Documentation Verification Report

Quandle

πŸ“ Source: Mathlib/Algebra/Quandle.lean

Statistics

MetricCount
DefinitionsQuandle, map, quandle, dihedralAct, instDihedral, oppositeQuandle, toRack, Β«term_β†’β—ƒ_Β», Β«term_β—ƒ_Β», Β«term_◃⁻¹_Β», Rack, EnvelGroup, inhabited, IsAbelian, IsInvolutory, PreEnvelGroup, inhabited, setoid, PreEnvelGroupRel, PreEnvelGroupRel', inhabited, act', envelAction, instDivInvMonoidEnvelGroup, instGroupEnvelGroup, invAct, oppositeRack, selfApplyEquiv, toConj, toEnvelGroup, map, mapAux, toShelf, Shelf, act, ShelfHom, comp, id, inhabited, instFunLike, toFun, UnitalShelf, toOne, toShelf
44
Theoremsconj_act_eq_conj, conj_swap, inv, fix, fix_inv, rel, refl, trans, act'_apply, act'_symm_apply, act_invAct_eq, ad_conj, assoc_iff_id, envelAction_prop, invAct_act_eq, invAct_apply, involutory_invAct_eq_act, left_cancel, left_cancel_inv, left_inv, op_act_op_eq, op_invAct_op_eq, right_inv, self_act_act_eq, self_act_eq_iff_eq, self_act_invAct_eq, self_distrib_inv, self_invAct_act_eq, self_invAct_eq_iff_eq, self_invAct_invAct_eq, well_def, univ, univ_uniq, self_distrib, comp_apply, ext, ext_iff, map_act, map_act', toFun_eq_coe, act_act_self_eq, act_idem, act_one, act_self_act_eq, assoc, one_act
46
Total90

Quandle

Definitions

NameCategoryTheorems
dihedralAct πŸ“–CompOp
1 mathmath: dihedralAct.inv
instDihedral πŸ“–CompOpβ€”
oppositeQuandle πŸ“–CompOpβ€”
toRack πŸ“–CompOp
6 mathmath: fix, Rack.envelAction_prop, conj_swap, Rack.toEnvelGroup.univ, conj_act_eq_conj, fix_inv

Theorems

NameKindAssumesProvesValidatesDepends On
conj_act_eq_conj πŸ“–mathematicalβ€”Shelf.act
Conj
Rack.toShelf
toRack
Conj.quandle
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
conj_swap πŸ“–mathematicalβ€”Shelf.act
Conj
Rack.toShelf
toRack
Conj.quandle
β€”eq_mul_inv_of_mul_eq
inv_inv
fix πŸ“–mathematicalβ€”Shelf.act
Rack.toShelf
toRack
β€”β€”
fix_inv πŸ“–mathematicalβ€”Rack.invAct
toRack
β€”Rack.left_cancel
Rack.act_invAct_eq
fix

Quandle.Conj

Definitions

NameCategoryTheorems
map πŸ“–CompOp
1 mathmath: Rack.toEnvelGroup.univ
quandle πŸ“–CompOp
4 mathmath: Rack.envelAction_prop, Quandle.conj_swap, Rack.toEnvelGroup.univ, Quandle.conj_act_eq_conj

Quandle.dihedralAct

Theorems

NameKindAssumesProvesValidatesDepends On
inv πŸ“–mathematicalβ€”Function.Involutive
ZMod
Quandle.dihedralAct
β€”sub_sub_cancel

Quandles

Definitions

NameCategoryTheorems
Β«term_β†’β—ƒ_Β» πŸ“–CompOpβ€”
Β«term_β—ƒ_Β» πŸ“–CompOpβ€”
Β«term_◃⁻¹_Β» πŸ“–CompOpβ€”

Rack

Definitions

NameCategoryTheorems
EnvelGroup πŸ“–CompOp
2 mathmath: envelAction_prop, toEnvelGroup.univ
IsAbelian πŸ“–MathDefβ€”
IsInvolutory πŸ“–MathDefβ€”
PreEnvelGroup πŸ“–CompDataβ€”
PreEnvelGroupRel πŸ“–CompData
2 mathmath: PreEnvelGroupRel.refl, PreEnvelGroupRel'.rel
PreEnvelGroupRel' πŸ“–CompDataβ€”
act' πŸ“–CompOp
4 mathmath: ad_conj, act'_apply, invAct_apply, act'_symm_apply
envelAction πŸ“–CompOp
1 mathmath: envelAction_prop
instDivInvMonoidEnvelGroup πŸ“–CompOp
3 mathmath: toEnvelGroup.univ_uniq, envelAction_prop, toEnvelGroup.univ
instGroupEnvelGroup πŸ“–CompOp
2 mathmath: envelAction_prop, toEnvelGroup.univ
invAct πŸ“–CompOp
16 mathmath: left_inv, right_inv, self_invAct_eq_iff_eq, left_cancel_inv, involutory_invAct_eq_act, act_invAct_eq, invAct_apply, self_distrib_inv, self_invAct_invAct_eq, invAct_act_eq, act'_symm_apply, op_act_op_eq, Quandle.fix_inv, self_invAct_act_eq, self_act_invAct_eq, op_invAct_op_eq
oppositeRack πŸ“–CompOp
2 mathmath: op_act_op_eq, op_invAct_op_eq
selfApplyEquiv πŸ“–CompOpβ€”
toConj πŸ“–CompOpβ€”
toEnvelGroup πŸ“–CompOp
2 mathmath: envelAction_prop, toEnvelGroup.univ
toShelf πŸ“–CompOp
20 mathmath: left_inv, right_inv, Quandle.fix, envelAction_prop, ad_conj, involutory_invAct_eq_act, Quandle.conj_swap, act_invAct_eq, act'_apply, toEnvelGroup.univ, left_cancel, Quandle.conj_act_eq_conj, assoc_iff_id, self_act_eq_iff_eq, self_act_act_eq, invAct_act_eq, op_act_op_eq, self_invAct_act_eq, self_act_invAct_eq, op_invAct_op_eq

Theorems

NameKindAssumesProvesValidatesDepends On
act'_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
act'
Shelf.act
toShelf
β€”β€”
act'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
act'
invAct
β€”β€”
act_invAct_eq πŸ“–mathematicalβ€”Shelf.act
toShelf
invAct
β€”right_inv
ad_conj πŸ“–mathematicalβ€”act'
Shelf.act
toShelf
Equiv
Equiv.Perm.instMul
Equiv.Perm.instInv
β€”eq_mul_inv_iff_mul_eq
Equiv.Perm.ext
Shelf.self_distrib
assoc_iff_id πŸ“–mathematicalβ€”Shelf.act
toShelf
β€”Shelf.self_distrib
left_cancel
envelAction_prop πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
MonoidHom
EnvelGroup
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
instDivInvMonoidEnvelGroup
Group.toDivInvMonoid
Equiv.Perm.permGroup
MonoidHom.instFunLike
envelAction
ShelfHom
Quandle.Conj
toShelf
Quandle.toRack
Quandle.Conj.quandle
instGroupEnvelGroup
ShelfHom.instFunLike
toEnvelGroup
Shelf.act
β€”β€”
invAct_act_eq πŸ“–mathematicalβ€”invAct
Shelf.act
toShelf
β€”left_inv
invAct_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.instInv
act'
invAct
β€”β€”
involutory_invAct_eq_act πŸ“–mathematicalIsInvolutoryinvAct
Shelf.act
toShelf
β€”left_cancel
right_inv
left_cancel πŸ“–mathematicalβ€”Shelf.act
toShelf
β€”Equiv.injective
left_cancel_inv πŸ“–mathematicalβ€”invActβ€”Equiv.injective
left_inv πŸ“–mathematicalβ€”invAct
Shelf.act
toShelf
β€”β€”
op_act_op_eq πŸ“–mathematicalβ€”Shelf.act
MulOpposite
toShelf
oppositeRack
MulOpposite.op
invAct
β€”β€”
op_invAct_op_eq πŸ“–mathematicalβ€”invAct
MulOpposite
oppositeRack
MulOpposite.op
Shelf.act
toShelf
β€”β€”
right_inv πŸ“–mathematicalβ€”invAct
Shelf.act
toShelf
β€”β€”
self_act_act_eq πŸ“–mathematicalβ€”Shelf.act
toShelf
β€”right_inv
Shelf.self_distrib
self_act_eq_iff_eq πŸ“–mathematicalβ€”Shelf.act
toShelf
β€”left_cancel
right_inv
self_act_act_eq
self_act_invAct_eq πŸ“–mathematicalβ€”invAct
Shelf.act
toShelf
β€”left_cancel
right_inv
self_act_act_eq
self_distrib_inv πŸ“–mathematicalβ€”invActβ€”left_cancel
right_inv
Shelf.self_distrib
self_invAct_act_eq πŸ“–mathematicalβ€”Shelf.act
toShelf
invAct
β€”self_act_invAct_eq
self_invAct_eq_iff_eq πŸ“–mathematicalβ€”invActβ€”self_act_eq_iff_eq
self_invAct_invAct_eq πŸ“–mathematicalβ€”invActβ€”self_act_act_eq

Rack.EnvelGroup

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”

Rack.PreEnvelGroup

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”
setoid πŸ“–CompOpβ€”

Rack.PreEnvelGroupRel

Theorems

NameKindAssumesProvesValidatesDepends On
refl πŸ“–mathematicalβ€”Rack.PreEnvelGroupRelβ€”β€”
trans πŸ“–β€”Rack.PreEnvelGroupRelβ€”β€”Rack.PreEnvelGroupRel'.rel

Rack.PreEnvelGroupRel'

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
rel πŸ“–mathematicalβ€”Rack.PreEnvelGroupRelβ€”β€”

Rack.toEnvelGroup

Definitions

NameCategoryTheorems
map πŸ“–CompOp
2 mathmath: univ_uniq, univ
mapAux πŸ“–CompOp
1 mathmath: mapAux.well_def

Theorems

NameKindAssumesProvesValidatesDepends On
univ πŸ“–mathematicalβ€”ShelfHom.comp
Quandle.Conj
Rack.EnvelGroup
Rack.toShelf
Quandle.toRack
Quandle.Conj.quandle
Rack.instGroupEnvelGroup
Quandle.Conj.map
DFunLike.coe
Equiv
ShelfHom
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Rack.instDivInvMonoidEnvelGroup
Group.toDivInvMonoid
EquivLike.toFunLike
Equiv.instEquivLike
map
Rack.toEnvelGroup
β€”Equiv.symm_apply_apply
univ_uniq πŸ“–mathematicalShelfHom.comp
Quandle.Conj
Rack.EnvelGroup
Rack.toShelf
Quandle.toRack
Quandle.Conj.quandle
Rack.instGroupEnvelGroup
Quandle.Conj.map
Rack.toEnvelGroup
DFunLike.coe
Equiv
ShelfHom
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Rack.instDivInvMonoidEnvelGroup
Group.toDivInvMonoid
EquivLike.toFunLike
Equiv.instEquivLike
map
β€”Equiv.apply_symm_apply

Rack.toEnvelGroup.mapAux

Theorems

NameKindAssumesProvesValidatesDepends On
well_def πŸ“–mathematicalβ€”Rack.toEnvelGroup.mapAuxβ€”mul_assoc
one_mul
mul_one
inv_mul_cancel
ShelfHom.map_act

Shelf

Definitions

NameCategoryTheorems
act πŸ“–CompOp
28 mathmath: self_distrib, Rack.left_inv, Rack.right_inv, Quandle.fix, Rack.envelAction_prop, Rack.ad_conj, UnitalShelf.one_act, Rack.involutory_invAct_eq_act, Quandle.conj_swap, Rack.act_invAct_eq, ShelfHom.map_act, ShelfHom.map_act', Rack.act'_apply, UnitalShelf.act_one, UnitalShelf.act_self_act_eq, Rack.left_cancel, Quandle.conj_act_eq_conj, Rack.assoc_iff_id, Rack.self_act_eq_iff_eq, Rack.self_act_act_eq, Rack.invAct_act_eq, UnitalShelf.act_idem, Rack.op_act_op_eq, Rack.self_invAct_act_eq, Rack.self_act_invAct_eq, UnitalShelf.act_act_self_eq, UnitalShelf.assoc, Rack.op_invAct_op_eq

Theorems

NameKindAssumesProvesValidatesDepends On
self_distrib πŸ“–mathematicalβ€”actβ€”β€”

ShelfHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
2 mathmath: Rack.toEnvelGroup.univ, comp_apply
id πŸ“–CompOpβ€”
inhabited πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
4 mathmath: Rack.envelAction_prop, map_act, comp_apply, toFun_eq_coe
toFun πŸ“–CompOp
3 mathmath: map_act', ext_iff, toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
ShelfHom
instFunLike
comp
β€”β€”
ext πŸ“–β€”toFunβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toFunβ€”ext
map_act πŸ“–mathematicalβ€”DFunLike.coe
ShelfHom
instFunLike
Shelf.act
β€”map_act'
map_act' πŸ“–mathematicalβ€”toFun
Shelf.act
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
ShelfHom
instFunLike
β€”β€”

UnitalShelf

Definitions

NameCategoryTheorems
toOne πŸ“–CompOp
2 mathmath: one_act, act_one
toShelf πŸ“–CompOp
6 mathmath: one_act, act_one, act_self_act_eq, act_idem, act_act_self_eq, assoc

Theorems

NameKindAssumesProvesValidatesDepends On
act_act_self_eq πŸ“–mathematicalβ€”Shelf.act
toShelf
β€”act_one
Shelf.self_distrib
act_idem πŸ“–mathematicalβ€”Shelf.act
toShelf
β€”act_one
Shelf.self_distrib
act_one πŸ“–mathematicalβ€”Shelf.act
toShelf
toOne
β€”β€”
act_self_act_eq πŸ“–mathematicalβ€”Shelf.act
toShelf
β€”act_one
Shelf.self_distrib
one_act
assoc πŸ“–mathematicalβ€”Shelf.act
toShelf
β€”Shelf.self_distrib
act_act_self_eq
act_self_act_eq
one_act πŸ“–mathematicalβ€”Shelf.act
toShelf
toOne
β€”β€”

(root)

Definitions

NameCategoryTheorems
Quandle πŸ“–CompDataβ€”
Rack πŸ“–CompDataβ€”
Shelf πŸ“–CompDataβ€”
ShelfHom πŸ“–CompData
6 mathmath: Rack.toEnvelGroup.univ_uniq, Rack.envelAction_prop, ShelfHom.map_act, Rack.toEnvelGroup.univ, ShelfHom.comp_apply, ShelfHom.toFun_eq_coe
UnitalShelf πŸ“–CompDataβ€”

---

← Back to Index