π Source: Mathlib/Algebra/Polynomial/Reverse.lean
reflect
revAt
revAtFun
reverse
coeff_one_reverse
coeff_reflect
coeff_reverse
coeff_zero_reverse
evalβ_reflect_eq_zero_iff
evalβ_reflect_mul_pow
evalβ_reverse_eq_zero_iff
evalβ_reverse_mul_pow
natDegree_eq_reverse_natDegree_add_natTrailingDegree
natDegree_reflect_le
natTrailingDegree_reverse
reflect_C
reflect_C_mul
reflect_C_mul_X_pow
reflect_add
reflect_eq_zero_iff
reflect_map
reflect_monomial
reflect_mul
reflect_mul_induction
reflect_neg
reflect_one
reflect_one_X
reflect_reflect
reflect_sub
reflect_support
reflect_zero
revAtFun_eq
revAtFun_inj
revAtFun_invol
revAt_add
revAt_eq_self_of_lt
revAt_invol
revAt_le
revAt_zero
reverse_C
reverse_C_add
reverse_X_mul
reverse_X_pow_mul
reverse_add_C
reverse_eq_zero
reverse_leadingCoeff
reverse_mul
reverse_mul_X
reverse_mul_X_pow
reverse_mul_of_domain
reverse_natDegree
reverse_natDegree_le
reverse_neg
reverse_trailingCoeff
reverse_zero
trailingCoeff_mul
isNilpotent_reflect_iff
coeff_mirror
Matrix.reverse_charpoly
LaurentPolynomial.toLaurent_reverse
isNilpotent_reverse_iff
coeff
nextCoeff
nextCoeff.eq_1
coeff_eq_zero_of_natDegree_lt
Nat.instZeroLEOneClass
Nat.instCanonicallyOrderedAdd
zero_tsub
Nat.instOrderedSub
pos_iff_ne_zero
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Finsupp.embDomain_apply_self
natDegree
reverse.eq_1
leadingCoeff
zero_le
tsub_zero
leadingCoeff.eq_1
evalβ
CommSemiring.toSemiring
Invertible.invOf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
MulZeroClass.zero_mul
mul_one
one_pow
mul_invOf_self
mul_pow
mul_assoc
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
induction_with_natDegree_le
evalβ_zero
evalβ_mul
evalβ_C
evalβ_X_pow
pow_add
invOf_mul_self
evalβ_add
add_mul
Distrib.rightDistribClass
le_rfl
natTrailingDegree
natDegree_zero
natTrailingDegree_zero
le_antisymm
tsub_le_iff_right
le_natDegree_of_ne_zero
natTrailingDegree_le_natDegree
trailingCoeff_nonzero_iff_nonzero
le_tsub_iff_left
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
natTrailingDegree_le_of_ne_zero
leadingCoeff_eq_zero
natTrailingDegree_eq_zero
leadingCoeff_ne_zero
eq_or_ne
RingHom
Polynomial
semiring
RingHom.instFunLike
C
instMul
X
pow_zero
ext
coeff_C_mul
instAdd
coeff_add
instZero
ofFinsupp_eq_zero
reflect.eq_1
Finsupp.embDomain_eq_zero
map
coeff_map
one_mul
C_1
Finset.card
support
C_mul_X_pow_eq_self
X_pow_mul
add_comm
MulZeroClass.mul_zero
eraseLead_add_C_mul_X_pow
mul_add
Distrib.leftDistribClass
lt_of_lt_of_le
eraseLead_support_card_lt
le_trans
eraseLead_natDegree_le_aux
le_add_left
card_support_C_mul_X_pow_le_one
natDegree_C_mul_X_pow_le
Ring.toSemiring
instNeg
neg_eq_neg_one_mul
C_neg
instOne
RingHom.map_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
pow_one
tsub_self
instSub
sub_eq_add_neg
Finset.image
Finset.ext
support_ofFinsupp
le_add_right
Eq.le
add_assoc
add_left_comm
add_tsub_cancel_left
natDegree_C
commute_X
commute_X_pow
natDegree_add_C
trailingCoeff
trailingCoeff.eq_1
natDegree_mul'
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
Subsingleton.to_isCancelMulZero
Unique.instSubsingleton
natDegree_mul_X
natDegree_X
pow_succ
add_tsub_cancel_right
natDegree_le_iff_degree_le
degree_le_iff_coeff_zero
revAt.eq_1
not_le_of_gt
Nat.cast_lt
WithBot.addLeftMono
WithBot.zeroLEOneClass
WithBot.charZero
Nat.instCharZero
natDegree_neg
leadingCoeff_mul
---
β Back to Index