Documentation Verification Report

Roots

πŸ“ Source: Mathlib/Algebra/Polynomial/Roots.lean

Statistics

MetricCount
Definitionsaroots, instMulActionElemRootSetOfSMulCommClass, nthRoots, nthRootsFinset, rootSet, rootSetFintype, roots
7
Theoremsroots_eq, prod_X_sub_C_dvd_iff_le_roots, C_leadingCoeff_mul_prod_multiset_X_sub_C, irreducible_iff_degree_lt, isUnit_leadingCoeff_of_dvd, mem_rootSet, roots_map_of_card_eq_natDegree, aeval_eq_zero_of_mem_rootSet, aroots_C, aroots_C_mul, aroots_C_mul_X_pow, aroots_X, aroots_X_pow, aroots_X_sub_C, aroots_def, aroots_map, aroots_monomial, aroots_mul, aroots_neg, aroots_one, aroots_pow, aroots_smul_nonzero, aroots_zero, bUnion_roots_finite, card_le_degree_of_subset_roots, card_nthRoots, card_roots, card_roots', card_roots_X_pow_sub_C, card_roots_le_map, card_roots_le_map_of_injective, card_roots_le_one_of_irreducible, card_roots_map_le_degree, card_roots_map_le_natDegree, card_roots_sub_C, card_roots_sub_C', count_map_roots, count_map_roots_of_injective, count_roots, eq_of_infinite_eval_eq, eq_of_natDegree_lt_card_of_eval_eq, eq_of_natDegree_lt_card_of_eval_eq', eq_rootMultiplicity_map, eq_zero_of_forall_eval_zero_of_natDegree_lt_card, eq_zero_of_infinite_isRoot, eq_zero_of_natDegree_lt_card_of_eval_eq_zero, eq_zero_of_natDegree_lt_card_of_eval_eq_zero', exists_eval_ne_zero_of_natDegree_lt_card, exists_max_root, exists_min_root, exists_prod_multiset_X_sub_C_mul, filter_roots_map_range_eq_map_roots, finite_setOf_isRoot, funext, instIsScalarTowerElemRootSet, instSMulCommClassElemRootSet, isRoot_of_mem_roots, le_rootMultiplicity_map, map_mem_nthRootsFinset, map_mem_nthRootsFinset_one, map_roots_le, map_roots_le_of_injective, mem_aroots, mem_aroots', mem_nthRoots, mem_nthRootsFinset, mem_rootSet, mem_rootSet', mem_rootSet_of_injective, mem_rootSet_of_ne, mem_roots, mem_roots', mem_roots_iff_aeval_eq_zero, mem_roots_map_of_injective, mem_roots_sub_C, mem_roots_sub_C', monic_finprod_X_sub_C, monic_multisetProd_X_sub_C, monic_prod_X_sub_C, mul_mem_nthRootsFinset, ncard_rootSet_le, ne_zero_of_mem_nthRootsFinset, ne_zero_of_mem_rootSet, ne_zero_of_mem_roots, nthRootsFinset_def, nthRootsFinset_toSet, nthRootsFinset_zero, nthRoots_two_eq_zero_iff, nthRoots_two_one, nthRoots_zero, nthRoots_zero_right, ofMultiset_injective, one_mem_nthRootsFinset, preimage_eval_singleton, prod_multiset_X_sub_C_dvd, prod_multiset_X_sub_C_of_monic_of_roots_card_eq, prod_multiset_root_eq_finset_root, rightInverse_ofMultiset_roots, coe_smul, rootSet_C, rootSet_def, rootSet_finite, rootSet_mapsTo, rootSet_maps_to', rootSet_neg, rootSet_one, rootSet_zero, le_of_dvd, roots_C, roots_C_mul, roots_C_mul_X_add_C_of_IsUnit, roots_C_mul_X_pow, roots_C_mul_X_sub_C_of_IsUnit, roots_X, roots_X_add_C, roots_X_pow, roots_X_sub_C, roots_def, roots_eq_of_degree_eq_card, roots_eq_of_degree_le_card, roots_eq_of_degree_le_card_of_ne_zero, roots_eq_of_natDegree_le_card_of_ne_zero, roots_eq_zero_iff_eq_zero_or_isRoot_eq_bot, roots_eq_zero_iff_isRoot_eq_bot, roots_eq_zero_of_irreducible_of_natDegree_ne_one, roots_list_prod, roots_map_of_injective_of_card_eq_natDegree, roots_map_of_map_ne_zero_of_card_eq_natDegree, roots_monomial, roots_mul, roots_multiset_prod, roots_multiset_prod_X_sub_C, roots_neg, roots_ofMultiset, roots_one, roots_pow, roots_prod, roots_prod_X_sub_C, roots_smul_nonzero, roots_zero, smul_mem_rootSet, smul_mem_rootSet_iff, smul_mem_rootSet_iff_of_isUnit, zero_of_eval_zero
144
Total151

Associated

Theorems

NameKindAssumesProvesValidatesDepends On
roots_eq πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.rootsβ€”Polynomial.eq_C_of_degree_eq_zero
Polynomial.degree_coe_units
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
mul_comm
Polynomial.roots_C_mul
Polynomial.coeff_coe_units_zero_ne_zero

Multiset

Theorems

NameKindAssumesProvesValidatesDepends On
prod_X_sub_C_dvd_iff_le_roots πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
prod
CommRing.toCommMonoid
map
Polynomial.instSub
CommRing.toRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Polynomial.roots
β€”le_iff_count
Polynomial.count_roots
Polynomial.le_rootMultiplicity_iff
prod_replicate
map_replicate
filter_eq
Dvd.dvd.trans
prod_dvd_prod_of_le
map_le_map
filter_le
Polynomial.prod_multiset_X_sub_C_dvd

Polynomial

Definitions

NameCategoryTheorems
aroots πŸ“–CompOp
45 mathmath: IntermediateField.AdjoinSimple.trace_gen_eq_sum_roots, mem_aroots', aroots_smul_nonzero, isConjRoot_iff_mem_minpoly_aroots, aroots_X_sub_C, aroots_quadratic_eq_pair_iff_of_ne_zero', aroots_X, nodup_aroots_iff_of_splits, aroots_C_mul, aroots_map, Splits.aeval_eq_prod_aroots, rootSet_def, trace_eq_sum_roots, aeval_eq_prod_aroots_sub_of_monic_of_splits, Algebra.IsAlgebraic.lift_cardinalMk_le_sigma_polynomial, IsAlgClosed.card_aroots_eq_natDegree, aroots_zero, Algebra.IsAlgebraic.cardinalMk_le_sigma_polynomial, IsAlgClosed.card_aroots_eq_natDegree_of_leadingCoeff_ne_zero, aroots_quadratic_eq_pair_iff_of_ne_zero, IntermediateField.algHomAdjoinIntegralEquiv_symm_apply_gen, ConjRootClass.nodup_aroots_minpoly, aroots_C_mul_X_pow, IntermediateField.AdjoinSimple.norm_gen_eq_prod_roots, Splits.aeval_eq_prod_aroots_of_monic, ConjRootClass.aroots_minpoly_eq_carrier_val, aeval_eq_prod_aroots_sub_of_splits, ConjRootClass.carrier_eq_mk_aroots_minpoly, PowerBasis.trace_gen_eq_sum_roots, aroots_monomial, aroots_X_pow, natSepDegree_eq_of_isAlgClosed, aroots_neg, mem_aroots, PowerBasis.liftEquiv'_apply_coe, IsAlgClosed.card_aroots_eq_natDegree_of_isUnit_leadingCoeff, Algebra.norm_eq_prod_roots, aroots_one, aroots_mul, PowerBasis.liftEquiv'_symm_apply_apply, Algebra.PowerBasis.norm_gen_eq_prod_roots, natSepDegree_eq_of_splits, aroots_def, aroots_C, aroots_pow
instMulActionElemRootSetOfSMulCommClass πŸ“–CompOp
5 mathmath: instSMulCommClassElemRootSet, instIsScalarTowerElemRootSet, rootSet.coe_smul, Splits.toPermHom_apply_eq_one_or_isSwap_of_ncard_le_of_mem_inertia, Splits.surjective_toPermHom_of_iSup_inertia_eq_top
nthRoots πŸ“–CompOp
16 mathmath: mem_rootsOfUnity_iff_mem_nthRoots, nthRoots_zero_right, nthRoots_two_one, card_nthRoots, card_nthRoots_subgroup_units, nthRoots_zero, IsPrimitiveRoot.nthRoots_one_nodup, nthRoots_two_eq_zero_iff, nthRootsFinset_def, rootsOfUnityEquivNthRoots_apply, IsPrimitiveRoot.card_nthRoots_one, mem_nthRoots, IsPrimitiveRoot.nthRoots_nodup, IsPrimitiveRoot.card_nthRoots, rootsOfUnityEquivNthRoots_symm_apply, IsPrimitiveRoot.nthRoots_eq
nthRootsFinset πŸ“–CompOp
12 mathmath: IsPrimitiveRoot.nthRoots_one_eq_biUnion_primitiveRoots, IsPrimitiveRoot.mem_nthRootsFinset, nthRootsFinset_toSet, X_pow_sub_one_eq_prod, one_mem_nthRootsFinset, IsPrimitiveRoot.card_nthRootsFinset, IsPrimitiveRoot.ntRootsFinset_pairwise_associated_sub_one_sub_of_prime, nthRootsFinset_def, nthRootsFinset_zero, IsPrimitiveRoot.pow_sub_pow_eq_prod_sub_mul, IsPrimitiveRoot.pow_add_pow_eq_prod_add_mul, mem_nthRootsFinset
rootSet πŸ“–CompOp
61 mathmath: Gal.galActionHom_restrict, rootSet_mapsTo, Gal.smul_def, card_rootSet_le_derivative, Gal.restrict_smul, Gal.galActionHom_injective, mem_rootSet_of_injective, ConjRootClass.rootSet_minpoly_eq_carrier, Gal.mapRoots_bijective, IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic, IsSplittingField.adjoin_rootSet, IsNormalClosure.adjoin_rootSet, instSMulCommClassElemRootSet, SplittingFieldAux.adjoin_rootSet, normalClosure_eq_iSup_adjoin', card_rootSet_eq_natDegree_iff_of_splits, adjoin_rootSet_eq_range, Splits.adjoin_rootSet_eq_range, isConjRoot_iff_mem_minpoly_rootSet, smul_mem_rootSet_iff, rootSet_zero, rootSet_C_mul_X_pow, rootSet_derivative_subset_convexHull_rootSet, IntermediateField.exists_finset_of_mem_supr'', rootSet_def, Splits.image_rootSet, IsSplittingField.adjoin_rootSet', Monic.mem_rootSet, image_rootSet, rootSet_finite, rootSet_maps_to', card_rootSet_eq_natDegree, rootSet_C, Gal.galAction_isPretransitive, IntermediateField.isSplittingField_iff, mem_rootSet', rootSet_one, instIsScalarTowerElemRootSet, normalClosure_eq_iSup_adjoin, Splits.image_rootSet_of_map_ne_zero, mem_rootSet, rootSet.coe_smul, ncard_rootSet_le, smul_mem_rootSet_iff_of_isUnit, mem_rootSet_of_ne, Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv, rootSet_monomial, rootSet_X_pow, rootSet_prod, Algebra.IsAlgebraic.range_eval_eq_rootSet_minpoly, Algebra.IsAlgebraic.range_eval_eq_rootSet_minpoly_of_splits, IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_nth_roots, IsSplittingField.adjoin_rootSet_eq_range, NumberField.Embeddings.range_eval_eq_rootSet_minpoly, preimage_eval_singleton, SplittingField.adjoin_rootSet, isSplittingField_iff_intermediateField, Algebra.IsAlgebraic.normalClosure_eq_iSup_adjoin_of_splits, Algebra.IsAlgebraic.normalClosure_le_iSup_adjoin, IntermediateField.adjoin_rootSet_isSplittingField, rootSet_neg
rootSetFintype πŸ“–CompOp
4 mathmath: card_rootSet_le_derivative, card_rootSet_eq_natDegree_iff_of_splits, card_rootSet_eq_natDegree, Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv
roots πŸ“–CompOp
176 mathmath: rightInverse_ofMultiset_roots, IsAlgClosed.roots_eq_zero_iff_degree_nonpos, roots_normalize, roots_expand, roots_scaleRoots, mahlerMeasure_eq_leadingCoeff_mul_prod_roots, card_roots_le_map, mem_roots_sub_C', roots_monomial, card_roots_sub_C', Splits.nextCoeff_eq_neg_sum_roots_mul_leadingCoeff, one_le_prod_max_one_norm_roots, Splits.eval_derivative, irreducible_iff_roots_eq_zero_of_degree_le_three, roots_C_mul_X_pow, eq_prod_roots_of_splits, eq_prod_roots_of_monic_of_splits_id, Splits.roots_map_of_injective, map_sub_roots_sprod_eq_prod_map_eval, IsAlgClosed.card_roots_eq_natDegree, roots_C_mul, roots_eq_zero_iff_isRoot_eq_bot, roots_degree_eq_one, count_map_roots, IsPrimitiveRoot.is_roots_of_minpoly, roots_zero, natDegree_eq_card_roots', Splits.eval_derivative_eq_eval_mul_sum, card_roots_le_derivative, roots_eq_zero_of_irreducible_of_natDegree_ne_one, rootsExpandPowEquivRoots_apply, card_roots_map_le_degree, IsSepClosed.roots_eq_zero_iff, prod_roots_eq_coeff_zero_of_monic_of_splits, FiniteField.roots_X_pow_card_sub_X, Splits.degree_eq_card_roots, eval_derivative_of_splits, roots_X_pow_char_pow_sub_C_pow, Multiset.prod_X_sub_C_dvd_iff_le_roots, prod_multiset_root_eq_finset_root, IsAlgClosed.card_roots_map_eq_natDegree_of_isUnit_leadingCoeff, rootsExpandEquivRoots_apply, card_roots_toFinset_le_card_roots_derivative_diff_roots_succ, Splits.coeff_zero_eq_prod_roots_of_monic, prod_multiset_X_sub_C_dvd, coeff_zero_eq_leadingCoeff_mul_prod_roots_of_splits, resultant_eq_prod_eval, mem_roots_map_of_injective, roots_pow, cyclotomic.roots_to_finset_eq_primitiveRoots, roots_expand_map_frobenius, roots_expand_image_frobenius, roots_C_mul_X_sub_C_of_IsUnit, bUnion_roots_finite, roots_quadratic_eq_pair_iff_of_ne_zero, count_map_roots_of_injective, rootsExpandPowToRoots_apply, roots_C_mul_X_add_C, roots_cyclotomic_nodup, eval_derivative_eq_eval_mul_sum_of_splits, Splits.eq_prod_roots, spectralNorm.spectralNorm_pow_natDegree_eq_prod_roots, Splits.eval_derivative_div_eval_of_ne_zero, prod_max_one_norm_roots_le_mahlerMeasure_of_one_le_leadingCoeff, IsAlgClosed.card_roots_map_eq_natDegree_from_simpleRing, roots_X_sub_C, Matrix.det_eq_prod_roots_charpoly_of_splits, count_roots, map_roots_le, map_sub_sprod_roots_eq_prod_map_eval, Subfield.roots_X_pow_char_sub_X_bot, Splits.roots_map, roots_eq_of_degree_le_card_of_ne_zero, Matrix.trace_eq_sum_roots_charpoly, logMahlerMeasure_eq_log_leadingCoeff_add_sum_log_roots, eq_centerMass_of_eval_derivative_eq_zero, roots_expand_image_frobenius_subset, Splits.eval_eq_prod_roots_of_monic, Matrix.IsHermitian.roots_charpoly_eq_eigenvalues, roots_X, Splits.nextCoeff_eq_neg_sum_roots_of_monic, IsAlgClosed.roots_eq_zero_iff_natDegree_eq_zero, eq_prod_roots_of_splits_id, Matrix.IsHermitian.sort_roots_charpoly_eq_eigenvaluesβ‚€, eval_eq_prod_roots_sub_of_splits_id, splits_iff_card_roots, roots_X_pow_char_sub_C_pow, Matrix.trace_eq_sum_roots_charpoly_of_splits, roots_ofMultiset, roots_expand_pow_map_iterateFrobenius_le, roots_multiset_prod_X_sub_C, eval_derivative_div_eval_of_ne_zero_of_splits, map_roots_le_of_injective, Splits.eval_eq_prod_roots, card_roots_le_one_of_irreducible, Splits.dvd_iff_roots_le_roots, cyclotomic.roots_eq_primitiveRoots_val, card_roots', card_roots_X_pow_sub_C, filter_roots_map_range_eq_map_roots, mem_roots_sub_C, roots_smul_nonzero, roots_eq_of_degree_eq_card, mem_roots_iff_aeval_eq_zero, Splits.natDegree_eq_card_roots, card_roots_map_le_natDegree, eval_eq_prod_roots_sub_of_monic_of_splits_id, roots_expand_pow_map_iterateFrobenius, aeval_derivative_of_splits, sum_roots_eq_nextCoeff_of_monic_of_split, sum_derivRootWeight_pos, IsAlgClosed.card_roots_map_eq_natDegree_of_injective, nextCoeff_eq_neg_sum_roots_of_monic_of_splits, roots_prod, roots_mul, mem_roots, roots_list_prod, mem_roots', rootsExpandToRoots_apply, Splits.map_roots, Splits.eq_prod_roots_of_monic, resultant_eq_prod_roots_sub, roots.le_of_dvd, card_roots, degree_eq_card_roots, mem_roots_map, Chebyshev.roots_T_real, IsAlgClosed.card_roots_map_eq_natDegree_of_leadingCoeff_ne_zero, roots_one, Matrix.IsHermitian.roots_charpoly_eq_eigenvaluesβ‚€, roots_C_mul_X_sub_C, Splits.coeff_zero_eq_leadingCoeff_mul_prod_roots, roots_of_cyclotomic, roots_quadratic_eq_pair_iff_of_ne_zero', Matrix.det_eq_prod_roots_charpoly, roots_X_pow_char_sub_C, evalβ‚‚_derivative_of_splits, Associated.roots_eq, roots_expand_image_iterateFrobenius, roots_expand_pow_image_iterateFrobenius_subset, roots_neg, IsAlgClosed.roots_eq_zero_iff, card_roots_le_map_of_injective, coeff_eq_esymm_roots_of_splits, roots_eq_zero_iff_eq_zero_or_isRoot_eq_bot, nodup_roots_iff_of_splits, roots_expand_pow, exists_prod_multiset_X_sub_C_mul, Cubic.map_roots, roots_eq_of_degree_le_card, degree_eq_card_roots', roots_X_pow, roots_X_add_C, roots_multiset_prod, Splits.roots_map_of_ne_zero, natDegree_eq_card_roots, roots_countP_pos_le_signVariations, aroots_def, count_roots_le_one, roots_C_mul_X_add_C_of_IsUnit, roots_eq_of_natDegree_le_card_of_ne_zero, roots_C, card_roots_toFinset_le_derivative, IsAlgClosed.associated_iff_roots_eq_roots, nodup_roots, card_roots_sub_C, roots_map, roots_expand_map_frobenius_le, Chebyshev.roots_U_real, Monic.irreducible_iff_roots_eq_zero_of_degree_le_three, IsAlgClosed.dvd_iff_roots_le_roots, roots_X_pow_char_pow_sub_C, roots_def, coeff_zero_eq_prod_roots_of_monic_of_splits, roots_prod_X_sub_C, nextCoeff_eq_neg_sum_roots_mul_leadingCoeff_of_splits

Theorems

NameKindAssumesProvesValidatesDepends On
C_leadingCoeff_mul_prod_multiset_X_sub_C πŸ“–mathematicalMultiset.card
roots
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
β€”eq_leadingCoeff_mul_of_monic_of_dvd_of_natDegree_le
monic_multisetProd_X_sub_C
prod_multiset_X_sub_C_dvd
Eq.ge
natDegree_multiset_prod_X_sub_C_eq_card
IsDomain.toNontrivial
aeval_eq_zero_of_mem_rootSet πŸ“–mathematicalSet
Set.instMembership
rootSet
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_rootSet'
aroots_C πŸ“–mathematicalβ€”aroots
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Multiset
Multiset.instZero
β€”aroots_def
map_C
roots_C
aroots_C_mul πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”aroots_def
map_mul
map_C
roots_C_mul
map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
aroots_C_mul_X_pow πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Multiset.instSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”aroots_C_mul
aroots_X_pow
aroots_X πŸ“–mathematicalβ€”aroots
X
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
Multiset.instSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”aroots_def
map_X
roots_X
aroots_X_pow πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Multiset.instSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”aroots_pow
aroots_X
aroots_X_sub_C πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Multiset
Multiset.instSingleton
algebraMap
β€”aroots_def
map_sub
map_X
map_C
roots_X_sub_C
aroots_def πŸ“–mathematicalβ€”aroots
roots
map
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
β€”β€”
aroots_map πŸ“–mathematicalβ€”aroots
map
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
β€”aroots_def
map_map
IsScalarTower.algebraMap_eq
aroots_monomial πŸ“–mathematicalβ€”aroots
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Multiset.instSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”C_mul_X_pow_eq_monomial
aroots_C_mul_X_pow
aroots_mul πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
Multiset
Multiset.instAdd
β€”map_mul
map_ne_zero_iff
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
aroots_def
roots_mul
aroots_neg πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instNeg
CommRing.toRing
β€”aroots.eq_1
map_neg
roots_neg
aroots_one πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
Multiset
Multiset.instZero
β€”aroots_C
aroots_pow πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
β€”aroots_def
map_pow
roots_pow
aroots_smul_nonzero πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.toSMul
semiring
algebraOfAlgebra
Algebra.id
β€”smul_eq_C_mul
aroots_C_mul
aroots_zero πŸ“–mathematicalβ€”aroots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Multiset
Multiset.instZero
β€”C_0
aroots_C
bUnion_roots_finite πŸ“–mathematicalβ€”Set.Finite
Set.iUnion
Polynomial
natDegree
SetLike.coe
Finset
Finset.instSetLike
Multiset.toFinset
roots
map
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Set.Finite.biUnion
Set.Finite.of_finite_image
Set.Finite.subset
Set.Finite.pi
Finite.of_fintype
Set.image_subset_iff
ext_iff_natDegree_le
Finset.finite_toSet
card_le_degree_of_subset_roots πŸ“–mathematicalMultiset
Multiset.instHasSubset
Finset.val
roots
Finset.card
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”LE.le.trans
Multiset.card_le_card
Finset.val_le_iff_val_subset
card_roots'
card_nthRoots πŸ“–mathematicalβ€”Multiset.card
nthRoots
β€”Nat.instCanonicallyOrderedAdd
WithBot.coe_le_coe
le_trans
card_roots
pow_zero
C_1
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
degree_C_le
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
degree_X_pow_sub_C
IsDomain.toNontrivial
X_pow_sub_C_ne_zero
card_roots πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Multiset.card
roots
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”exists_multiset_roots
card_roots' πŸ“–mathematicalβ€”Multiset.card
roots
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”roots.congr_simp
roots_zero
WithBot.coe_le_coe
le_trans
card_roots
le_of_eq
degree_eq_natDegree
card_roots_X_pow_sub_C πŸ“–mathematicalβ€”Multiset.card
roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”WithBot.coe_le_coe
card_roots
X_pow_sub_C_ne_zero
IsDomain.toNontrivial
degree_X_pow_sub_C
card_roots_le_map πŸ“–mathematicalβ€”Multiset.card
roots
map
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Multiset.card_map
Multiset.card_le_card
map_roots_le
card_roots_le_map_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Multiset.card
roots
map
β€”roots.congr_simp
roots_zero
map_zero
card_roots_le_map
map_ne_zero_iff
card_roots_le_one_of_irreducible πŸ“–mathematicalIrreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Multiset.card
roots
β€”Multiset.empty_or_exists_mem
Nat.instCanonicallyOrderedAdd
natDegree_eq_of_degree_eq_some
degree_eq_one_of_irreducible_of_root
isRoot_of_mem_roots
card_roots'
card_roots_map_le_degree πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Multiset.card
roots
map
CommSemiring.toSemiring
CommRing.toCommSemiring
degree
β€”roots.congr_simp
roots_zero
CharP.cast_eq_zero
CharP.ofCharZero
WithBot.charZero
Nat.instCharZero
LE.le.trans
card_roots
degree_map_le
card_roots_map_le_natDegree πŸ“–mathematicalβ€”Multiset.card
roots
map
CommSemiring.toSemiring
CommRing.toCommSemiring
natDegree
β€”LE.le.trans
card_roots'
natDegree_map_le
card_roots_sub_C πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Multiset.card
roots
Polynomial
instSub
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”card_roots
sub_eq_zero
not_le_of_gt
degree_C_le
sub_eq_add_neg
C_neg
degree_add_C
card_roots_sub_C' πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset.card
roots
Polynomial
instSub
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
natDegree
β€”WithBot.coe_le_coe
le_trans
card_roots_sub_C
le_of_eq
degree_eq_natDegree
count_map_roots πŸ“–mathematicalβ€”Multiset.count
Multiset.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
roots
rootMultiplicity
CommRing.toRing
map
Ring.toSemiring
β€”le_rootMultiplicity_iff
Multiset.prod_replicate
Multiset.map_replicate
Multiset.filter_eq
Dvd.dvd.trans
Multiset.prod_dvd_prod_of_le
Multiset.map_le_map
Multiset.filter_le
Multiset.map_map
Multiset.map_congr
map_multiset_prod
map_sub
map_X
map_C
map_dvd
prod_multiset_X_sub_C_dvd
count_map_roots_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Multiset.count
Multiset.map
roots
rootMultiplicity
CommRing.toRing
map
Ring.toSemiring
β€”Multiset.count.congr_simp
Multiset.map_congr
roots.congr_simp
roots_zero
map_zero
rootMultiplicity_zero
count_map_roots
map_ne_zero_iff
count_roots πŸ“–mathematicalβ€”Multiset.count
roots
rootMultiplicity
CommRing.toRing
β€”Multiset.count.congr_simp
roots.congr_simp
roots_zero
Multiset.count_eq_zero_of_notMem
rootMultiplicity_zero
exists_multiset_roots
roots_def
eq_of_infinite_eval_eq πŸ“–β€”Set.Infinite
setOf
eval
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”sub_eq_zero
eq_zero_of_infinite_isRoot
eval_sub
eq_of_natDegree_lt_card_of_eval_eq πŸ“–β€”eval
CommSemiring.toSemiring
CommRing.toCommSemiring
natDegree
Fintype.card
β€”β€”sub_eq_zero
eq_zero_of_natDegree_lt_card_of_eval_eq_zero
eval_sub
eq_of_natDegree_lt_card_of_eval_eq' πŸ“–β€”eval
CommSemiring.toSemiring
CommRing.toCommSemiring
natDegree
Finset.card
β€”β€”eq_of_natDegree_lt_card_of_eval_eq
Subtype.val_injective
Subtype.prop
LT.lt.trans_eq
Fintype.card_coe
eq_rootMultiplicity_map πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
rootMultiplicity
CommRing.toRing
map
Ring.toSemiring
β€”rootMultiplicity_zero
map_zero
le_antisymm
le_rootMultiplicity_map
map_ne_zero_iff
le_rootMultiplicity_iff
map_dvd_map
Monic.pow
monic_X_sub_C
map_pow
map_sub
map_X
map_C
pow_rootMultiplicity_dvd
eq_zero_of_forall_eval_zero_of_natDegree_lt_card πŸ“–mathematicaleval
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instNatCast
natDegree
Polynomial
instZero
β€”finite_or_infinite
eq_zero_of_natDegree_lt_card_of_eval_eq_zero
Cardinal.mk_fintype
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
zero_of_eval_zero
eq_zero_of_infinite_isRoot πŸ“–mathematicalSet.Infinite
setOf
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instZero
β€”not_imp_comm
finite_setOf_isRoot
eq_zero_of_natDegree_lt_card_of_eval_eq_zero πŸ“–mathematicaleval
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
natDegree
Fintype.card
Polynomial
instZero
β€”lt_irrefl
Multiset.toFinset_card_le
card_roots'
Set.card_range_of_injective
Set.toFinset_card
Set.toFinset_range
Finset.card_mono
eq_zero_of_natDegree_lt_card_of_eval_eq_zero' πŸ“–mathematicaleval
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
natDegree
Finset.card
Polynomial
instZero
β€”eq_zero_of_natDegree_lt_card_of_eval_eq_zero
Subtype.val_injective
Subtype.prop
LT.lt.trans_eq
Fintype.card_coe
exists_eval_ne_zero_of_natDegree_lt_card πŸ“–β€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instNatCast
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
eq_zero_of_forall_eval_zero_of_natDegree_lt_card
exists_max_root πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.exists_upper_bound_image
Nontrivial.to_nonempty
IsDomain.toNontrivial
finite_setOf_isRoot
exists_min_root πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.exists_lower_bound_image
Nontrivial.to_nonempty
IsDomain.toNontrivial
finite_setOf_isRoot
exists_prod_multiset_X_sub_C_mul πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
Multiset.prod
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
roots
Multiset.card
natDegree
Multiset
Multiset.instZero
β€”prod_multiset_X_sub_C_dvd
eq_or_ne
roots_zero
add_zero
MulZeroClass.mul_zero
Monic.natDegree_mul'
monic_multisetProd_X_sub_C
natDegree_multiset_prod_X_sub_C_eq_card
IsDomain.toNontrivial
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
roots_multiset_prod_X_sub_C
roots_mul
mul_ne_zero
instNoZeroDivisors
IsDomain.to_noZeroDivisors
Monic.ne_zero
filter_roots_map_range_eq_map_roots πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Multiset.filter
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
roots
map
Multiset.map
β€”Multiset.ext'
Multiset.count_filter
count_roots
Multiset.count_map_eq_count'
eq_rootMultiplicity_map
Multiset.count_eq_zero
Multiset.mem_map
finite_setOf_isRoot πŸ“–mathematicalβ€”Set.Finite
setOf
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”mem_roots
Finset.finite_toSet
funext πŸ“–β€”eval
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”sub_eq_zero
zero_of_eval_zero
eval_sub
instIsScalarTowerElemRootSet πŸ“–mathematicalβ€”IsScalarTower
Set.Elem
rootSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instMulActionElemRootSetOfSMulCommClass
β€”smul_assoc
instSMulCommClassElemRootSet πŸ“–mathematicalβ€”SMulCommClass
Set.Elem
rootSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instMulActionElemRootSetOfSMulCommClass
β€”SMulCommClass.smul_comm
isRoot_of_mem_roots πŸ“–mathematicalMultiset
Multiset.instMembership
roots
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”mem_roots'
le_rootMultiplicity_map πŸ“–mathematicalβ€”rootMultiplicity
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
map
Ring.toSemiring
β€”le_rootMultiplicity_iff
trans
instIsTransDvd
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_sub
RingHomClass.toAddMonoidHomClass
coe_mapRingHom
map_X
map_C
dvd_refl
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
pow_rootMultiplicity_dvd
map_mem_nthRootsFinset πŸ“–mathematicalFinset
Finset.instMembership
nthRootsFinset
DFunLike.coeβ€”nthRootsFinset.congr_simp
nthRootsFinset_zero
mem_nthRootsFinset
map_pow
map_mem_nthRootsFinset_one πŸ“–mathematicalFinset
Finset.instMembership
nthRootsFinset
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coeβ€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_mem_nthRootsFinset
map_roots_le πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Multiset.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
roots
map
β€”Multiset.le_iff_count
count_roots
count_map_roots
map_roots_le_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Multiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Multiset.map
roots
map
β€”Multiset.map_congr
roots.congr_simp
roots_zero
map_zero
map_roots_le
map_ne_zero_iff
mem_aroots πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
aroots
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_aroots'
map_ne_zero_iff
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
mem_aroots' πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
aroots
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_roots'
IsRoot.def
evalβ‚‚_eq_eval_map
aeval_def
mem_nthRoots πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
nthRoots
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”nthRoots.eq_1
mem_roots
X_pow_sub_C_ne_zero
IsDomain.toNontrivial
IsRoot.def
eval_sub
eval_C
eval_pow
eval_X
sub_eq_zero
mem_nthRootsFinset πŸ“–mathematicalβ€”Finset
Finset.instMembership
nthRootsFinset
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”nthRootsFinset_def
Multiset.mem_toFinset
mem_nthRoots
mem_rootSet πŸ“–mathematicalβ€”Set
Set.instMembership
rootSet
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_rootSet'
map_ne_zero_iff
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
mem_rootSet' πŸ“–mathematicalβ€”Set
Set.instMembership
rootSet
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”rootSet_def
Finset.mem_coe
Multiset.mem_toFinset
mem_aroots'
mem_rootSet_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Set
Set.instMembership
rootSet
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Multiset.mem_toFinset
mem_roots_map_of_injective
mem_rootSet_of_ne πŸ“–mathematicalβ€”Set
Set.instMembership
rootSet
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_rootSet
mem_roots πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
roots
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”mem_roots'
mem_roots' πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
roots
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Multiset.count_pos
count_roots
rootMultiplicity_pos'
mem_roots_iff_aeval_eq_zero πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
roots
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”aeval_def
mem_roots_map_of_injective
FaithfulSMul.algebraMap_injective
instFaithfulSMul
Algebra.algebraMap_self
map_id
mem_roots_map_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Multiset
Multiset.instMembership
roots
map
evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_roots
map_ne_zero_iff
IsRoot.eq_1
eval_map
mem_roots_sub_C πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
Multiset.instMembership
roots
Polynomial
instSub
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
β€”mem_roots_sub_C'
LT.lt.not_ge
degree_C_le
mem_roots_sub_C' πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
eval
β€”mem_roots'
IsRoot.def
sub_ne_zero
eval_sub
sub_eq_zero
eval_C
monic_finprod_X_sub_C πŸ“–mathematicalβ€”Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
finprod
Polynomial
CommRing.toCommMonoid
commRing
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”monic_finprod_of_monic
monic_X_sub_C
monic_multisetProd_X_sub_C πŸ“–mathematicalβ€”Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset.prod
Polynomial
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”monic_multiset_prod_of_monic
monic_X_sub_C
monic_prod_X_sub_C πŸ“–mathematicalβ€”Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Finset.prod
Polynomial
CommRing.toCommMonoid
commRing
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”monic_prod_of_monic
monic_X_sub_C
mul_mem_nthRootsFinset πŸ“–mathematicalFinset
Finset.instMembership
nthRootsFinset
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”nthRootsFinset_zero
mem_nthRootsFinset
mul_pow
ncard_rootSet_le πŸ“–mathematicalβ€”Set.ncard
rootSet
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”rootSet.eq_1
Set.ncard_coe_finset
le_imp_le_of_le_of_le
Multiset.toFinset_card_le
le_refl
card_roots_map_le_natDegree
ne_zero_of_mem_nthRootsFinset πŸ“–β€”Finset
Finset.instMembership
nthRootsFinset
β€”β€”nthRootsFinset_zero
zero_pow
mem_nthRootsFinset
ne_zero_of_mem_rootSet πŸ“–β€”Set
Set.instMembership
rootSet
β€”β€”rootSet_zero
ne_zero_of_mem_roots πŸ“–β€”Multiset
Multiset.instMembership
roots
β€”β€”mem_roots'
nthRootsFinset_def πŸ“–mathematicalβ€”nthRootsFinset
Multiset.toFinset
nthRoots
β€”Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
nthRootsFinset_toSet πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
nthRootsFinset
setOf
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Set.ext
nthRootsFinset_zero πŸ“–mathematicalβ€”nthRootsFinset
Finset
Finset.instEmptyCollection
β€”nthRootsFinset_def
nthRoots_zero
nthRoots_two_eq_zero_iff πŸ“–mathematicalβ€”nthRoots
Multiset
Multiset.instZero
IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”mem_nthRoots
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
nthRoots_two_one πŸ“–mathematicalβ€”nthRoots
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Multiset
Multiset.instInsert
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Multiset.instSingleton
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_pow
coeff_sub
coeff_X_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
coeff_one_zero
zero_sub
NeZero.one
IsDomain.toNontrivial
nthRoots.eq_1
roots_mul
roots_X_add_C
roots_X_sub_C
nthRoots_zero πŸ“–mathematicalβ€”nthRoots
Multiset
Multiset.instZero
β€”roots.congr_simp
pow_zero
roots_C
nthRoots_zero_right πŸ“–mathematicalβ€”nthRoots
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Multiset.replicate
β€”nthRoots.eq_1
RingHom.map_zero
sub_zero
roots_pow
roots_X
Multiset.nsmul_singleton
ofMultiset_injective πŸ“–mathematicalβ€”Multiset
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AddChar
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
AddChar.instFunLike
ofMultiset
β€”Function.RightInverse.injective
rightInverse_ofMultiset_roots
one_mem_nthRootsFinset πŸ“–mathematicalβ€”Finset
Finset.instMembership
nthRootsFinset
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”mem_nthRootsFinset
one_pow
preimage_eval_singleton πŸ“–mathematicalβ€”Set.preimage
eval
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instSingletonSet
rootSet
Polynomial
instSub
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Algebra.id
β€”Set.ext
mem_rootSet_of_ne
sub_ne_zero
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
NoZeroDivisors.toNoZeroSMulDivisors
IsDomain.to_noZeroDivisors
aeval_sub
aeval_C
prod_multiset_X_sub_C_dvd πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Multiset.prod
CommRing.toCommMonoid
Multiset.map
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
roots
β€”map_dvd_map
IsFractionRing.injective
Localization.isLocalization
monic_multisetProd_X_sub_C
prod_multiset_root_eq_finset_root
map_prod
Finset.prod_dvd_of_coprime
map_pow
map_sub
map_C
map_X
IsCoprime.pow
pairwise_coprime_X_sub_C
map_dvd
pow_rootMultiplicity_dvd
prod_multiset_X_sub_C_of_monic_of_roots_card_eq πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset.card
roots
natDegree
Multiset.prod
Polynomial
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”Monic.leadingCoeff
C_1
one_mul
C_leadingCoeff_mul_prod_multiset_X_sub_C
prod_multiset_root_eq_finset_root πŸ“–mathematicalβ€”Multiset.prod
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
roots
Finset.prod
Multiset.toFinset
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
rootMultiplicity
β€”Finset.prod_multiset_map_count
Finset.prod_congr
count_roots
rightInverse_ofMultiset_roots πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
DFunLike.coe
AddChar
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
AddChar.instFunLike
ofMultiset
roots
β€”roots_ofMultiset
rootSet_C πŸ“–mathematicalβ€”rootSet
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Set
Set.instEmptyCollection
β€”rootSet_def
aroots_C
Multiset.toFinset_zero
Finset.coe_empty
rootSet_def πŸ“–mathematicalβ€”rootSet
SetLike.coe
Finset
Finset.instSetLike
Multiset.toFinset
aroots
β€”rootSet.eq_1
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
rootSet_finite πŸ“–mathematicalβ€”Set.Finite
rootSet
β€”Set.toFinite
Finite.of_fintype
rootSet_mapsTo πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
rootSet
β€”rootSet_maps_to'
map_zero
map_injective
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
rootSet_maps_to' πŸ“–mathematicalmap
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
Polynomial
instZero
Set.MapsTo
DFunLike.coe
AlgHom
AlgHom.funLike
rootSet
β€”mem_rootSet'
aeval_algHom
AlgHom.comp_apply
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
rootSet_neg πŸ“–mathematicalβ€”rootSet
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instNeg
CommRing.toRing
β€”rootSet.eq_1
aroots_neg
rootSet_one πŸ“–mathematicalβ€”rootSet
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
Set
Set.instEmptyCollection
β€”C_1
rootSet_C
rootSet_zero πŸ“–mathematicalβ€”rootSet
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Set
Set.instEmptyCollection
β€”C_0
rootSet_C
roots_C πŸ“–mathematicalβ€”roots
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Multiset
Multiset.instZero
β€”C_0
roots_zero
Multiset.ext
count_roots
Multiset.count_zero
rootMultiplicity_eq_zero
not_isRoot_C
roots_C_mul πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”roots.congr_simp
MulZeroClass.mul_zero
roots_mul
instNoZeroDivisors
IsDomain.to_noZeroDivisors
roots_C
zero_add
roots_C_mul_X_add_C_of_IsUnit πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Multiset
Multiset.instSingleton
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units
Units.instInv
β€”sub_neg_eq_add
C_neg
roots_C_mul_X_sub_C_of_IsUnit
mul_neg
roots_C_mul_X_pow πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Multiset.instSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”roots_C_mul
roots_X_pow
roots_C_mul_X_sub_C_of_IsUnit πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Multiset
Multiset.instSingleton
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units
Units.instInv
β€”roots_C_mul
Units.ne_zero
IsDomain.toNontrivial
mul_sub
mul_assoc
C_mul
Units.inv_mul
C_1
one_mul
roots_X_sub_C
roots_X πŸ“–mathematicalβ€”roots
X
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
Multiset.instSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”roots_X_sub_C
C_0
sub_zero
roots_X_add_C πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Multiset
Multiset.instSingleton
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
β€”roots.congr_simp
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_neg_eq_add
roots_X_sub_C
roots_X_pow πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Multiset.instSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”roots_pow
roots_X
roots_X_sub_C πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Multiset
Multiset.instSingleton
β€”Multiset.ext'
count_roots
rootMultiplicity_X_sub_C
IsDomain.toNontrivial
Multiset.count_singleton
roots_def πŸ“–mathematicalβ€”roots
Multiset
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Multiset.instEmptyCollection
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Multiset.card
degree
exists_multiset_roots
β€”exists_multiset_roots
roots_eq_of_degree_eq_card πŸ“–mathematicaleval
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Finset.card
degree
roots
Finset.val
β€”roots_eq_of_degree_le_card_of_ne_zero
Mathlib.Tactic.Contrapose.contrapose₃
roots_eq_of_degree_le_card πŸ“–mathematicaleval
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Finset.card
degree
roots
Finset.val
β€”roots_eq_of_degree_eq_card
roots_eq_of_degree_le_card_of_ne_zero πŸ“–mathematicaleval
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Finset.card
roots
Finset.val
β€”Multiset.eq_of_le_of_card_le
Finset.val_le_iff_val_subset
mem_roots
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
LE.le.trans
card_roots
roots_eq_of_natDegree_le_card_of_ne_zero πŸ“–mathematicaleval
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
natDegree
Finset.card
roots
Finset.val
β€”roots_eq_of_degree_le_card_of_ne_zero
degree_le_of_natDegree_le
roots_eq_zero_iff_eq_zero_or_isRoot_eq_bot πŸ“–mathematicalβ€”roots
Multiset
Multiset.instZero
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
IsRoot
Bot.bot
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”eq_or_ne
roots_zero
roots_eq_zero_iff_isRoot_eq_bot
roots_eq_zero_iff_isRoot_eq_bot πŸ“–mathematicalβ€”roots
Multiset
Multiset.instZero
IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Bot.bot
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”Iff.not
mem_roots
Multiset.eq_zero_of_forall_notMem
roots_eq_zero_of_irreducible_of_natDegree_ne_one πŸ“–mathematicalIrreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
roots
Multiset
Multiset.instZero
β€”Multiset.exists_mem_of_ne_zero
natDegree_eq_of_degree_eq_some
degree_eq_one_of_irreducible_of_root
mem_roots'
roots_list_prod πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
roots
instMul
instOne
Multiset.bind
Multiset.ofList
β€”roots_one
roots_mul
mul_ne_zero
instNoZeroDivisors
IsDomain.to_noZeroDivisors
List.prod_ne_zero
nontrivial
IsDomain.toNontrivial
Multiset.cons_coe
Multiset.cons_bind
roots_map_of_injective_of_card_eq_natDegree πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Multiset.card
roots
natDegree
Multiset.map
map
β€”Multiset.eq_of_le_of_card_le
map_roots_le_of_injective
Multiset.card_map
card_roots_map_le_natDegree
roots_map_of_map_ne_zero_of_card_eq_natDegree πŸ“–mathematicalMultiset.card
roots
natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
map
β€”Multiset.eq_of_le_of_card_le
map_roots_le
Multiset.card_map
card_roots_map_le_natDegree
roots_monomial πŸ“–mathematicalβ€”roots
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Multiset.instSingleton
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”C_mul_X_pow_eq_monomial
roots_C_mul_X_pow
roots_mul πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
Multiset
Multiset.instAdd
β€”Multiset.ext
Multiset.count_add
count_roots
rootMultiplicity_mul
roots_multiset_prod πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
Multiset.instMembership
instZero
roots
Multiset.prod
CommRing.toCommMonoid
commRing
Multiset.bind
β€”roots_list_prod
roots_multiset_prod_X_sub_C πŸ“–mathematicalβ€”roots
Multiset.prod
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”roots_multiset_prod
Multiset.mem_map
X_sub_C_ne_zero
IsDomain.toNontrivial
Multiset.bind_map
roots_X_sub_C
Multiset.bind_singleton
Multiset.map_id'
roots_neg πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instNeg
CommRing.toRing
β€”neg_one_smul
roots_smul_nonzero
neg_ne_zero
one_ne_zero
NeZero.one
IsDomain.toNontrivial
roots_ofMultiset πŸ“–mathematicalβ€”roots
DFunLike.coe
AddChar
Multiset
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
AddChar.instFunLike
ofMultiset
β€”roots_multiset_prod_X_sub_C
roots_one πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
Multiset
Multiset.instEmptyCollection
β€”roots_C
roots_pow πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Multiset
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
β€”pow_zero
roots_one
zero_smul
Multiset.empty_eq_zero
eq_or_ne
zero_pow
roots_zero
smul_zero
pow_succ
roots_mul
mul_ne_zero
instNoZeroDivisors
IsDomain.to_noZeroDivisors
pow_ne_zero
isReduced_of_noZeroDivisors
add_smul
one_smul
roots_prod πŸ“–mathematicalβ€”roots
Finset.prod
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRing.toCommMonoid
commRing
Multiset.bind
Finset.val
β€”instNoZeroDivisors
IsDomain.to_noZeroDivisors
nontrivial
IsDomain.toNontrivial
Multiset.bind_map
roots_multiset_prod
roots_prod_X_sub_C πŸ“–mathematicalβ€”roots
Finset.prod
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRing.toCommMonoid
commRing
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Finset.val
β€”roots_prod
Finset.prod_ne_zero_iff
nontrivial
IsDomain.toNontrivial
instNoZeroDivisors
IsDomain.to_noZeroDivisors
X_sub_C_ne_zero
roots_X_sub_C
Multiset.bind_singleton
Multiset.map_id'
roots_smul_nonzero πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.toSMul
semiring
algebraOfAlgebra
Algebra.id
β€”smul_eq_C_mul
roots_C_mul
roots_zero πŸ“–mathematicalβ€”roots
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
instZero
Multiset
Multiset.instZero
β€”β€”
smul_mem_rootSet πŸ“–mathematicalSet
Set.instMembership
rootSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
β€”mem_rootSet'
aeval_smul
aeval_eq_zero_of_mem_rootSet
smul_zero
smul_mem_rootSet_iff πŸ“–mathematicalβ€”Set
Set.instMembership
rootSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulSemiringAction.toDistribMulAction
Ring.toSemiring
β€”smul_mem_rootSet_iff_of_isUnit
Group.isUnit
smul_mem_rootSet_iff_of_isUnit πŸ“–mathematicalIsUnitSet
Set.instMembership
rootSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
β€”smul_mem_rootSet
inv_smul_smul
zero_of_eval_zero πŸ“–mathematicaleval
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial
instZero
β€”Fintype.false
Multiset.mem_toFinset
mem_roots

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
irreducible_iff_degree_lt πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
IsUnit
β€”irreducible_iff_lt_natDegree_lt
IsDomain.to_noZeroDivisors
Polynomial.degree_pos_of_not_isUnit_of_dvd_monic
isUnit_leadingCoeff_of_dvd
Polynomial.monic_of_isUnit_leadingCoeff_inv_smul
Polynomial.degree_smul_of_smul_regular
isSMulRegular_of_group
dvd_trans
Units.smul_def
Polynomial.smul_eq_C_mul
IsUnit.mul_left_dvd
Polynomial.isUnit_C
Units.isUnit
dvd_refl
LT.lt.ne'
Polynomial.degree_eq_zero_of_isUnit
IsDomain.toNontrivial
isUnit_leadingCoeff_of_dvd πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.leadingCoeff
β€”isUnit_of_dvd_one
leadingCoeff
Polynomial.leadingCoeff_dvd_leadingCoeff
IsDomain.to_noZeroDivisors
mem_rootSet πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
Polynomial.rootSet
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”ne_zero
IsDomain.toNontrivial
map
roots_map_of_card_eq_natDegree πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset.card
Polynomial.roots
Polynomial.natDegree
Multiset.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.map
β€”Polynomial.roots_map_of_map_ne_zero_of_card_eq_natDegree
Polynomial.map_monic_ne_zero
IsDomain.toNontrivial

Polynomial.rootSet

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul πŸ“–mathematicalβ€”Set
Set.instMembership
Polynomial.rootSet
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Polynomial.instMulActionElemRootSetOfSMulCommClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
β€”β€”

Polynomial.roots

Theorems

NameKindAssumesProvesValidatesDepends On
le_of_dvd πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Multiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Polynomial.roots
β€”Multiset.le_iff_exists_add
Polynomial.roots_mul

---

← Back to Index