Documentation Verification Report

Splits

πŸ“ Source: Mathlib/Algebra/Polynomial/Splits.lean

Statistics

MetricCount
DefinitionsSplits, rootOfSplits, rootOfSplits'
3
Theoremssplits, C, C_mul, C_mul_X_pow, X, X_add_C, X_pow, X_sub_C, adjoin_rootSet_eq_range, aeval_eq_prod_aroots, aeval_eq_prod_aroots_of_monic, coeff_zero_eq_leadingCoeff_mul_prod_roots, coeff_zero_eq_prod_roots_of_monic, comp_X_add_C, comp_X_sub_C, comp_neg_X, comp_of_degree_le_one, comp_of_degree_le_one_of_invertible, comp_of_degree_le_one_of_monic, comp_of_map_degree_le_one, comp_of_natDegree_le_one, comp_of_natDegree_le_one_of_invertible, comp_of_natDegree_le_one_of_monic, def, degree_eq_card_roots, degree_eq_one_of_irreducible, degree_le_one_of_irreducible, dvd_iff_roots_le_roots, dvd_of_roots_le_roots, eq_X_sub_C_of_single_root, eq_prod_roots, eq_prod_roots_of_monic, eval_derivative, eval_derivative_div_eval_of_ne_zero, eval_derivative_eq_eval_mul_sum, eval_eq_prod_roots, eval_eq_prod_roots_of_monic, eval_root_derivative, exists_eval_eq_zero, image_rootSet, image_rootSet_of_map_ne_zero, listProd, map, map_roots, mem_lift_of_roots_mem_range, mem_range_of_isRoot, mem_subfield_of_isRoot, monomial, mul, multisetProd, natDegree_eq_card_roots, natDegree_eq_one_of_irreducible, natDegree_le_one_of_irreducible, neg, nextCoeff_eq_neg_sum_roots_mul_leadingCoeff, nextCoeff_eq_neg_sum_roots_of_monic, of_algHom, of_degree_eq_one, of_degree_eq_two, of_degree_le_one, of_dvd, of_isScalarTower, of_natDegree_eq_one, of_natDegree_eq_two, of_natDegree_le_one, of_splits_map, of_splits_map_of_injective, one, pow, prod, roots_map, roots_map_of_injective, roots_map_of_ne_zero, roots_ne_zero, splits, splits_of_dvd, taylor, zero, adjoin_rootSet_eq_range, aeval_derivative_of_splits, aeval_eq_prod_aroots_sub_of_monic_of_splits, aeval_eq_prod_aroots_sub_of_splits, aeval_root_derivative_of_splits, coeff_zero_eq_leadingCoeff_mul_prod_roots_of_splits, coeff_zero_eq_prod_roots_of_monic_of_splits, degree_eq_card_roots, degree_eq_card_roots', degree_eq_one_of_irreducible_of_splits, eq_X_sub_C_of_splits_of_single_root, eq_prod_roots_of_monic_of_splits_id, eq_prod_roots_of_splits, eq_prod_roots_of_splits_id, eval_derivative_div_eval_of_ne_zero_of_splits, eval_derivative_eq_eval_mul_sum_of_splits, eval_derivative_of_splits, eval_eq_prod_roots_sub_of_monic_of_splits_id, eval_eq_prod_roots_sub_of_splits_id, eval_rootOfSplits, evalβ‚‚_derivative_of_splits, exists_root_of_splits, exists_root_of_splits', image_rootSet, map_rootOfSplits, map_rootOfSplits', map_sub_roots_sprod_eq_prod_map_eval, map_sub_sprod_roots_eq_prod_map_eval, mem_lift_of_splits_of_roots_mem_range, natDegree_eq_card_roots, natDegree_eq_card_roots', nextCoeff_eq_neg_sum_roots_mul_leadingCoeff_of_splits, nextCoeff_eq_neg_sum_roots_of_monic_of_splits, prod_roots_eq_coeff_zero_of_monic_of_splits, rootOfSplits'_eq_rootOfSplits, roots_map, roots_ne_zero_of_splits, roots_ne_zero_of_splits', splits_C, splits_X, splits_X_pow, splits_X_sub_C, splits_X_sub_C_mul_iff, splits_comp_of_splits, splits_id_iff_splits, splits_id_of_splits, splits_iff, splits_iff_card_roots, splits_iff_comp_splits_of_degree_eq_one, splits_iff_comp_splits_of_natDegree_eq_one, splits_iff_exists_multiset, splits_iff_exists_multiset', splits_iff_splits, splits_map_iff, splits_mul, splits_mul_iff, splits_neg_iff, splits_of_algHom, splits_of_comp, splits_of_degree_eq_one, splits_of_degree_eq_two, splits_of_degree_le_one, splits_of_degree_le_one_of_invertible, splits_of_degree_le_one_of_monic, splits_of_degree_le_zero, splits_of_exists_multiset, splits_of_isScalarTower, splits_of_isUnit, splits_of_map_degree_eq_one, splits_of_map_eq_C, splits_of_natDegree_eq_one, splits_of_natDegree_eq_two, splits_of_natDegree_eq_zero, splits_of_natDegree_le_one, splits_of_natDegree_le_one_of_invertible, splits_of_natDegree_le_one_of_monic, splits_of_splits_gcd_left, splits_of_splits_gcd_right, splits_of_splits_id, splits_of_splits_mul, splits_of_splits_mul', splits_of_splits_of_dvd, splits_one, splits_pow, splits_prod, splits_prod_iff, splits_zero, sum_roots_eq_nextCoeff_of_monic_of_split
166
Total169

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
splits πŸ“–mathematicalIsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Splitsβ€”Polynomial.splits_of_natDegree_eq_zero
Polynomial.natDegree_eq_zero_of_isUnit

Polynomial

Definitions

NameCategoryTheorems
Splits πŸ“–MathDef
97 mathmath: splits_iff_exists_multiset, X_pow_sub_C_splits_of_isPrimitiveRoot, splits_of_map_eq_C, splits_of_natDegree_le_one, splits_neg_iff, Splits.monomial, Normal.splits', splits_of_degree_le_zero, IsSplittingField.splits_iff, Subfield.splits_bot, splits_map_iff, Gal.restrictDvd_def, X_pow_sub_one_splits, splits_zero, Cubic.splits_iff_card_roots, IsAlgClosed.splits_codomain, Normal.splits, Splits.X_pow, splits_iff_comp_splits_of_natDegree_eq_one, splits_of_natDegree_le_one_of_invertible, IsNormalClosure.splits, splits_C, splits_one, splits_iff_comp_splits_of_degree_eq_one, IsCyclotomicExtension.splits_cyclotomic, splits_of_natDegree_eq_zero, Splits.zero, Splits.X, IsAlgClosed.factors, IsCyclotomicExtension.splits_X_pow_sub_one, Splits.def, splits_iff, IsSplittingField.splits, IsSplittingField.splits', IsSepClosed.splits_domain, SplittingField.splits, splits_id_iff_splits, Matrix.IsHermitian.splits_charpoly, Cubic.splits_iff_roots_eq_three, Splits.X_add_C, FiniteField.splits_X_pow_nat_card_sub_X, ConjRootClass.splits_minpoly, splits_iff_card_roots, splits_mul_iff, AlgebraicClosure.Monics.splits_finsetProd, splits_of_natDegree_eq_two, splits_of_degree_le_one_of_invertible, Splits.of_natDegree_eq_one, Splits.C_mul_X_pow, PerfectField.splits_of_natSepDegree_eq_one, Algebra.IsAlgebraic.isNormalClosure_iff, Gal.splits_in_splittingField_of_comp, splits_of_splits_mul, normal_iff, Splits.of_degree_eq_two, FiniteField.splits_X_pow_card_sub_X, IsSepClosed.splits_codomain, Splits.X_sub_C, splits_of_degree_eq_one, splits_of_natDegree_eq_one, IntermediateField.isSplittingField_iff, splits_of_degree_le_one, Splits.of_natDegree_le_one, perfectField_iff_splits_of_natSepDegree_eq_one, SplittingFieldAux.splits, splits_X_sub_C_mul_iff, Splits.of_degree_le_one, splits_prod_iff, splits_of_degree_le_one_of_monic, Splits.of_degree_eq_one, IsUnit.splits, IsAlgClosed.splits, splits_X, Normal.out, splits_X_sub_C, IsSepClosed.factors_of_separable, cyclotomic'_splits, IsSepClosed.splits_of_separable, splits_iff_exists_multiset', splits_X_pow, splits_of_exists_multiset, Monic.exists_splits_map, splits_of_splits_mul', splits_iff_splits, IsSplittingField.IsScalarTower.splits, splits_of_map_degree_eq_one, Splits.C, Gal.splits_β„š_β„‚, IsGalois.splits, IsAlgClosed.splits_domain, isSplittingField_iff_intermediateField, splits_of_degree_eq_two, Splits.of_natDegree_eq_two, splits_of_natDegree_le_one_of_monic, splits_of_isUnit, Splits.one, GaloisField.splits_zmod_X_pow_sub_X
rootOfSplits πŸ“–CompOp
4 mathmath: map_rootOfSplits, rootOfSplits'_eq_rootOfSplits, map_rootOfSplits', eval_rootOfSplits
rootOfSplits' πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_rootSet_eq_range πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
map
algebraMap
Algebra.adjoin
rootSet
AlgHom.range
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Splits.adjoin_rootSet_eq_range
aeval_derivative_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
leadingCoeff
Multiset.sum
Multiset.map
Multiset.prod
CommRing.toCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Multiset.erase
roots
β€”Splits.eval_derivative
aeval_eq_prod_aroots_sub_of_monic_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
map
algebraMap
Monic
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
aroots
β€”Splits.aeval_eq_prod_aroots_of_monic
aeval_eq_prod_aroots_sub_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
map
algebraMap
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
aroots
β€”Splits.aeval_eq_prod_aroots
aeval_root_derivative_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
Multiset
Multiset.instMembership
roots
eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Multiset.erase
β€”Splits.eval_root_derivative
coeff_zero_eq_leadingCoeff_mul_prod_roots_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
coeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
natDegree
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
roots
β€”Splits.coeff_zero_eq_leadingCoeff_mul_prod_roots
coeff_zero_eq_prod_roots_of_monic_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
coeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
natDegree
Multiset.prod
CommRing.toCommMonoid
roots
β€”Splits.coeff_zero_eq_prod_roots_of_monic
degree_eq_card_roots πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
degree
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Multiset.card
roots
β€”Splits.degree_eq_card_roots
degree_eq_card_roots' πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
degree
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Multiset.card
roots
β€”Splits.degree_eq_card_roots
degree_eq_one_of_irreducible_of_splits πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
degree
WithBot
WithBot.one
Nat.instOne
β€”Splits.degree_eq_one_of_irreducible
eq_X_sub_C_of_splits_of_single_root πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
roots
Multiset
Multiset.instSingleton
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
instSub
CommRing.toRing
X
β€”Splits.eq_X_sub_C_of_single_root
eq_prod_roots_of_monic_of_splits_id πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
Multiset.prod
Polynomial
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
roots
β€”Splits.eq_prod_roots_of_monic
eq_prod_roots_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
roots
β€”Splits.eq_prod_roots
eq_prod_roots_of_splits_id πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
roots
β€”Splits.eq_prod_roots
eval_derivative_div_eval_of_ne_zero_of_splits πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
Multiset.sum
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset.map
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
roots
instIsDomain
β€”Splits.eval_derivative_div_eval_of_ne_zero
eval_derivative_eq_eval_mul_sum_of_splits πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset.sum
Multiset.map
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
roots
instIsDomain
β€”Splits.eval_derivative_eq_eval_mul_sum
eval_derivative_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
leadingCoeff
Multiset.sum
Multiset.map
Multiset.prod
CommRing.toCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Multiset.erase
roots
β€”Splits.eval_derivative
eval_eq_prod_roots_sub_of_monic_of_splits_id πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
eval
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
roots
β€”Splits.eval_eq_prod_roots_of_monic
eval_eq_prod_roots_sub_of_splits_id πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
roots
β€”Splits.eval_eq_prod_roots
eval_rootOfSplits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
rootOfSplits
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Splits.exists_eval_eq_zero
evalβ‚‚_derivative_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
leadingCoeff
Multiset.sum
Multiset.map
Multiset.prod
CommRing.toCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Multiset.erase
roots
β€”Splits.eval_derivative
exists_root_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Splits.exists_eval_eq_zero
exists_root_of_splits' πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Splits.exists_eval_eq_zero
image_rootSet πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
map
algebraMap
Set.image
DFunLike.coe
AlgHom
AlgHom.funLike
rootSet
β€”Splits.image_rootSet
map_rootOfSplits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
rootOfSplits
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”eval_rootOfSplits
map_rootOfSplits' πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
eval
rootOfSplits
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”eval_rootOfSplits
map_sub_roots_sprod_eq_prod_map_eval πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
Splits
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
SProd.sprod
Multiset
Multiset.instSProd
roots
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Multiset.card
eval
β€”Multiset.map_swap_product
Multiset.map_map
Multiset.map_congr
neg_mul
one_mul
neg_sub
Multiset.prod_map_mul
Multiset.map_const'
Multiset.card_product
Multiset.prod_replicate
map_sub_sprod_roots_eq_prod_map_eval
map_sub_sprod_roots_eq_prod_map_eval πŸ“–mathematicalMonic
CommSemiring.toSemiring
CommRing.toCommSemiring
Splits
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
SProd.sprod
Multiset
Multiset.instSProd
roots
eval
β€”Splits.eq_prod_roots
one_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Monic.leadingCoeff
Multiset.map_congr
eval_multiset_prod
Multiset.prod_map_product_eq_prod_prod
Multiset.map_map
eval_sub
eval_X
eval_C
mem_lift_of_splits_of_roots_mem_range πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
Polynomial
Subsemiring
Semiring.toNonAssocSemiring
semiring
Subsemiring.instSetLike
lifts
Ring.toSemiring
β€”Splits.mem_lift_of_roots_mem_range
natDegree_eq_card_roots πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
natDegree
Multiset.card
roots
β€”Splits.natDegree_eq_card_roots
natDegree_eq_card_roots' πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
natDegree
Multiset.card
roots
β€”Splits.natDegree_eq_card_roots
nextCoeff_eq_neg_sum_roots_mul_leadingCoeff_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
nextCoeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
leadingCoeff
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
roots
β€”Splits.nextCoeff_eq_neg_sum_roots_mul_leadingCoeff
nextCoeff_eq_neg_sum_roots_of_monic_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
nextCoeff
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
roots
β€”Splits.nextCoeff_eq_neg_sum_roots_of_monic
prod_roots_eq_coeff_zero_of_monic_of_splits πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
coeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
natDegree
Multiset.prod
CommRing.toCommMonoid
roots
β€”coeff_zero_eq_prod_roots_of_monic_of_splits
rootOfSplits'_eq_rootOfSplits πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
map
rootOfSplits
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithBot
degree
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree_map
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
β€”β€”
roots_map πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
roots
map
Multiset.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Splits.map_roots
roots_ne_zero_of_splits πŸ“–β€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”Splits.roots_ne_zero
roots_ne_zero_of_splits' πŸ“–β€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”Splits.roots_ne_zero
splits_C πŸ“–mathematicalβ€”Splits
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”Splits.C
splits_X πŸ“–mathematicalβ€”Splits
X
β€”Splits.X
splits_X_pow πŸ“–mathematicalβ€”Splits
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”Splits.X_pow
splits_X_sub_C πŸ“–mathematicalβ€”Splits
Ring.toSemiring
Polynomial
instSub
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”Splits.X_sub_C
splits_X_sub_C_mul_iff πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”Splits.eq_prod_roots
mul_left_cancelβ‚€
instIsLeftCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
X_sub_C_ne_zero
IsDomain.toNontrivial
mul_left_comm
Multiset.prod_cons
Multiset.map_cons
Multiset.singleton_add
roots_X_sub_C
roots_mul
mul_ne_zero
instNoZeroDivisors
IsDomain.to_noZeroDivisors
one_mul
leadingCoeff_X_sub_C
leadingCoeff_mul
Splits.mul
Splits.X_sub_C
splits_comp_of_splits πŸ“–mathematicalSplitsmapβ€”Splits.map
splits_id_iff_splits πŸ“–mathematicalβ€”Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”map_id
splits_id_of_splits πŸ“–β€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
map
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
β€”β€”Splits.of_splits_map
splits_iff πŸ“–mathematicalβ€”Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instZero
degree
WithBot
WithBot.one
Nat.instOne
β€”splits_iff_splits
splits_iff_card_roots πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset.card
roots
natDegree
β€”Splits.natDegree_eq_card_roots
splits_iff_exists_multiset
C_leadingCoeff_mul_prod_multiset_X_sub_C
splits_iff_comp_splits_of_degree_eq_one πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
WithBot.one
Nat.instOne
Splits
comp
β€”splits_iff_comp_splits_of_natDegree_eq_one
natDegree_eq_of_degree_eq_some
splits_iff_comp_splits_of_natDegree_eq_one πŸ“–mathematicalnatDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Splits
comp
β€”Splits.comp_of_natDegree_le_one
Eq.le
exists_eq_X_add_C_of_natDegree_le_one
Mathlib.Tactic.Contrapose.contrapose₃
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
zero_add
natDegree_C
comp_assoc
add_comp
mul_comp
C_comp
X_comp
mul_assoc
C_mul
mul_inv_cancelβ‚€
C_1
one_mul
sub_add_cancel
comp_X
natDegree_C_mul
IsDomain.to_noZeroDivisors
instIsDomain
inv_eq_zero
natDegree_X_sub_C
EuclideanDomain.toNontrivial
le_refl
splits_iff_exists_multiset πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
β€”splits_iff_exists_multiset'
Multiset.map_map
Multiset.map_congr
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_neg_eq_add
splits_iff_exists_multiset' πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Multiset.prod
CommSemiring.toCommMonoid
commSemiring
Multiset.map
instAdd
X
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MonoidHom.coe_mrange
Submonoid.mem_sup
Submonoid.closure_eq
Submonoid.closure_union
Splits.eq_1
Submonoid.exists_multiset_of_mem_closure
Multiset.map_map
Multiset.map_congr
Multiset.map_id'
leadingCoeff_mul_monic
monic_multiset_prod_of_monic
leadingCoeff_C
Zero.instNonempty
Function.sometimes_spec
Splits.mul
Splits.C
Splits.multisetProd
splits_iff_splits πŸ“–mathematicalβ€”Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
instZero
degree
WithBot
WithBot.one
Nat.instOne
β€”Splits.degree_eq_one_of_irreducible
Splits.of_dvd
instIsDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
UniqueFactorizationMonoid.factors_prod
Splits.mul
Splits.multisetProd
Splits.of_degree_eq_one
UniqueFactorizationMonoid.irreducible_of_factor
UniqueFactorizationMonoid.dvd_of_mem_factors
IsUnit.splits
IsDomain.to_noZeroDivisors
Units.isUnit
splits_map_iff πŸ“–mathematicalβ€”Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
map
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.comp
Semiring.toNonAssocSemiring
β€”map_map
splits_mul πŸ“–mathematicalSplitsPolynomial
instMul
β€”Splits.mul
splits_mul_iff πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
β€”splits_of_natDegree_eq_zero
natDegree_mul
IsDomain.to_noZeroDivisors
Splits.exists_eval_eq_zero
degree_ne_of_natDegree_ne
dvd_iff_isRoot
instNoZeroDivisors
add_comm
natDegree_X_sub_C
IsDomain.toNontrivial
splits_X_sub_C_mul_iff
mul_assoc
Prime.dvd_mul
prime_X_sub_C
mul_comm
Splits.mul
splits_neg_iff πŸ“–mathematicalβ€”Splits
Ring.toSemiring
Polynomial
instNeg
β€”Splits.neg
neg_neg
splits_of_algHom πŸ“–β€”Splits
map
CommSemiring.toSemiring
algebraMap
β€”β€”Splits.of_algHom
splits_of_comp πŸ“–β€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
map
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
β€”β€”Splits.of_splits_map
splits_of_degree_eq_one πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
WithBot
WithBot.one
Nat.instOne
Splitsβ€”Splits.of_degree_eq_one
splits_of_degree_eq_two πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Splitsβ€”Splits.of_degree_eq_two
splits_of_degree_le_one πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
WithBot.one
Nat.instOne
Splitsβ€”Splits.of_degree_le_one
splits_of_degree_le_one_of_invertible πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.one
Nat.instOne
Splitsβ€”splits_of_natDegree_le_one_of_invertible
natDegree_le_of_degree_le
splits_of_degree_le_one_of_monic πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.one
Nat.instOne
Monic
Splitsβ€”splits_of_natDegree_le_one_of_monic
natDegree_le_of_degree_le
splits_of_degree_le_zero πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Splitsβ€”splits_of_natDegree_eq_zero
natDegree_eq_zero_iff_degree_le_zero
splits_of_exists_multiset πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Multiset.prod
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
β€”splits_iff_exists_multiset
splits_of_isScalarTower πŸ“–β€”Splits
CommSemiring.toSemiring
map
algebraMap
β€”β€”Splits.of_isScalarTower
splits_of_isUnit πŸ“–mathematicalIsUnit
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Splitsβ€”IsUnit.splits
splits_of_map_degree_eq_one πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
WithBot
WithBot.one
Nat.instOne
Splitsβ€”Splits.of_degree_eq_one
splits_of_map_eq_C πŸ“–mathematicalmap
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Splitsβ€”Splits.C
splits_of_natDegree_eq_one πŸ“–mathematicalnatDegree
DivisionSemiring.toSemiring
Splitsβ€”Splits.of_natDegree_eq_one
splits_of_natDegree_eq_two πŸ“–mathematicalnatDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Splitsβ€”Splits.of_natDegree_eq_two
splits_of_natDegree_eq_zero πŸ“–mathematicalnatDegreeSplitsβ€”natDegree_eq_zero
splits_of_natDegree_le_one πŸ“–mathematicalnatDegree
DivisionSemiring.toSemiring
Splitsβ€”Splits.of_natDegree_le_one
splits_of_natDegree_le_one_of_invertible πŸ“–mathematicalnatDegreeSplitsβ€”exists_eq_X_add_C_of_natDegree_le_one
eq_or_ne
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
zero_add
natDegree_add_C
natDegree_C_mul_X
coeff_add
coeff_mul_X
coeff_C_zero
coeff_C_succ
add_zero
mul_invOf_cancel_left
C_mul
mul_add
Distrib.leftDistribClass
Splits.mul
Splits.C
Splits.X_add_C
splits_of_natDegree_le_one_of_monic πŸ“–mathematicalnatDegree
Monic
Splitsβ€”splits_of_natDegree_le_one_of_invertible
Monic.leadingCoeff
splits_of_splits_gcd_left πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
EuclideanDomain.gcd
Polynomial
instEuclideanDomain
instDecidableEq
β€”Splits.of_dvd
instIsDomain
EuclideanDomain.gcd_dvd_left
splits_of_splits_gcd_right πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
EuclideanDomain.gcd
Polynomial
instEuclideanDomain
instDecidableEq
β€”Splits.of_dvd
instIsDomain
EuclideanDomain.gcd_dvd_right
splits_of_splits_id πŸ“–mathematicalSplitsmapβ€”Splits.map
splits_of_splits_mul πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
β€”splits_mul_iff
splits_of_splits_mul' πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
instMul
β€”splits_mul_iff
splits_of_splits_of_dvd πŸ“–β€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
β€”β€”Splits.of_dvd
splits_one πŸ“–mathematicalβ€”Splits
Polynomial
instOne
β€”Splits.one
splits_pow πŸ“–mathematicalSplitsPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”Splits.pow
splits_prod πŸ“–mathematicalSplits
CommSemiring.toSemiring
Finset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
β€”Splits.prod
splits_prod_iff πŸ“–mathematicalβ€”Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Finset.prod
Polynomial
CommRing.toCommMonoid
commRing
β€”Splits.of_dvd
Finset.prod_ne_zero_iff
nontrivial
IsDomain.toNontrivial
instNoZeroDivisors
IsDomain.to_noZeroDivisors
Finset.dvd_prod_of_mem
Splits.prod
splits_zero πŸ“–mathematicalβ€”Splits
Polynomial
instZero
β€”Splits.zero
sum_roots_eq_nextCoeff_of_monic_of_split πŸ“–mathematicalSplits
CommSemiring.toSemiring
CommRing.toCommSemiring
Monic
nextCoeff
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
roots
β€”nextCoeff_eq_neg_sum_roots_of_monic_of_splits

Polynomial.Splits

Theorems

NameKindAssumesProvesValidatesDepends On
C πŸ“–mathematicalβ€”Polynomial.Splits
DFunLike.coe
RingHom
Polynomial
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”Submonoid.mem_closure_of_mem
Set.mem_union_left
C_mul πŸ“–mathematicalPolynomial.SplitsPolynomial
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”mul
C
C_mul_X_pow πŸ“–mathematicalβ€”Polynomial.Splits
Polynomial
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.X
β€”C_mul
X_pow
X πŸ“–mathematicalβ€”Polynomial.Splits
Polynomial.X
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
add_zero
X_add_C
X_add_C πŸ“–mathematicalβ€”Polynomial.Splits
Polynomial
Polynomial.instAdd
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”Submonoid.mem_closure_of_mem
Set.mem_union_right
X_pow πŸ“–mathematicalβ€”Polynomial.Splits
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
β€”pow
X
X_sub_C πŸ“–mathematicalβ€”Polynomial.Splits
Ring.toSemiring
Polynomial
Polynomial.instSub
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
X_add_C
adjoin_rootSet_eq_range πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.map
algebraMap
Algebra.adjoin
Polynomial.rootSet
AlgHom.range
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”image_rootSet
Algebra.adjoin_image
Algebra.map_top
Subalgebra.map_injective
RingHom.injective
IsDomain.toNontrivial
aeval_eq_prod_aroots πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.map
algebraMap
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.leadingCoeff
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial.aroots
β€”eval_eq_prod_roots
Polynomial.leadingCoeff_map
IsDomain.toNontrivial
aeval_eq_prod_aroots_of_monic πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.map
algebraMap
Polynomial.Monic
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial.aroots
β€”eval_eq_prod_roots_of_monic
Polynomial.Monic.map
coeff_zero_eq_leadingCoeff_mul_prod_roots πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.coeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Polynomial.natDegree
Polynomial.leadingCoeff
Multiset.prod
CommRing.toCommMonoid
Polynomial.roots
β€”eq_prod_roots
Polynomial.coeff_zero_eq_eval_zero
Polynomial.eval_mul
Polynomial.eval_C
Polynomial.eval_multiset_prod
Multiset.map_map
Multiset.map_congr
Polynomial.eval_sub
Polynomial.eval_X
zero_sub
Multiset.prod_map_neg
natDegree_eq_card_roots
mul_assoc
mul_left_comm
coeff_zero_eq_prod_roots_of_monic πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.Monic
Polynomial.coeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Polynomial.natDegree
Multiset.prod
CommRing.toCommMonoid
Polynomial.roots
β€”coeff_zero_eq_leadingCoeff_mul_prod_roots
Polynomial.Monic.leadingCoeff
mul_one
comp_X_add_C πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
Polynomial.comp
Polynomial
Polynomial.instAdd
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”comp_of_natDegree_le_one_of_monic
Eq.trans_le
Polynomial.natDegree_add_C
Polynomial.natDegree_X_le
Polynomial.monic_X_add_C
comp_X_sub_C πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.comp
Polynomial
Polynomial.instSub
CommRing.toRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”comp_of_natDegree_le_one_of_monic
Eq.trans_le
Polynomial.natDegree_sub_C
Polynomial.natDegree_X_le
Polynomial.monic_X_sub_C
comp_neg_X πŸ“–mathematicalPolynomial.Splits
Ring.toSemiring
Polynomial.comp
Polynomial
Polynomial.instNeg
Polynomial.X
β€”Submonoid.closure_induction
Polynomial.C_comp
Polynomial.add_comp
Polynomial.X_comp
neg_add_eq_sub
neg_sub
neg
X_sub_C
Polynomial.one_comp
mul
Polynomial.mul_comp_neg_X
comp_of_degree_le_one πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
WithBot.one
Nat.instOne
Polynomial.compβ€”comp_of_natDegree_le_one
Polynomial.natDegree_le_of_degree_le
comp_of_degree_le_one_of_invertible πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
WithBot.one
Nat.instOne
Polynomial.compβ€”comp_of_natDegree_le_one_of_invertible
Polynomial.natDegree_le_of_degree_le
comp_of_degree_le_one_of_monic πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
WithBot.one
Nat.instOne
Polynomial.Monic
Polynomial.compβ€”comp_of_natDegree_le_one_of_monic
Polynomial.natDegree_le_of_degree_le
comp_of_map_degree_le_one πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
WithBot.one
Nat.instOne
Polynomial.compβ€”comp_of_degree_le_one
comp_of_natDegree_le_one πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.natDegree
Polynomial.compβ€”eq_or_ne
Polynomial.comp_zero
comp_of_natDegree_le_one_of_invertible
Polynomial.leadingCoeff_ne_zero
comp_of_natDegree_le_one_of_invertible πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
Polynomial.natDegree
Polynomial.compβ€”lt_or_eq_of_le
Polynomial.eq_C_of_natDegree_eq_zero
Polynomial.comp_C
Polynomial.splits_iff_exists_multiset'
Polynomial.mul_comp
Polynomial.C_comp
Polynomial.multiset_prod_comp
mul
C
multisetProd
Polynomial.splits_of_natDegree_le_one_of_invertible
Polynomial.add_comp
Polynomial.X_comp
Polynomial.natDegree_add_C
Polynomial.coeff_add
Polynomial.coeff_C_succ
add_zero
Polynomial.leadingCoeff.eq_1
comp_of_natDegree_le_one_of_monic πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
Polynomial.natDegree
Polynomial.Monic
Polynomial.compβ€”comp_of_natDegree_le_one_of_invertible
Polynomial.Monic.leadingCoeff
def πŸ“–mathematicalβ€”Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
Polynomial.instZero
Polynomial.degree
WithBot
WithBot.one
Nat.instOne
β€”Polynomial.splits_iff_splits
degree_eq_card_roots πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.degree
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Multiset.card
Polynomial.roots
β€”Polynomial.degree_eq_iff_natDegree_eq
natDegree_eq_card_roots
degree_eq_one_of_irreducible πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.degree
WithBot
WithBot.one
Nat.instOne
β€”le_antisymm
degree_le_one_of_irreducible
WithBot.one_le_iff_pos
Nat.instZeroLEOneClass
Polynomial.degree_pos_of_irreducible
degree_le_one_of_irreducible πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
WithBot.one
Nat.instOne
β€”Polynomial.degree_le_of_natDegree_le
natDegree_le_one_of_irreducible
dvd_iff_roots_le_roots πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Polynomial.roots
instIsDomain
β€”instIsDomain
Polynomial.roots.le_of_dvd
dvd_of_roots_le_roots
dvd_of_roots_le_roots πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Multiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
β€”instIsDomain
eq_prod_roots
Polynomial.C_mul_dvd
Polynomial.leadingCoeff_ne_zero
Dvd.dvd.trans
Multiset.prod_dvd_prod_of_le
Multiset.map_le_map
Polynomial.prod_multiset_X_sub_C_dvd
eq_X_sub_C_of_single_root πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.roots
Multiset
Multiset.instSingleton
Polynomial
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.leadingCoeff
Polynomial.instSub
CommRing.toRing
Polynomial.X
β€”eq_prod_roots
Multiset.prod_singleton
Polynomial.leadingCoeff_mul
IsDomain.to_noZeroDivisors
Polynomial.leadingCoeff_C
Polynomial.leadingCoeff_X_sub_C
mul_one
eq_prod_roots πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.leadingCoeff
Multiset.prod
CommRing.toCommMonoid
Polynomial.commRing
Multiset.map
Polynomial.instSub
CommRing.toRing
Polynomial.X
Polynomial.roots
β€”Polynomial.leadingCoeff_eq_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Multiset.map_congr
Polynomial.roots.congr_simp
Polynomial.roots_zero
mul_one
Polynomial.splits_iff_exists_multiset
Polynomial.roots_C_mul
Polynomial.roots_multiset_prod_X_sub_C
eq_prod_roots_of_monic πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.Monic
Multiset.prod
Polynomial
CommRing.toCommMonoid
Polynomial.commRing
Multiset.map
Polynomial.instSub
CommRing.toRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.roots
β€”eq_prod_roots
Polynomial.Monic.leadingCoeff
Polynomial.C_1
one_mul
eval_derivative πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.leadingCoeff
Multiset.sum
Multiset.map
Multiset.prod
CommRing.toCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Multiset.erase
Polynomial.roots
β€”eq_prod_roots
Polynomial.derivative_mul
Polynomial.derivative_C
MulZeroClass.zero_mul
Polynomial.derivative_prod
Multiset.map_congr
Polynomial.derivative_sub
Polynomial.derivative_X
sub_zero
mul_one
zero_add
Polynomial.eval_mul
Polynomial.eval_C
Polynomial.eval_multisetSum
Multiset.map_map
Polynomial.eval_multiset_prod
Polynomial.eval_sub
Polynomial.eval_X
eval_derivative_div_eval_of_ne_zero πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Polynomial.eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
Multiset.sum
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset.map
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Polynomial.roots
instIsDomain
β€”instIsDomain
eval_derivative_eq_eval_mul_sum
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
eval_derivative_eq_eval_mul_sum πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset.sum
Multiset.map
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Polynomial.roots
instIsDomain
β€”instIsDomain
eval_derivative
eval_eq_prod_roots
Multiset.map_congr
mul_assoc
Multiset.prod_map_erase
mul_one_div
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
eval_eq_prod_roots πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.eval
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.leadingCoeff
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial.roots
β€”eq_prod_roots
Polynomial.eval_mul
Polynomial.eval_C
Polynomial.eval_multiset_prod
Multiset.map_map
Multiset.map_congr
Polynomial.eval_sub
Polynomial.eval_X
eval_eq_prod_roots_of_monic πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.Monic
Polynomial.eval
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial.roots
β€”eval_eq_prod_roots
Polynomial.Monic.leadingCoeff
one_mul
eval_root_derivative πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.Monic
Multiset
Multiset.instMembership
Polynomial.roots
Polynomial.eval
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.derivative
Multiset.prod
CommRing.toCommMonoid
Multiset.map
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Multiset.erase
β€”Polynomial.eval_multiset_prod_X_sub_C_derivative
eq_prod_roots_of_monic
exists_eval_eq_zero πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Polynomial.splits_iff_exists_multiset
Polynomial.leadingCoeff_eq_zero
Polynomial.eval_zero
Zero.instNonempty
Multiset.empty_or_exists_mem
Polynomial.degree_C
mul_one
Multiset.prod_zero
Multiset.map_zero
Multiset.exists_cons_of_mem
Multiset.map_cons
Multiset.prod_cons
Polynomial.eval_mul
Polynomial.eval_C
Polynomial.eval_sub
Polynomial.eval_X
sub_self
MulZeroClass.zero_mul
MulZeroClass.mul_zero
image_rootSet πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.map
algebraMap
Set.image
DFunLike.coe
AlgHom
AlgHom.funLike
Polynomial.rootSet
β€”Polynomial.rootSet.eq_1
Finset.coe_image
Multiset.toFinset_map
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.coe_toRingHom
roots_map
Polynomial.map_map
AlgHom.comp_algebraMap
image_rootSet_of_map_ne_zero πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.map
algebraMap
Set.image
DFunLike.coe
AlgHom
AlgHom.funLike
Polynomial.rootSet
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.map_map
AlgHom.comp_algebraMap
roots_map_of_ne_zero
Multiset.map_congr
Multiset.toFinset_map
Finset.coe_image
listProd πŸ“–mathematicalPolynomial.SplitsPolynomial
Polynomial.instMul
Polynomial.instOne
β€”list_prod_mem
Submonoid.instSubmonoidClass
map πŸ“–mathematicalPolynomial.SplitsPolynomial.mapβ€”Submonoid.closure_induction
Polynomial.map_C
Polynomial.map_add
Polynomial.map_X
Polynomial.map_one
Polynomial.map_mul
map_roots πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.roots
Polynomial.map
Multiset.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”roots_map
mem_lift_of_roots_mem_range πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.Monic
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
Polynomial
Subsemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
Subsemiring.instSetLike
Polynomial.lifts
Ring.toSemiring
β€”eq_prod_roots_of_monic
Polynomial.lifts_iff_liftsRing
Subring.multiset_prod_mem
Multiset.mem_map
Subring.sub_mem
Polynomial.X_mem_lifts
Polynomial.C'_mem_lifts
mem_range_of_isRoot πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.IsRoot
Polynomial.map
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
β€”Multiset.mem_map
roots_map
Polynomial.mem_roots
Polynomial.map_ne_zero
IsDomain.toNontrivial
mem_subfield_of_isRoot πŸ“–β€”Polynomial.Splits
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subfield.toField
Polynomial.IsRoot
DivisionRing.toDivisionSemiring
Polynomial.map
Subfield.toDivisionRing
Subfield.subtype
β€”β€”mem_range_of_isRoot
instIsDomain
DivisionRing.isSimpleRing
monomial πŸ“–mathematicalβ€”Polynomial.Splits
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Semiring.toModule
Polynomial.module
LinearMap.instFunLike
Polynomial.monomial
β€”β€”
mul πŸ“–mathematicalPolynomial.SplitsPolynomial
Polynomial.instMul
β€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
multisetProd πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
Multiset.prod
Polynomial
CommSemiring.toCommMonoid
Polynomial.commSemiring
β€”multiset_prod_mem
Submonoid.instSubmonoidClass
natDegree_eq_card_roots πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.natDegree
Multiset.card
Polynomial.roots
β€”Polynomial.leadingCoeff_eq_zero
Polynomial.roots.congr_simp
Polynomial.roots_zero
eq_prod_roots
Polynomial.natDegree_C_mul
IsDomain.to_noZeroDivisors
Polynomial.natDegree_multiset_prod_X_sub_C_eq_card
IsDomain.toNontrivial
natDegree_eq_one_of_irreducible πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natDegreeβ€”Polynomial.natDegree_eq_of_degree_eq_some
degree_eq_one_of_irreducible
natDegree_le_one_of_irreducible πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natDegreeβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Polynomial.natDegree_of_subsingleton
Nat.instCanonicallyOrderedAdd
Polynomial.splits_iff_exists_multiset'
Multiset.empty_or_exists_mem
mul_one
Polynomial.natDegree_C
Multiset.exists_cons_of_mem
instIsDedekindFiniteMonoid
Multiset.prod_cons
Multiset.map_cons
le_imp_le_of_le_of_le
Polynomial.natDegree_mul_le
le_refl
Polynomial.natDegree_add_C
Polynomial.natDegree_X
zero_add
neg πŸ“–mathematicalPolynomial.Splits
Ring.toSemiring
Polynomial
Polynomial.instNeg
β€”neg_one_mul
Polynomial.C_1
Polynomial.C_neg
C_mul
nextCoeff_eq_neg_sum_roots_mul_leadingCoeff πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.nextCoeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Polynomial.leadingCoeff
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Polynomial.roots
β€”eq_prod_roots
Polynomial.nextCoeff_C_mul
IsDomain.to_noZeroDivisors
Polynomial.Monic.nextCoeff_multiset_prod
Multiset.map_congr
Polynomial.nextCoeff_X_sub_C
Multiset.sum_map_neg'
mul_neg
neg_mul
nextCoeff_eq_neg_sum_roots_of_monic πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.Monic
Polynomial.nextCoeff
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.roots
β€”nextCoeff_eq_neg_sum_roots_mul_leadingCoeff
Polynomial.Monic.leadingCoeff
neg_mul
one_mul
of_algHom πŸ“–β€”Polynomial.Splits
Polynomial.map
CommSemiring.toSemiring
algebraMap
β€”β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
Polynomial.map_map
map
of_degree_eq_one πŸ“–mathematicalPolynomial.degree
DivisionSemiring.toSemiring
WithBot
WithBot.one
Nat.instOne
Polynomial.Splitsβ€”of_degree_le_one
Eq.le
of_degree_eq_two πŸ“–mathematicalPolynomial.degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Polynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.Splitsβ€”Nat.instAtLeastTwoHAddOfNat
of_natDegree_eq_two
Polynomial.natDegree_eq_of_degree_eq_some
of_degree_le_one πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
DivisionSemiring.toSemiring
WithBot.one
Nat.instOne
Polynomial.Splitsβ€”of_natDegree_le_one
Polynomial.natDegree_le_of_degree_le
of_dvd πŸ“–β€”Polynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
β€”β€”Polynomial.splits_mul_iff
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
of_isScalarTower πŸ“–β€”Polynomial.Splits
CommSemiring.toSemiring
Polynomial.map
algebraMap
β€”β€”of_algHom
of_natDegree_eq_one πŸ“–mathematicalPolynomial.natDegree
DivisionSemiring.toSemiring
Polynomial.Splitsβ€”of_natDegree_le_one
Eq.le
of_natDegree_eq_two πŸ“–mathematicalPolynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.Splitsβ€”Polynomial.natDegree_divByMonic
Polynomial.monic_X_sub_C
Polynomial.natDegree_X_sub_C
EuclideanDomain.toNontrivial
Polynomial.mul_divByMonic_eq_iff_isRoot
Polynomial.splits_mul_iff
instIsDomain
Polynomial.X_sub_C_ne_zero
X_sub_C
of_natDegree_eq_one
of_natDegree_le_one πŸ“–mathematicalPolynomial.natDegree
DivisionSemiring.toSemiring
Polynomial.Splitsβ€”Polynomial.exists_eq_X_add_C_of_natDegree_le_one
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
zero_add
mul_inv_cancel_leftβ‚€
Polynomial.C_mul
mul_add
Distrib.leftDistribClass
C_mul
X_add_C
of_splits_map πŸ“–β€”Polynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.map
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
β€”β€”of_splits_map_of_injective
RingHom.injective
IsDomain.toNontrivial
of_splits_map_of_injective πŸ“–β€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Polynomial.Splits
Polynomial.map
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
β€”β€”Polynomial.splits_iff_exists_multiset
Polynomial.map_injective
eq_prod_roots
Polynomial.leadingCoeff_map_of_injective
Multiset.map_pmap
Polynomial.map_mul
Polynomial.map_C
Polynomial.map_multiset_prod
Multiset.pmap.congr_simp
Polynomial.map_sub
Polynomial.map_X
Multiset.pmap_eq_map
one πŸ“–mathematicalβ€”Polynomial.Splits
Polynomial
Polynomial.instOne
β€”C
pow πŸ“–mathematicalPolynomial.SplitsPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
β€”pow_mem
Submonoid.instSubmonoidClass
prod πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
Finset.prod
Polynomial
CommSemiring.toCommMonoid
Polynomial.commSemiring
β€”prod_mem
Submonoid.instSubmonoidClass
roots_map πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.roots
Polynomial.map
Multiset.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”roots_map_of_injective
RingHom.injective
IsDomain.toNontrivial
roots_map_of_injective πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.roots
Polynomial.map
Multiset.map
β€”Polynomial.roots_map_of_injective_of_card_eq_natDegree
natDegree_eq_card_roots
roots_map_of_ne_zero πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.roots
Polynomial.map
Multiset.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Submonoid.closure_induction
Polynomial.roots.congr_simp
Polynomial.map_C
Polynomial.roots_C
Multiset.map_congr
Polynomial.map_add
Polynomial.map_X
Polynomial.roots_X_add_C
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Polynomial.map_one
Polynomial.roots_one
Polynomial.map_mul
Polynomial.roots_mul
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
Polynomial.map_zero
Multiset.map_add
roots_ne_zero πŸ“–β€”Polynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”natDegree_eq_card_roots
splits πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Polynomial.instZero
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
WithBot.one
Nat.instOne
β€”Polynomial.degree_le_of_natDegree_le
natDegree_le_one_of_irreducible
of_dvd
splits_of_dvd πŸ“–β€”Polynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
β€”β€”of_dvd
taylor πŸ“–mathematicalPolynomial.Splits
CommSemiring.toSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
Polynomial.taylor
β€”add_assoc
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
X_add_C
Submonoid.closure_induction
Polynomial.taylor_C
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Polynomial.taylor_X
Polynomial.taylor_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Polynomial.taylor_mul
zero πŸ“–mathematicalβ€”Polynomial.Splits
Polynomial
Polynomial.instZero
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
C

---

← Back to Index