Documentation Verification Report

QuaternionBasis

πŸ“ Source: Mathlib/Algebra/QuaternionBasis.lean

Statistics

MetricCount
DefinitionscompHom, i, instInhabited, j, k, liftHom, self
7
Theoremshom_ext, hom_ext_iff, ext, ext_iff, i_compHom, i_mul_i, i_mul_j, i_mul_k, i_self, j_compHom, j_mul_i, j_mul_j, j_mul_k, j_self, k_compHom, k_mul_i, k_mul_j, k_mul_k, k_self, liftHom_apply, lift_add, lift_mul, lift_one, lift_smul, lift_zero, range_liftHom, hom_ext, hom_ext_iff, lift_apply, lift_symm_apply
30
Total37

Quaternion

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext πŸ“–β€”DFunLike.coe
AlgHom
Quaternion
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toCommSemiring
Ring.toSemiring
instRing
algebra
Algebra.id
AlgHom.funLike
QuaternionAlgebra.Basis.i
QuaternionAlgebra
QuaternionAlgebra.instRing
QuaternionAlgebra.instAlgebra
QuaternionAlgebra.Basis.self
QuaternionAlgebra.Basis.j
β€”β€”QuaternionAlgebra.hom_ext
hom_ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Quaternion
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toCommSemiring
Ring.toSemiring
instRing
algebra
Algebra.id
AlgHom.funLike
QuaternionAlgebra.Basis.i
QuaternionAlgebra
QuaternionAlgebra.instRing
QuaternionAlgebra.instAlgebra
QuaternionAlgebra.Basis.self
QuaternionAlgebra.Basis.j
β€”hom_ext

QuaternionAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext πŸ“–β€”DFunLike.coe
AlgHom
QuaternionAlgebra
CommRing.toCommSemiring
Ring.toSemiring
instRing
instAlgebra
Algebra.id
AlgHom.funLike
Basis.i
Basis.self
Basis.j
β€”β€”Equiv.injective
Basis.ext
hom_ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
QuaternionAlgebra
CommRing.toCommSemiring
Ring.toSemiring
instRing
instAlgebra
Algebra.id
AlgHom.funLike
Basis.i
Basis.self
Basis.j
β€”hom_ext
lift_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Basis
AlgHom
QuaternionAlgebra
CommRing.toCommSemiring
Ring.toSemiring
instRing
instAlgebra
Algebra.id
EquivLike.toFunLike
Equiv.instEquivLike
lift
Basis.liftHom
β€”β€”
lift_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
AlgHom
QuaternionAlgebra
CommRing.toCommSemiring
Ring.toSemiring
instRing
instAlgebra
Algebra.id
Basis
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
lift
Basis.compHom
Basis.self
β€”β€”

QuaternionAlgebra.Basis

Definitions

NameCategoryTheorems
compHom πŸ“–CompOp
4 mathmath: j_compHom, k_compHom, i_compHom, QuaternionAlgebra.lift_symm_apply
i πŸ“–CompOp
14 mathmath: i_mul_i, k_mul_i, i_mul_j, ext_iff, CliffordAlgebraQuaternion.i_quaternionBasis, j_mul_k, i_compHom, QuaternionAlgebra.hom_ext_iff, i_self, j_mul_i, range_liftHom, Quaternion.hom_ext_iff, k_mul_j, i_mul_k
instInhabited πŸ“–CompOpβ€”
j πŸ“–CompOp
14 mathmath: CliffordAlgebraQuaternion.j_quaternionBasis, k_mul_i, j_mul_j, i_mul_j, ext_iff, j_compHom, j_mul_k, QuaternionAlgebra.hom_ext_iff, j_self, j_mul_i, range_liftHom, Quaternion.hom_ext_iff, k_mul_j, i_mul_k
k πŸ“–CompOp
11 mathmath: k_mul_i, i_mul_j, CliffordAlgebraQuaternion.k_quaternionBasis, k_compHom, j_mul_k, k_self, k_mul_k, j_mul_i, range_liftHom, k_mul_j, i_mul_k
liftHom πŸ“–CompOp
3 mathmath: QuaternionAlgebra.lift_apply, liftHom_apply, range_liftHom
self πŸ“–CompOp
6 mathmath: k_self, QuaternionAlgebra.lift_symm_apply, QuaternionAlgebra.hom_ext_iff, i_self, j_self, Quaternion.hom_ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”i
j
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”i
j
β€”ext
i_compHom πŸ“–mathematicalβ€”i
compHom
DFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
β€”β€”
i_mul_i πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
i
Distrib.toAdd
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
i_mul_j πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
i
j
k
β€”β€”
i_mul_k πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
i
k
Distrib.toAdd
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
j
β€”i_mul_j
mul_assoc
i_mul_i
add_mul
Distrib.rightDistribClass
smul_mul_assoc
IsScalarTower.right
one_mul
i_self πŸ“–mathematicalβ€”i
QuaternionAlgebra
QuaternionAlgebra.instRing
QuaternionAlgebra.instAlgebra
CommRing.toCommSemiring
Algebra.id
self
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
j_compHom πŸ“–mathematicalβ€”j
compHom
DFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
β€”β€”
j_mul_i πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
j
i
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
k
β€”β€”
j_mul_j πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
j
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
j_mul_k πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
j
k
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
i
β€”i_mul_j
mul_assoc
j_mul_i
sub_mul
smul_mul_assoc
IsScalarTower.right
j_mul_j
smul_assoc
IsScalarTower.left
k_mul_j
j_self πŸ“–mathematicalβ€”j
QuaternionAlgebra
QuaternionAlgebra.instRing
QuaternionAlgebra.instAlgebra
CommRing.toCommSemiring
Algebra.id
self
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
k_compHom πŸ“–mathematicalβ€”k
compHom
DFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
β€”β€”
k_mul_i πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
k
i
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
j
β€”i_mul_j
mul_assoc
j_mul_i
mul_sub
i_mul_k
neg_smul
mul_smul_comm
Algebra.to_smulCommClass
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₃
add_zero
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.zero_eq_eval
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.eq_cons_const
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
k_mul_j πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
k
j
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
i
β€”i_mul_j
mul_assoc
j_mul_j
mul_smul_comm
Algebra.to_smulCommClass
mul_one
k_mul_k πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
k
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”i_mul_j
mul_assoc
j_mul_i
mul_sub
i_mul_i
add_mul
Distrib.rightDistribClass
smul_mul_assoc
IsScalarTower.right
one_mul
sub_mul
mul_smul_comm
Algebra.to_smulCommClass
j_mul_j
smul_smul
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₃
add_zero
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.zero_eq_eval
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.eq_cons_const
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
k_self πŸ“–mathematicalβ€”k
QuaternionAlgebra
QuaternionAlgebra.instRing
QuaternionAlgebra.instAlgebra
CommRing.toCommSemiring
Algebra.id
self
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
liftHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
QuaternionAlgebra
CommRing.toCommSemiring
Ring.toSemiring
QuaternionAlgebra.instRing
QuaternionAlgebra.instAlgebra
Algebra.id
AlgHom.funLike
liftHom
lift
β€”β€”
lift_add πŸ“–mathematicalβ€”lift
QuaternionAlgebra
QuaternionAlgebra.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
add_smul
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
lift_mul πŸ“–mathematicalβ€”lift
QuaternionAlgebra
QuaternionAlgebra.instMul
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Algebra.algebraMap_eq_smul_one
add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
smul_mul_assoc
IsScalarTower.right
mul_smul_comm
Algebra.to_smulCommClass
one_mul
mul_one
smul_smul
i_mul_i
i_mul_j
i_mul_k
j_mul_i
j_mul_j
j_mul_k
k_mul_i
k_mul_j
k_mul_k
sub_eq_add_neg
neg_smul
smul_neg
mul_right_comm
mul_comm
add_smul
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
zero_add
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₁
Mathlib.Tactic.Module.NF.zero_eq_eval
add_zero
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.eq_cons_const
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
eq_intCast
Int.cast_neg
Int.cast_one
lift_one πŸ“–mathematicalβ€”lift
QuaternionAlgebra
QuaternionAlgebra.instOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_smul
add_zero
lift_smul πŸ“–mathematicalβ€”lift
QuaternionAlgebra
QuaternionAlgebra.instSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Ring.toSemiring
β€”map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
SemigroupAction.mul_smul
smul_add
lift_zero πŸ“–mathematicalβ€”lift
QuaternionAlgebra
QuaternionAlgebra.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_smul
add_zero
range_liftHom πŸ“–mathematicalβ€”AlgHom.range
QuaternionAlgebra
CommRing.toCommSemiring
Ring.toSemiring
QuaternionAlgebra.instRing
QuaternionAlgebra.instAlgebra
Algebra.id
liftHom
Algebra.adjoin
Set
Set.instInsert
i
j
Set.instSingletonSet
k
β€”le_antisymm
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSMulMemClass
Subalgebra.smul_mem
Algebra.subset_adjoin
Algebra.adjoin_le_iff
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_smul
zero_add
zero_smul
add_zero

---

← Back to Index