Documentation Verification Report

RingDivision

πŸ“ Source: Mathlib/Algebra/Polynomial/RingDivision.lean

Statistics

MetricCount
DefinitionsmodByMonicHom
1
Theoremsaeval_ne_zero_of_natDegree_ne_one, irreducible_of_degree_eq_one, mem_nonZeroDivisors, neg_one_pow_natDegree_mul_comp_neg_X, prime_of_degree_eq_one, aeval_modByMonic_eq_self_of_root, aeval_ne_zero_of_isCoprime, degree_eq_degree_of_associated, degree_pos_of_aeval_root, exists_multiset_roots, irreducible_C_mul_X_add_C, irreducible_X, irreducible_X_sub_C, irreducible_of_degree_eq_one_of_isRelPrime_coeff, isCoprime_X_sub_C_of_isUnit_sub, mem_ker_modByMonic, mem_nonZeroDivisors_of_leadingCoeff, mem_nonZeroDivisors_of_trailingCoeff, modByMonicHom_apply, natDegree_pos_of_aeval_root, natDegree_pos_of_monic_of_aeval_eq_zero, pairwise_coprime_X_sub_C, prime_X, prime_X_sub_C, rootMultiplicity_X_sub_C, rootMultiplicity_X_sub_C_pow, rootMultiplicity_X_sub_C_self, rootMultiplicity_eq_natTrailingDegree, rootMultiplicity_eq_rootMultiplicity, rootMultiplicity_mul, rootMultiplicity_mul', rootMultiplicity_mul_X_sub_C_pow, smul_modByMonic, trailingDegree_mul
34
Total35

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_ne_zero_of_natDegree_ne_one πŸ“–β€”Irreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
Ring.toSemiring
β€”β€”Polynomial.aeval_algebraMap_apply_eq_algebraMap_eval
not_isRoot_of_natDegree_ne_one
FaithfulSMul.algebraMap_injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass

Polynomial

Definitions

NameCategoryTheorems
modByMonicHom πŸ“–CompOp
3 mathmath: modByMonicHom_apply, mem_ker_modByMonic, ker_modByMonicHom

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_modByMonic_eq_self_of_root πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
Ring.toSemiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
modByMonic
CommRing.toRing
β€”modByMonic_eq_sub_mul_div
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
MulZeroClass.zero_mul
sub_zero
aeval_ne_zero_of_isCoprime πŸ“–β€”IsCoprime
Polynomial
CommSemiring.toSemiring
commSemiring
β€”β€”map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
MulZeroClass.mul_zero
add_zero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
NeZero.one
degree_eq_degree_of_associated πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
degreeβ€”degree_mul
IsDomain.to_noZeroDivisors
degree_coe_units
IsDomain.toNontrivial
add_zero
degree_pos_of_aeval_root πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
Nat.instMulZeroClass
degree
β€”natDegree_pos_iff_degree_pos
natDegree_pos_of_aeval_root
exists_multiset_roots πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Multiset.card
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset.count
rootMultiplicity
CommRing.toRing
β€”β€”
irreducible_C_mul_X_add_C πŸ“–mathematicalIsRelPrime
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Irreducible
Polynomial
semiring
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
X
β€”irreducible_of_degree_eq_one_of_isRelPrime_coeff
Mathlib.Tactic.ComputeDegree.degree_eq_of_le_of_coeff_ne_zero'
degree_add_le_of_le
degree_mul_le_of_le
degree_C_le
degree_X_le
Mathlib.Tactic.ComputeDegree.coeff_congr_lhs
Mathlib.Tactic.ComputeDegree.coeff_add_of_eq
Mathlib.Tactic.ComputeDegree.coeff_mul_add_of_le_natDegree_of_eq_ite
Mathlib.Tactic.ComputeDegree.natDegree_C_le
natDegree_X_le
coeff_C
coeff_X
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
mul_one
add_zero
Nat.cast_zero
coeff_add
mul_coeff_zero
coeff_C_zero
coeff_X_zero
MulZeroClass.mul_zero
zero_add
coeff_mul_X
coeff_C_succ
IsRelPrime.symm
irreducible_X πŸ“–mathematicalβ€”Irreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”Prime.irreducible
instIsCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsDomain.toIsCancelMulZero
prime_X
irreducible_X_sub_C πŸ“–mathematicalβ€”Irreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”Prime.irreducible
instIsCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsDomain.toIsCancelMulZero
prime_X_sub_C
irreducible_of_degree_eq_one_of_isRelPrime_coeff πŸ“–mathematicaldegree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
WithBot.one
Nat.instOne
IsRelPrime
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coeff
Irreducible
Polynomial
semiring
β€”isUnit_iff
IsDomain.to_noZeroDivisors
not_le
zero_lt_one'
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
NeZero.charZero_one
WithBot.charZero
Nat.instCharZero
Nat.WithBot.add_eq_one_iff
degree_mul
eq_C_of_degree_eq_zero
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coeff_C_mul
mul_comm
LT.lt.le
isCoprime_X_sub_C_of_isUnit_sub πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
IsCoprime
Polynomial
commSemiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”neg_mul_comm
left_distrib
Distrib.leftDistribClass
neg_add_eq_sub
sub_sub_sub_cancel_left
C_sub
C_mul
C_1
IsUnit.val_inv_mul
mem_ker_modByMonic πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
modByMonicHom
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
β€”LinearMap.mem_ker
modByMonic_eq_zero_iff_dvd
mem_nonZeroDivisors_of_leadingCoeff πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
leadingCoeff
Polynomial
semiring
β€”mem_nonzeroDivisors_of_coeff_mem
mem_nonZeroDivisors_of_trailingCoeff πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
trailingCoeff
Polynomial
semiring
β€”mem_nonzeroDivisors_of_coeff_mem
modByMonicHom_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
module
Semiring.toModule
LinearMap.instFunLike
modByMonicHom
modByMonic
CommRing.toRing
β€”β€”
natDegree_pos_of_aeval_root πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
natDegreeβ€”natDegree_pos_of_evalβ‚‚_root
natDegree_pos_of_monic_of_aeval_eq_zero πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
natDegreeβ€”natDegree_pos_of_aeval_root
Monic.ne_zero
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
pairwise_coprime_X_sub_C πŸ“–mathematicalβ€”Pairwise
Function.onFun
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsCoprime
commSemiring
Semifield.toCommSemiring
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”isCoprime_X_sub_C_of_isUnit_sub
Ne.isUnit
sub_ne_zero_of_ne
prime_X πŸ“–mathematicalβ€”Prime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
X
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
sub_zero
prime_X_sub_C
prime_X_sub_C πŸ“–mathematicalβ€”Prime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”X_sub_C_ne_zero
IsDomain.toNontrivial
not_isUnit_X_sub_C
eval_mul
IsDomain.to_noZeroDivisors
rootMultiplicity_X_sub_C πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”rootMultiplicity_X_sub_C_self
rootMultiplicity_eq_zero
root_X_sub_C
rootMultiplicity_X_sub_C_pow πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”rootMultiplicity_mul_X_sub_C_pow
RingHom.map_one_ne_zero
nontrivial
zero_add
one_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
rootMultiplicity_C
rootMultiplicity_X_sub_C_self πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”rootMultiplicity_X_sub_C_pow
pow_one
rootMultiplicity_eq_natTrailingDegree πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
natTrailingDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
comp
Polynomial
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”rootMultiplicity_eq_rootMultiplicity
rootMultiplicity_eq_natTrailingDegree'
rootMultiplicity_eq_rootMultiplicity πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
comp
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”rootMultiplicity_eq_multiplicity
C_0
sub_zero
aeval_sub
aeval_X
AlgHom.commutes
add_sub_cancel_right
multiplicity_map_eq
RingEquivClass.toMulEquivClass
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
rootMultiplicity_mul πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
β€”left_ne_zero_of_mul
right_ne_zero_of_mul
rootMultiplicity_eq_multiplicity
multiplicity_mul
instIsCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsDomain.toIsCancelMulZero
prime_X_sub_C
finiteMultiplicity_X_sub_C
rootMultiplicity_mul' πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
β€”rootMultiplicity_eq_natTrailingDegree
mul_comp
natTrailingDegree_mul'
eval_divByMonic_eq_trailingCoeff_comp
rootMultiplicity_mul_X_sub_C_pow πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”Monic.mul_left_ne_zero
Monic.pow
monic_X_sub_C
le_antisymm
rootMultiplicity_le_iff
add_assoc
add_comm
pow_add
dvd_cancel_right_mem_nonZeroDivisors
Monic.mem_nonZeroDivisors
pow_rootMultiplicity_not_dvd
le_rootMultiplicity_iff
mul_dvd_mul_right
pow_rootMultiplicity_dvd
smul_modByMonic πŸ“–mathematicalβ€”modByMonic
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.toSMul
semiring
algebraOfAlgebra
Algebra.id
Ring.toSemiring
β€”subsingleton_or_nontrivial
Unique.instSubsingleton
div_modByMonic_unique
mul_smul_comm
Algebra.to_smulCommClass
smul_add
modByMonic_add_div
LE.le.trans_lt
degree_smul_le
degree_modByMonic_lt
modByMonic_eq_of_not_monic
trailingDegree_mul πŸ“–mathematicalβ€”trailingDegree
Polynomial
instMul
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”MulZeroClass.zero_mul
trailingDegree_zero
top_add
MulZeroClass.mul_zero
add_top
trailingDegree_eq_natTrailingDegree
mul_ne_zero
instNoZeroDivisors
natTrailingDegree_mul
WithTop.coe_add

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
irreducible_of_degree_eq_one πŸ“–mathematicalPolynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
WithBot.one
Nat.instOne
Polynomial.Monic
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
β€”Prime.irreducible
Polynomial.instIsCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsDomain.toIsCancelMulZero
prime_of_degree_eq_one
mem_nonZeroDivisors πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Polynomial.semiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”Polynomial.mem_nonzeroDivisors_of_coeff_mem
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
coeff_natDegree
neg_one_pow_natDegree_mul_comp_neg_X πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Polynomial.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instNeg
CommRing.toRing
Polynomial.instOne
Polynomial.natDegree
Polynomial.comp
Polynomial.X
β€”mul_comm
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_neg
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
Polynomial.monic_mul_C_of_leadingCoeff_mul_eq_one
Polynomial.comp_neg_X_leadingCoeff_eq
leadingCoeff
mul_one
Even.neg_pow
one_pow
prime_of_degree_eq_one πŸ“–mathematicalPolynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
WithBot.one
Nat.instOne
Polynomial.Monic
Prime
Polynomial
CommSemiring.toCommMonoidWithZero
Polynomial.commSemiring
β€”map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_neg_eq_add
leadingCoeff
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
one_mul
Polynomial.eq_X_add_C_of_degree_eq_one
Polynomial.prime_X_sub_C

---

← Back to Index