnit
mul_inv_cancelβ‚€
inv_mul_cancelβ‚€
roots_C_mul_X_sub_C πŸ“–mathematicalβ€”roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSub
DivisionRing.toRing
Field.toDivisionRing
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
Multiset
Multiset.instSingleton
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”instIsDomain
roots_C_mul_X_sub_C_of_IsUnit
mul_inv_cancelβ‚€
inv_mul_cancelβ‚€
roots_degree_eq_one πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
WithBot.one
Nat.instOne
roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Multiset
Multiset.instSingleton
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
coeff
β€”instIsDomain
eq_X_add_C_of_degree_le_one
le_refl
coeff_ne_zero_of_eq_degree
roots_C_mul_X_add_C
coeff_add
coeff_mul_X
coeff_C_zero
coeff_C_succ
add_zero
mul_coeff_zero
coeff_X_zero
MulZeroClass.mul_zero
zero_add
roots_normalize πŸ“–mathematicalβ€”roots
DFunLike.coe
MonoidWithZeroHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
commSemiring
MonoidWithZeroHom.funLike
normalize
instNormalizationMonoid
IsDomain.to_noZeroDivisors
β€”IsDomain.to_noZeroDivisors
normalize_apply
mul_comm
coe_normUnit
roots_C_mul
Units.ne_zero
IsDomain.toNontrivial
sub_mod πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMod
instSub
DivisionRing.toRing
Field.toDivisionRing
β€”sub_modByMonic

Polynomial.IsRoot

Theorems

NameKindAssumesProvesValidatesDepends On
mul_div_eq πŸ“–mathematicalPolynomial.IsRoot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
Polynomial.instMul
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.instDiv
β€”Polynomial.mul_div_eq_iff_isRoot

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
normalize_eq_self πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
MonoidWithZeroHom
Polynomial
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
Polynomial.commSemiring
MonoidWithZeroHom.funLike
normalize
Polynomial.instNormalizationMonoid
β€”Polynomial.coe_normUnit
leadingCoeff
normUnit_one
RingHom.map_one
mul_one

---

← Back to Index