Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Algebra/Prime/Lemmas.lean

Statistics

MetricCount
Definitions0
TheoremsisUnit_of_irreducible_right, ne, not_unit, of_map, not_prime, prime_iff, dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd, left_dvd_or_dvd_right_of_dvd_mul, not_isSquare, pow_dvd_of_dvd_mul_left, pow_dvd_of_dvd_mul_right, comap_prime, not_irreducible_of_not_unit_dvdNotUnit, not_prime_pow, pow_inj_of_not_isUnit, pow_injective_of_not_isUnit, prime_pow_succ_dvd_mul, succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul
18
Total18

DvdNotUnit

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_of_irreducible_right πŸ“–mathematicalDvdNotUnit
Irreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
IsUnitβ€”irreducible_iff
ne πŸ“–β€”DvdNotUnitβ€”β€”IsCancelMulZero.toIsLeftCancelMulZero
not_unit πŸ“–mathematicalDvdNotUnitIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”isUnit_iff_dvd_one
dvd_of_mul_left_dvd

IsRelPrime

Theorems

NameKindAssumesProvesValidatesDepends On
of_map πŸ“–β€”IsRelPrime
DFunLike.coe
β€”β€”IsUnit.of_map
map_dvd

IsSquare

Theorems

NameKindAssumesProvesValidatesDepends On
not_prime πŸ“–mathematicalIsSquare
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Primeβ€”Prime.not_isSquare

MulEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
prime_iff πŸ“–mathematicalβ€”Prime
DFunLike.coe
EquivLike.toFunLike
β€”comap_prime
MulEquivClass.toMonoidWithZeroHomClass
instMulEquivClass
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
symm_apply_apply
apply_symm_apply

Prime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd πŸ“–β€”Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”dvd_or_dvd
Dvd.dvd.trans
dvd_pow_self
dvd_of_dvd_pow
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
pow_ne_zero
isReduced_of_noZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
ne_zero
mul_assoc
pow_succ
mul_pow
mul_comm
pow_two
dvd_mul_right
left_dvd_or_dvd_right_of_dvd_mul πŸ“–β€”Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”dvd_mul_right
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
ne_zero
mul_left_comm
not_isSquare πŸ“–mathematicalPrimeIsSquare
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”Irreducible.not_isSquare
irreducible
pow_dvd_of_dvd_mul_left πŸ“–β€”Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”pow_zero
one_dvd
dvd_trans
pow_dvd_pow
pow_succ
mul_dvd_mul_left
dvd_or_dvd
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
pow_ne_zero
isReduced_of_noZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
ne_zero
mul_left_comm
pow_dvd_of_dvd_mul_right πŸ“–β€”Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”pow_dvd_of_dvd_mul_left
mul_comm

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
comap_prime πŸ“–β€”DFunLike.coe
Prime
β€”β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
map_dvd
map_mul
MonoidHomClass.toMulHomClass
not_irreducible_of_not_unit_dvdNotUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
DvdNotUnit
Irreducibleβ€”DvdNotUnit.isUnit_of_irreducible_right
not_prime_pow πŸ“–mathematicalβ€”Prime
Monoid.toNatPow
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”not_irreducible_pow
Prime.irreducible
pow_inj_of_not_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPowβ€”pow_injective_of_not_isUnit
pow_injective_of_not_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPowβ€”Function.Injective.of_lt_imp_ne
DvdNotUnit.ne
pow_ne_zero
isReduced_of_noZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
not_isUnit_of_not_isUnit_dvd
dvd_pow
dvd_refl
LT.lt.ne'
pow_mul_pow_sub
LT.lt.le
prime_pow_succ_dvd_mul πŸ“–β€”Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”Prime.pow_dvd_of_dvd_mul_right
succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul πŸ“–β€”Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”pow_add
mul_comm
mul_assoc
mul_left_comm
pow_one
pow_ne_zero
isReduced_of_noZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
Prime.ne_zero
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Prime.dvd_or_dvd
pow_succ

---

← Back to Index