Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/QuadraticAlgebra/Defs.lean

Statistics

MetricCount
DefinitionsC, basis, equivProd, im, imβ‚—, instAdd, instAddCommGroup, instAddCommGroupWithOne, instAddCommMonoid, instAddCommMonoidWithOne, instAddGroup, instAddMonoid, instAlgebra, instCommRing, instCommSemiring, instDistribMulAction, instInhabited, instModule, instMul, instMulAction, instNeg, instNonAssocSemiring, instNonUnitalNonAssocSemiring, instOne, instSMul, instSub, instZero, linearEquivTuple, re, reβ‚—, instDecidableEqQuadraticAlgebra, decEq
32
TheoremsC_add, C_eq_algebraMap, C_eq_one_iff, C_eq_zero_iff, C_inj, C_injective, C_intCast, C_mul, C_mul_eq_smul, C_natCast, C_neg, C_ofNat, C_one, C_pow, C_smul, C_sub, C_zero, algebraMap_dvd_iff, algebraMap_dvd_iff_dvd, algebraMap_eq, algebraMap_im, algebraMap_inj, algebraMap_injective, algebraMap_re, basis_repr_apply, coe_add, coe_algebraMap, coe_dvd_iff, coe_dvd_iff_dvd, coe_eq_one_iff, coe_eq_zero_iff, coe_inj, coe_injective, coe_intCast, coe_mul, coe_mul_eq_smul, coe_natCast, coe_neg, coe_ofNat, coe_one, coe_pow, coe_smul, coe_sub, coe_zero, equivProd_symm_apply, ext, ext_iff, finrank_eq_two, im_C, im_add, im_coe, im_intCast, im_mul, im_natCast, im_neg, im_ofNat, im_one, im_smul, im_sub, im_zero, imβ‚—_apply, instCharZero, instFinite, instFree, instIsCentralScalar, instIsScalarTower, instIsTorsionFree, instNontrivial, instSMulCommClass, instSubsingleton, linearEquivTuple_apply, linearEquivTuple_symm_apply, mk_add_mk, mk_eta, mk_mul_mk, mk_sub_mk, mul_C_eq_smul, mul_coe_eq_smul, neg_mk, nsmul_mk, rank_eq_two, re_C, re_add, re_coe, re_intCast, re_mul, re_natCast, re_neg, re_ofNat, re_one, re_smul, re_sub, re_zero, reβ‚—_apply, smul_C, smul_coe, smul_mk, zsmul_val
98
Total130

QuadraticAlgebra

Definitions

NameCategoryTheorems
C πŸ“–CompOp
42 mathmath: coe_sub, coe_mul_eq_smul, C_eq_zero_iff, C_pow, coe_one, coe_mul, C_add, mul_coe_eq_smul, C_eq_algebraMap, C_mul, coe_eq_one_iff, C_sub, C_eq_one_iff, C_neg, C_natCast, im_C, coe_neg, smul_C, C_injective, C_intCast, coe_inj, C_mul_eq_smul, coe_natCast, smul_coe, coe_ofNat, coe_add, C_ofNat, C_one, coe_pow, mul_C_eq_smul, coe_intCast, im_coe, re_coe, C_smul, coe_algebraMap, coe_injective, C_inj, coe_eq_zero_iff, C_zero, re_C, coe_zero, coe_smul
basis πŸ“–CompOp
1 mathmath: basis_repr_apply
equivProd πŸ“–CompOp
1 mathmath: equivProd_symm_apply
im πŸ“–CompOp
27 mathmath: im_intCast, mk_add_mk, linearEquivTuple_apply, algebraMap_dvd_iff, imβ‚—_apply, im_ofNat, lift_apply_apply, im_C, im_smul, mk_eta, im_neg, basis_repr_apply, re_star, im_one, im_mul, im_zero, norm_def, omega_im, im_coe, im_sub, re_mul, im_natCast, im_add, im_star, ext_iff, coe_dvd_iff, algebraMap_im
imβ‚— πŸ“–CompOp
1 mathmath: imβ‚—_apply
instAdd πŸ“–CompOp
8 mathmath: mk_add_mk, C_add, mul_star, coe_add, mk_eq_add_smul_omega, re_add, omega_mul_omega_eq_add, im_add
instAddCommGroup πŸ“–CompOp
1 mathmath: det_toLinearMap_eq_norm
instAddCommGroupWithOne πŸ“–CompOp
4 mathmath: im_intCast, C_intCast, coe_intCast, re_intCast
instAddCommMonoid πŸ“–CompOp
11 mathmath: linearEquivTuple_apply, instFinite, imβ‚—_apply, instFree, reβ‚—_apply, rank_eq_two, basis_repr_apply, linearEquivTuple_symm_apply, instIsTorsionFree, finrank_eq_two, det_toLinearMap_eq_norm
instAddCommMonoidWithOne πŸ“–CompOp
5 mathmath: nsmul_mk, C_natCast, coe_natCast, re_natCast, im_natCast
instAddGroup πŸ“–CompOpβ€”
instAddMonoid πŸ“–CompOpβ€”
instAlgebra πŸ“–CompOp
25 mathmath: algebraMap_inj, norm_algebraMap, algebraMap_re, omega_mul_coe_mul_mk, algebraMap_dvd_iff, C_eq_algebraMap, lift_apply_apply, coe_dvd_iff_dvd, mul_star, norm_coe, coe_norm_eq_mul_star, algebraMap_eq, lift_symm_apply_coe, omega_mul_algebraMap_mul_mk, algHom_ext_iff, algebraMap_dvd_iff_dvd, mk_eq_add_smul_omega, coe_mem_nonZeroDivisors_iff, algebraMap_norm_eq_mul_star, algebraMap_mem_nonZeroDivisors_iff, coe_algebraMap, det_toLinearMap_eq_norm, coe_dvd_iff, algebraMap_im, algebraMap_injective
instCommRing πŸ“–CompOp
4 mathmath: zsmul_val, norm_natCast, norm_intCast, instCharZero
instCommSemiring πŸ“–CompOp
33 mathmath: C_pow, algebraMap_inj, norm_algebraMap, algebraMap_re, omega_mul_coe_mul_mk, algebraMap_dvd_iff, C_eq_algebraMap, norm_eq_one_iff_mem_unitary, lift_apply_apply, star_mem_nonZeroDivisors_iff, mem_unitary, coe_dvd_iff_dvd, mul_star, norm_coe, isUnit_iff_norm_isUnit, coe_norm_eq_mul_star, algebraMap_eq, lift_symm_apply_coe, mker_norm_eq_unitary, omega_mul_algebraMap_mul_mk, coe_pow, algHom_ext_iff, algebraMap_dvd_iff_dvd, mk_eq_add_smul_omega, coe_mem_nonZeroDivisors_iff, algebraMap_norm_eq_mul_star, algebraMap_mem_nonZeroDivisors_iff, coe_algebraMap, det_toLinearMap_eq_norm, norm_mem_nonZeroDivisors_iff, coe_dvd_iff, algebraMap_im, algebraMap_injective
instDistribMulAction πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instModule πŸ“–CompOp
11 mathmath: linearEquivTuple_apply, instFinite, imβ‚—_apply, instFree, reβ‚—_apply, rank_eq_two, basis_repr_apply, linearEquivTuple_symm_apply, instIsTorsionFree, finrank_eq_two, det_toLinearMap_eq_norm
instMul πŸ“–CompOp
19 mathmath: coe_mul_eq_smul, coe_mul, zsmul_val, nsmul_mk, omega_mul_coe_mul_mk, mul_coe_eq_smul, C_mul, mul_star, C_mul_eq_smul, coe_norm_eq_mul_star, omega_mul_omega_eq_mk, im_mul, mk_mul_mk, omega_mul_algebraMap_mul_mk, mul_C_eq_smul, algebraMap_norm_eq_mul_star, re_mul, omega_mul_mk, omega_mul_omega_eq_add
instMulAction πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
6 mathmath: neg_mk, norm_neg, C_neg, coe_neg, im_neg, re_neg
instNonAssocSemiring πŸ“–CompOp
18 mathmath: norm_algebraMap, norm_zero, norm_eq_one_iff_mem_unitary, norm_eq_one, norm_neg, norm_natCast, norm_coe, isUnit_iff_norm_isUnit, coe_norm_eq_mul_star, norm_intCast, mker_norm_eq_unitary, norm_def, norm_one, norm_star, algebraMap_norm_eq_mul_star, det_toLinearMap_eq_norm, norm_mem_nonZeroDivisors_iff, norm_eq_zero_iff_eq_zero
instNonUnitalNonAssocSemiring πŸ“–CompOp
1 mathmath: det_toLinearMap_eq_norm
instOne πŸ“–CompOp
8 mathmath: coe_one, coe_eq_one_iff, C_eq_one_iff, im_one, C_one, norm_one, re_one, omega_mul_omega_eq_add
instSMul πŸ“–CompOp
16 mathmath: instIsScalarTower, coe_mul_eq_smul, mul_coe_eq_smul, smul_C, im_smul, C_mul_eq_smul, smul_coe, re_smul, instSMulCommClass, mul_C_eq_smul, mk_eq_add_smul_omega, C_smul, smul_mk, omega_mul_omega_eq_add, instIsCentralScalar, coe_smul
instSub πŸ“–CompOp
6 mathmath: coe_sub, C_sub, mul_star, mk_sub_mk, re_sub, im_sub
instZero πŸ“–CompOp
8 mathmath: C_eq_zero_iff, norm_zero, re_zero, im_zero, coe_eq_zero_iff, C_zero, norm_eq_zero_iff_eq_zero, coe_zero
linearEquivTuple πŸ“–CompOp
2 mathmath: linearEquivTuple_apply, linearEquivTuple_symm_apply
re πŸ“–CompOp
26 mathmath: mk_add_mk, linearEquivTuple_apply, algebraMap_re, algebraMap_dvd_iff, re_zero, lift_apply_apply, reβ‚—_apply, mk_eta, re_ofNat, basis_repr_apply, re_neg, re_star, omega_re, re_smul, im_mul, norm_def, re_sub, re_natCast, re_coe, re_add, re_one, re_mul, re_C, ext_iff, coe_dvd_iff, re_intCast
reβ‚— πŸ“–CompOp
1 mathmath: reβ‚—_apply

Theorems

NameKindAssumesProvesValidatesDepends On
C_add πŸ“–mathematicalβ€”C
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
QuadraticAlgebra
instAdd
β€”ext
add_zero
C_eq_algebraMap πŸ“–mathematicalβ€”C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
RingHom
QuadraticAlgebra
instCommSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
β€”β€”
C_eq_one_iff πŸ“–mathematicalβ€”C
QuadraticAlgebra
instOne
β€”C_one
C_eq_zero_iff πŸ“–mathematicalβ€”C
QuadraticAlgebra
instZero
β€”C_zero
C_inj πŸ“–mathematicalβ€”Cβ€”C_injective
C_injective πŸ“–mathematicalβ€”QuadraticAlgebra
C
β€”β€”
C_intCast πŸ“–mathematicalβ€”C
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGroupWithOne.toAddCommGroup
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
QuadraticAlgebra
instAddCommGroupWithOne
β€”β€”
C_mul πŸ“–mathematicalβ€”C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
QuadraticAlgebra
instMul
Distrib.toAdd
β€”ext
MulZeroClass.mul_zero
add_zero
MulZeroClass.zero_mul
C_mul_eq_smul πŸ“–mathematicalβ€”QuadraticAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
instDistribSMul
β€”ext
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
C_natCast πŸ“–mathematicalβ€”C
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
QuadraticAlgebra
instAddCommMonoidWithOne
β€”β€”
C_neg πŸ“–mathematicalβ€”C
NegZeroClass.toZero
NegZeroClass.toNeg
QuadraticAlgebra
instNeg
β€”ext
neg_zero
C_ofNat πŸ“–mathematicalβ€”C
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
β€”ext
C_one πŸ“–mathematicalβ€”C
QuadraticAlgebra
instOne
β€”β€”
C_pow πŸ“–mathematicalβ€”C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
QuadraticAlgebra
instCommSemiring
β€”RingHom.map_pow
C_smul πŸ“–mathematicalβ€”C
SMulZeroClass.toSMul
QuadraticAlgebra
instSMul
β€”ext
smul_zero
C_sub πŸ“–mathematicalβ€”C
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubNegMonoid.toSub
SubNegZeroMonoid.toSubNegMonoid
QuadraticAlgebra
instSub
β€”ext
zero_sub_zero
C_zero πŸ“–mathematicalβ€”C
QuadraticAlgebra
instZero
β€”β€”
algebraMap_dvd_iff πŸ“–mathematicalβ€”QuadraticAlgebra
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
instCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
re
im
β€”MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
algebraMap_dvd_iff_dvd πŸ“–mathematicalβ€”QuadraticAlgebra
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
instCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
β€”algebraMap_dvd_iff
algebraMap_eq πŸ“–mathematicalβ€”DFunLike.coe
RingHom
QuadraticAlgebra
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”
algebraMap_im πŸ“–mathematicalβ€”im
DFunLike.coe
RingHom
QuadraticAlgebra
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”
algebraMap_inj πŸ“–mathematicalβ€”DFunLike.coe
RingHom
QuadraticAlgebra
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
β€”algebraMap_injective
algebraMap_injective πŸ“–mathematicalβ€”QuadraticAlgebra
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
β€”β€”
algebraMap_re πŸ“–mathematicalβ€”re
DFunLike.coe
RingHom
QuadraticAlgebra
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
β€”β€”
basis_repr_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.instAddCommMonoid
instModule
Semiring.toModule
Finsupp.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
basis
Matrix.vecCons
re
im
Matrix.vecEmpty
β€”RingHomInvPair.ids
coe_add πŸ“–mathematicalβ€”C
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
QuadraticAlgebra
instAdd
β€”C_add
coe_algebraMap πŸ“–mathematicalβ€”C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
RingHom
QuadraticAlgebra
instCommSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
β€”C_eq_algebraMap
coe_dvd_iff πŸ“–mathematicalβ€”QuadraticAlgebra
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
instCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
re
im
β€”algebraMap_dvd_iff
coe_dvd_iff_dvd πŸ“–mathematicalβ€”QuadraticAlgebra
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
instCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.id
β€”algebraMap_dvd_iff_dvd
coe_eq_one_iff πŸ“–mathematicalβ€”C
QuadraticAlgebra
instOne
β€”C_eq_one_iff
coe_eq_zero_iff πŸ“–mathematicalβ€”C
QuadraticAlgebra
instZero
β€”C_eq_zero_iff
coe_inj πŸ“–mathematicalβ€”Cβ€”β€”
coe_injective πŸ“–mathematicalβ€”QuadraticAlgebra
C
β€”C_injective
coe_intCast πŸ“–mathematicalβ€”C
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGroupWithOne.toAddCommGroup
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
QuadraticAlgebra
instAddCommGroupWithOne
β€”C_intCast
coe_mul πŸ“–mathematicalβ€”C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
QuadraticAlgebra
instMul
Distrib.toAdd
β€”C_mul
coe_mul_eq_smul πŸ“–mathematicalβ€”QuadraticAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
instDistribSMul
β€”C_mul_eq_smul
coe_natCast πŸ“–mathematicalβ€”C
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
QuadraticAlgebra
instAddCommMonoidWithOne
β€”C_natCast
coe_neg πŸ“–mathematicalβ€”C
NegZeroClass.toZero
NegZeroClass.toNeg
QuadraticAlgebra
instNeg
β€”C_neg
coe_ofNat πŸ“–mathematicalβ€”C
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
β€”C_ofNat
coe_one πŸ“–mathematicalβ€”C
QuadraticAlgebra
instOne
β€”C_one
coe_pow πŸ“–mathematicalβ€”C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
QuadraticAlgebra
instCommSemiring
β€”C_pow
coe_smul πŸ“–mathematicalβ€”C
SMulZeroClass.toSMul
QuadraticAlgebra
instSMul
β€”C_smul
coe_sub πŸ“–mathematicalβ€”C
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubNegMonoid.toSub
SubNegZeroMonoid.toSubNegMonoid
QuadraticAlgebra
instSub
β€”C_sub
coe_zero πŸ“–mathematicalβ€”C
QuadraticAlgebra
instZero
β€”C_zero
equivProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
QuadraticAlgebra
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivProd
β€”β€”
ext πŸ“–β€”re
im
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”re
im
β€”ext
finrank_eq_two πŸ“–mathematicalβ€”Module.finrank
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instModule
Semiring.toModule
β€”Nat.instAtLeastTwoHAddOfNat
rank_eq_two
Cardinal.toNat_ofNat
im_C πŸ“–mathematicalβ€”im
C
β€”β€”
im_add πŸ“–mathematicalβ€”im
QuadraticAlgebra
instAdd
β€”β€”
im_coe πŸ“–mathematicalβ€”im
C
β€”im_C
im_intCast πŸ“–mathematicalβ€”im
QuadraticAlgebra
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
instAddCommGroupWithOne
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGroupWithOne.toAddCommGroup
β€”β€”
im_mul πŸ“–mathematicalβ€”im
QuadraticAlgebra
instMul
re
β€”β€”
im_natCast πŸ“–mathematicalβ€”im
QuadraticAlgebra
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
β€”β€”
im_neg πŸ“–mathematicalβ€”im
QuadraticAlgebra
instNeg
β€”β€”
im_ofNat πŸ“–mathematicalβ€”im
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
β€”β€”
im_one πŸ“–mathematicalβ€”im
QuadraticAlgebra
instOne
β€”β€”
im_smul πŸ“–mathematicalβ€”im
QuadraticAlgebra
instSMul
β€”β€”
im_sub πŸ“–mathematicalβ€”im
QuadraticAlgebra
instSub
β€”β€”
im_zero πŸ“–mathematicalβ€”im
QuadraticAlgebra
instZero
β€”β€”
imβ‚—_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
imβ‚—
im
β€”β€”
instCharZero πŸ“–mathematicalβ€”CharZero
QuadraticAlgebra
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
β€”β€”
instFinite πŸ“–mathematicalβ€”Module.Finite
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instModule
Semiring.toModule
β€”Module.Finite.of_basis
Finite.of_fintype
instFree πŸ“–mathematicalβ€”Module.Free
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instModule
Semiring.toModule
β€”Module.Free.of_basis
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
QuadraticAlgebra
instSMul
MulOpposite
β€”ext
IsCentralScalar.op_smul_eq_smul
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
QuadraticAlgebra
instSMul
β€”ext
smul_assoc
instIsTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instModule
β€”Function.Injective.moduleIsTorsionFree
Pi.instModuleIsTorsionFree
RingHomInvPair.ids
LinearEquiv.injective
Matrix.smul_cons
Matrix.smul_empty
instNontrivial πŸ“–mathematicalβ€”Nontrivial
QuadraticAlgebra
β€”Equiv.nontrivial
nontrivial_prod_left
Nontrivial.to_nonempty
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
QuadraticAlgebra
instSMul
β€”ext
SMulCommClass.smul_comm
instSubsingleton πŸ“–mathematicalβ€”QuadraticAlgebraβ€”Equiv.subsingleton
linearEquivTuple_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.addCommMonoid
instModule
Semiring.toModule
Pi.Function.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
linearEquivTuple
Matrix.vecCons
re
im
Matrix.vecEmpty
β€”RingHomInvPair.ids
linearEquivTuple_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
QuadraticAlgebra
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Pi.Function.module
Semiring.toModule
instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
linearEquivTuple
β€”RingHomInvPair.ids
mk_add_mk πŸ“–mathematicalβ€”QuadraticAlgebra
instAdd
re
im
β€”β€”
mk_eta πŸ“–mathematicalβ€”re
im
β€”β€”
mk_mul_mk πŸ“–mathematicalβ€”QuadraticAlgebra
instMul
β€”β€”
mk_sub_mk πŸ“–mathematicalβ€”QuadraticAlgebra
instSub
β€”β€”
mul_C_eq_smul πŸ“–mathematicalβ€”QuadraticAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Distrib.toAdd
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instSMul
Algebra.toSMul
Algebra.id
β€”mul_comm
C_mul_eq_smul
mul_coe_eq_smul πŸ“–mathematicalβ€”QuadraticAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Distrib.toAdd
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instSMul
Algebra.toSMul
Algebra.id
β€”mul_C_eq_smul
neg_mk πŸ“–mathematicalβ€”QuadraticAlgebra
instNeg
β€”β€”
nsmul_mk πŸ“–mathematicalβ€”QuadraticAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”ext
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
rank_eq_two πŸ“–mathematicalβ€”Module.rank
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instModule
Semiring.toModule
Cardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
rank_eq_card_basis
Fintype.card_fin
re_C πŸ“–mathematicalβ€”re
C
β€”β€”
re_add πŸ“–mathematicalβ€”re
QuadraticAlgebra
instAdd
β€”β€”
re_coe πŸ“–mathematicalβ€”re
C
β€”re_C
re_intCast πŸ“–mathematicalβ€”re
QuadraticAlgebra
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
instAddCommGroupWithOne
β€”β€”
re_mul πŸ“–mathematicalβ€”re
QuadraticAlgebra
instMul
im
β€”β€”
re_natCast πŸ“–mathematicalβ€”re
QuadraticAlgebra
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”β€”
re_neg πŸ“–mathematicalβ€”re
QuadraticAlgebra
instNeg
β€”β€”
re_ofNat πŸ“–mathematicalβ€”reβ€”β€”
re_one πŸ“–mathematicalβ€”re
QuadraticAlgebra
instOne
β€”β€”
re_smul πŸ“–mathematicalβ€”re
QuadraticAlgebra
instSMul
β€”β€”
re_sub πŸ“–mathematicalβ€”re
QuadraticAlgebra
instSub
β€”β€”
re_zero πŸ“–mathematicalβ€”re
QuadraticAlgebra
instZero
β€”β€”
reβ‚—_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
QuadraticAlgebra
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
reβ‚—
re
β€”β€”
smul_C πŸ“–mathematicalβ€”QuadraticAlgebra
instSMul
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”C_mul
C_mul_eq_smul
smul_coe πŸ“–mathematicalβ€”QuadraticAlgebra
instSMul
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”smul_C
smul_mk πŸ“–mathematicalβ€”QuadraticAlgebra
instSMul
β€”β€”
zsmul_val πŸ“–mathematicalβ€”QuadraticAlgebra
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
β€”ext
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero

(root)

Definitions

NameCategoryTheorems
instDecidableEqQuadraticAlgebra πŸ“–CompOpβ€”

instDecidableEqQuadraticAlgebra

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

---

← Back to Index