Documentation Verification Report

Reverse

πŸ“ Source: Mathlib/Algebra/Polynomial/Reverse.lean

Statistics

MetricCount
Definitionsreflect, revAt, revAtFun, reverse
4
Theoremscoeff_one_reverse, coeff_reflect, coeff_reverse, coeff_zero_reverse, evalβ‚‚_reflect_eq_zero_iff, evalβ‚‚_reflect_mul_pow, evalβ‚‚_reverse_eq_zero_iff, evalβ‚‚_reverse_mul_pow, natDegree_eq_reverse_natDegree_add_natTrailingDegree, natDegree_reflect_le, natTrailingDegree_reverse, reflect_C, reflect_C_mul, reflect_C_mul_X_pow, reflect_add, reflect_eq_zero_iff, reflect_map, reflect_monomial, reflect_mul, reflect_mul_induction, reflect_neg, reflect_one, reflect_one_X, reflect_reflect, reflect_sub, reflect_support, reflect_zero, revAtFun_eq, revAtFun_inj, revAtFun_invol, revAt_add, revAt_eq_self_of_lt, revAt_invol, revAt_le, revAt_zero, reverse_C, reverse_C_add, reverse_X_mul, reverse_X_pow_mul, reverse_add_C, reverse_eq_zero, reverse_leadingCoeff, reverse_mul, reverse_mul_X, reverse_mul_X_pow, reverse_mul_of_domain, reverse_natDegree, reverse_natDegree_le, reverse_neg, reverse_trailingCoeff, reverse_zero, trailingCoeff_mul
52
Total56

Polynomial

Definitions

NameCategoryTheorems
reflect πŸ“–CompOp
21 mathmath: reflect_sub, evalβ‚‚_reflect_eq_zero_iff, reflect_map, reflect_add, evalβ‚‚_reflect_mul_pow, reflect_one, reflect_monomial, reflect_one_X, natDegree_reflect_le, reflect_support, coeff_reflect, reflect_zero, reflect_reflect, reflect_mul, reflect_neg, reflect_C_mul_X_pow, reflect_C, reflect_C_mul, isNilpotent_reflect_iff, reflect_eq_zero_iff, reflect_mul_induction
revAt πŸ“–CompOp
12 mathmath: revAt_zero, revAt_eq_self_of_lt, reflect_monomial, reflect_support, coeff_reflect, revAt_le, reflect_C_mul_X_pow, revAtFun_eq, coeff_mirror, revAt_add, revAt_invol, coeff_reverse
revAtFun πŸ“–CompOp
3 mathmath: revAtFun_invol, revAtFun_inj, revAtFun_eq
reverse πŸ“–CompOp
26 mathmath: reverse_mul_X_pow, reverse_eq_zero, reverse_trailingCoeff, reverse_mul_of_domain, Matrix.reverse_charpoly, reverse_X_pow_mul, reverse_mul_X, reverse_natDegree_le, reverse_X_mul, reverse_add_C, reverse_mul, coeff_one_reverse, reverse_neg, reverse_C, reverse_leadingCoeff, reverse_zero, natTrailingDegree_reverse, evalβ‚‚_reverse_mul_pow, reverse_natDegree, coeff_zero_reverse, coeff_reverse, reverse_C_add, LaurentPolynomial.toLaurent_reverse, isNilpotent_reverse_iff, natDegree_eq_reverse_natDegree_add_natTrailingDegree, evalβ‚‚_reverse_eq_zero_iff

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_one_reverse πŸ“–mathematicalβ€”coeff
reverse
nextCoeff
β€”coeff_reverse
nextCoeff.eq_1
coeff_eq_zero_of_natDegree_lt
Nat.instZeroLEOneClass
Nat.instCanonicallyOrderedAdd
zero_tsub
Nat.instOrderedSub
revAt_le
pos_iff_ne_zero
coeff_reflect πŸ“–mathematicalβ€”coeff
reflect
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”revAt_invol
Finsupp.embDomain_apply_self
coeff_reverse πŸ“–mathematicalβ€”coeff
reverse
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
natDegree
β€”reverse.eq_1
coeff_reflect
coeff_zero_reverse πŸ“–mathematicalβ€”coeff
reverse
leadingCoeff
β€”coeff_reverse
revAt_le
zero_le
Nat.instCanonicallyOrderedAdd
tsub_zero
Nat.instOrderedSub
leadingCoeff.eq_1
evalβ‚‚_reflect_eq_zero_iff πŸ“–mathematicalnatDegreeevalβ‚‚
CommSemiring.toSemiring
Invertible.invOf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
reflect
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”evalβ‚‚_reflect_mul_pow
MulZeroClass.zero_mul
mul_one
one_pow
mul_invOf_self
mul_pow
mul_assoc
evalβ‚‚_reflect_mul_pow πŸ“–mathematicalnatDegreeDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
evalβ‚‚
Invertible.invOf
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
reflect
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”induction_with_natDegree_le
evalβ‚‚_zero
MulZeroClass.zero_mul
reflect_C_mul_X_pow
revAt_le
evalβ‚‚_mul
evalβ‚‚_C
evalβ‚‚_X_pow
pow_add
mul_assoc
mul_pow
invOf_mul_self
one_pow
mul_one
reflect_add
evalβ‚‚_add
add_mul
Distrib.rightDistribClass
evalβ‚‚_reverse_eq_zero_iff πŸ“–mathematicalβ€”evalβ‚‚
CommSemiring.toSemiring
Invertible.invOf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
reverse
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”evalβ‚‚_reflect_eq_zero_iff
le_rfl
evalβ‚‚_reverse_mul_pow πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
evalβ‚‚
Invertible.invOf
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
reverse
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
natDegree
β€”evalβ‚‚_reflect_mul_pow
le_rfl
natDegree_eq_reverse_natDegree_add_natTrailingDegree πŸ“–mathematicalβ€”natDegree
reverse
natTrailingDegree
β€”reverse_zero
natDegree_zero
natTrailingDegree_zero
le_antisymm
tsub_le_iff_right
Nat.instOrderedSub
le_natDegree_of_ne_zero
reverse.eq_1
coeff_reflect
revAt_le
natTrailingDegree_le_natDegree
revAt_invol
trailingCoeff_nonzero_iff_nonzero
le_tsub_iff_left
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
reverse_natDegree_le
natTrailingDegree_le_of_ne_zero
leadingCoeff_eq_zero
reverse_eq_zero
coeff_reverse
leadingCoeff.eq_1
natDegree_reflect_le πŸ“–mathematicalβ€”natDegree
reflect
β€”coeff_reflect
coeff_eq_zero_of_natDegree_lt
natTrailingDegree_reverse πŸ“–mathematicalβ€”natTrailingDegree
reverse
β€”natTrailingDegree_eq_zero
reverse_eq_zero
coeff_zero_reverse
leadingCoeff_ne_zero
eq_or_ne
reflect_C πŸ“–mathematicalβ€”reflect
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”mul_one
pow_zero
reflect_C_mul_X_pow
revAt_zero
reflect_C_mul πŸ“–mathematicalβ€”reflect
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”ext
coeff_reflect
coeff_C_mul
reflect_C_mul_X_pow πŸ“–mathematicalβ€”reflect
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”ext
reflect_add πŸ“–mathematicalβ€”reflect
Polynomial
instAdd
β€”ext
coeff_reflect
coeff_add
reflect_eq_zero_iff πŸ“–mathematicalβ€”reflect
Polynomial
instZero
β€”ofFinsupp_eq_zero
reflect.eq_1
Finsupp.embDomain_eq_zero
reflect_map πŸ“–mathematicalβ€”reflect
map
β€”ext
coeff_reflect
coeff_map
reflect_monomial πŸ“–mathematicalβ€”reflect
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”one_mul
C_1
reflect_C_mul_X_pow
reflect_mul πŸ“–mathematicalnatDegreereflect
Polynomial
instMul
β€”reflect_mul_induction
reflect_mul_induction πŸ“–mathematicalFinset.card
support
natDegree
reflect
Polynomial
instMul
β€”C_mul_X_pow_eq_self
mul_assoc
X_pow_mul
pow_add
reflect_C_mul
reflect_monomial
add_comm
revAt_add
reflect_zero
MulZeroClass.mul_zero
eraseLead_add_C_mul_X_pow
mul_add
Distrib.leftDistribClass
reflect_add
lt_of_lt_of_le
eraseLead_support_card_lt
le_trans
eraseLead_natDegree_le_aux
le_add_left
Nat.instCanonicallyOrderedAdd
card_support_C_mul_X_pow_le_one
natDegree_C_mul_X_pow_le
MulZeroClass.zero_mul
add_mul
Distrib.rightDistribClass
reflect_neg πŸ“–mathematicalβ€”reflect
Ring.toSemiring
Polynomial
instNeg
β€”neg_eq_neg_one_mul
C_1
C_neg
reflect_C_mul
reflect_one πŸ“–mathematicalβ€”reflect
Polynomial
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”RingHom.map_one
reflect_C
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
reflect_one_X πŸ“–mathematicalβ€”reflect
X
Polynomial
instOne
β€”pow_one
revAt_le
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
reflect_monomial
reflect_reflect πŸ“–mathematicalβ€”reflectβ€”ext
coeff_reflect
revAt_invol
reflect_sub πŸ“–mathematicalβ€”reflect
Ring.toSemiring
Polynomial
instSub
β€”sub_eq_add_neg
reflect_add
reflect_neg
reflect_support πŸ“–mathematicalβ€”support
reflect
Finset.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”Finset.ext
support_ofFinsupp
reflect_zero πŸ“–mathematicalβ€”reflect
Polynomial
instZero
β€”β€”
revAtFun_eq πŸ“–mathematicalβ€”revAtFun
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”β€”
revAtFun_inj πŸ“–mathematicalβ€”revAtFunβ€”revAtFun_invol
revAtFun_invol πŸ“–mathematicalβ€”revAtFunβ€”β€”
revAt_add πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”revAt_le
le_add_right
Nat.instCanonicallyOrderedAdd
Eq.le
add_assoc
add_left_comm
add_tsub_cancel_left
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
revAt_eq_self_of_lt πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”β€”
revAt_invol πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”revAtFun_invol
revAt_le πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”β€”
revAt_zero πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
revAt
β€”revAt_le
Nat.instCanonicallyOrderedAdd
tsub_zero
Nat.instOrderedSub
reverse_C πŸ“–mathematicalβ€”reverse
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”natDegree_C
reflect_C
pow_zero
mul_one
reverse_C_add πŸ“–mathematicalβ€”reverse
Polynomial
instAdd
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
natDegree
β€”add_comm
reverse_add_C
reverse_X_mul πŸ“–mathematicalβ€”reverse
Polynomial
instMul
X
β€”commute_X
reverse_mul_X
reverse_X_pow_mul πŸ“–mathematicalβ€”reverse
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”commute_X_pow
reverse_mul_X_pow
reverse_add_C πŸ“–mathematicalβ€”reverse
Polynomial
instAdd
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
natDegree
β€”natDegree_add_C
reflect_add
reflect_C
reverse_eq_zero πŸ“–mathematicalβ€”reverse
Polynomial
instZero
β€”β€”
reverse_leadingCoeff πŸ“–mathematicalβ€”leadingCoeff
reverse
trailingCoeff
β€”leadingCoeff.eq_1
reverse_natDegree
revAt_le
natTrailingDegree_le_natDegree
coeff_reverse
revAt_invol
trailingCoeff.eq_1
reverse_mul πŸ“–mathematicalβ€”reverse
Polynomial
instMul
β€”natDegree_mul'
reflect_mul
Eq.le
reverse_mul_X πŸ“–mathematicalβ€”reverse
Polynomial
instMul
X
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
reverse_mul_of_domain
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
Subsingleton.to_isCancelMulZero
Unique.instSubsingleton
eq_or_ne
MulZeroClass.zero_mul
natDegree_mul_X
reflect_mul
natDegree_X
reflect_one_X
mul_one
reverse_mul_X_pow πŸ“–mathematicalβ€”reverse
Polynomial
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”pow_zero
mul_one
pow_succ
mul_assoc
reverse_mul_X
reverse_mul_of_domain πŸ“–mathematicalβ€”reverse
Polynomial
instMul
β€”MulZeroClass.zero_mul
MulZeroClass.mul_zero
reverse_zero
reverse_mul
reverse_natDegree πŸ“–mathematicalβ€”natDegree
reverse
natTrailingDegree
β€”natDegree_eq_reverse_natDegree_add_natTrailingDegree
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
reverse_natDegree_le πŸ“–mathematicalβ€”natDegree
reverse
β€”natDegree_le_iff_degree_le
degree_le_iff_coeff_zero
coeff_reverse
revAt.eq_1
not_le_of_gt
Nat.cast_lt
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
coeff_eq_zero_of_natDegree_lt
reverse_neg πŸ“–mathematicalβ€”reverse
Ring.toSemiring
Polynomial
instNeg
β€”reverse.eq_1
reflect_neg
natDegree_neg
reverse_trailingCoeff πŸ“–mathematicalβ€”trailingCoeff
reverse
leadingCoeff
β€”trailingCoeff.eq_1
natTrailingDegree_reverse
coeff_zero_reverse
reverse_zero πŸ“–mathematicalβ€”reverse
Polynomial
instZero
β€”β€”
trailingCoeff_mul πŸ“–mathematicalβ€”trailingCoeff
Polynomial
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”reverse_leadingCoeff
reverse_mul_of_domain
leadingCoeff_mul

---

← Back to Index