| Name | Category | Theorems |
idealQuotientToRingQuot 📖 | CompOp | 1 mathmath: idealQuotientToRingQuot_apply
|
instAdd 📖 | CompOp | 1 mathmath: add_quot
|
instAddCommMonoid 📖 | CompOp | 14 mathmath: SymmetricAlgebra.lift_ι_apply, SymmetricAlgebra.rank_eq, LinearAlgebra.FreeProduct.mul_injections, SymmetricAlgebra.instModuleFree, LinearAlgebra.FreeProduct.ι_apply, IsSymmetricAlgebra.equiv_symm_comp, LinearAlgebra.FreeProduct.identify_one, IsSymmetricAlgebra.equiv_symm_apply, SymmetricAlgebra.algHom_ext_iff, SymmetricAlgebra.equivMvPolynomial_symm_X, SymmetricAlgebra.lift_comp_ι, Module.Basis.symmetricAlgebra_repr_apply, SymmetricAlgebra.equivMvPolynomial_ι_apply, LinearAlgebra.FreeProduct.lof_map_one
|
instAlgebra 📖 | CompOp | 31 mathmath: SymmetricAlgebra.lift_ι_apply, SymmetricAlgebra.rank_eq, SymmetricAlgebra.isSymmetricAlgebra_ι, IsSymmetricAlgebra.equiv_apply, TensorAlgebra.ι_def, mkAlgHom_surjective, ringQuot_ext'_iff, SymmetricAlgebra.instModuleFree, IsSymmetricAlgebra.equiv_symm_comp, liftAlgHom_def, liftAlgHom_mkAlgHom_apply, SymmetricAlgebra.algebraMap_eq_zero_iff, IsSymmetricAlgebra.equiv_symm_apply, SymmetricAlgebra.algHom_ext_iff, SymmetricAlgebra.equivMvPolynomial_symm_X, SymmetricAlgebra.lift_comp_ι, SymmetricAlgebra.lift_ι, Module.Basis.symmetricAlgebra_repr_apply, SymmetricAlgebra.equivMvPolynomial_ι_apply, SymmetricAlgebra.algebraMap_eq_one_iff, mkAlgHom_rel, SymmetricAlgebra.algHom_surjective, SymmetricAlgebra.algebraMap_leftInverse, preLiftAlgHom_def, SymmetricAlgebra.algebraMap_inj, LinearAlgebra.FreeProduct.lift_apply, IsSymmetricAlgebra.comp_equiv, IsSymmetricAlgebra.equiv_toAlgHom, TensorAlgebra.ringQuot_mkAlgHom_freeAlgebra_ι_eq_ι, eq_liftAlgHom_comp_mkAlgHom, mkAlgHom_coe
|
instCommRing 📖 | CompOp | — |
instCommSemiring 📖 | CompOp | — |
instInhabited 📖 | CompOp | — |
instMonoidWithZero 📖 | CompOp | — |
instMul 📖 | CompOp | 3 mathmath: LinearAlgebra.FreeProduct.mul_injections, mul_quot, SymmetricAlgebra.instNoZeroDivisors
|
instNatCast 📖 | CompOp | — |
instNatPow 📖 | CompOp | 1 mathmath: pow_quot
|
instNeg 📖 | CompOp | 1 mathmath: neg_quot
|
instOne 📖 | CompOp | 4 mathmath: LinearAlgebra.FreeProduct.identify_one, SymmetricAlgebra.algebraMap_eq_one_iff, LinearAlgebra.FreeProduct.lof_map_one, one_quot
|
instRing 📖 | CompOp | — |
instSMulOfAlgebra 📖 | CompOp | 3 mathmath: instIsScalarTower, instSMulCommClass, smul_quot
|
instSemiring 📖 | CompOp | 61 mathmath: SymmetricAlgebra.lift_ι_apply, SymmetricAlgebra.rank_eq, CliffordAlgebra.involute_prod_map_ι, IsSymmetricAlgebra.equiv_apply, CliffordAlgebra.contractRight_mul_ι, TensorAlgebra.ι_def, mkAlgHom_surjective, CliffordAlgebra.changeFormAux_changeFormAux, ringQuot_ext'_iff, CliffordAlgebra.EquivEven.ι_eq_v_add_smul_e0, CliffordAlgebra.foldr'Aux_foldr'Aux, SymmetricAlgebra.instModuleFree, preLift_def, mkRingHom_def, idealQuotientToRingQuot_apply, spinGroup.conjAct_smul_range_ι, IsSymmetricAlgebra.equiv_symm_comp, liftAlgHom_def, CliffordAlgebra.submodule_comap_mul_reverse, CliffordAlgebra.submodule_map_pow_reverse, eq_lift_comp_mkRingHom, CliffordAlgebra.contractLeft_ι_mul, CliffordAlgebra.star_smul, liftAlgHom_mkAlgHom_apply, SymmetricAlgebra.algebraMap_eq_zero_iff, lift_mkRingHom_apply, lift_def, IsSymmetricAlgebra.equiv_symm_apply, CliffordAlgebraQuaternion.ofQuaternion_mk, pinGroup.conjAct_smul_range_ι, ringQuot_ext_iff, SymmetricAlgebra.algHom_ext_iff, SymmetricAlgebra.equivMvPolynomial_symm_X, SymmetricAlgebra.lift_comp_ι, SymmetricAlgebra.lift_ι, Module.Basis.symmetricAlgebra_repr_apply, SymmetricAlgebra.instIsDomain, SymmetricAlgebra.equivMvPolynomial_ι_apply, mkRingHom_surjective, SymmetricAlgebra.algebraMap_eq_one_iff, mkAlgHom_rel, CliffordAlgebra.submodule_map_mul_reverse, CliffordAlgebra.evenOdd_mul_le, SymmetricAlgebra.algHom_surjective, CliffordAlgebra.iSup_ι_range_eq_top, CliffordAlgebra.submodule_comap_pow_reverse, SymmetricAlgebra.algebraMap_leftInverse, preLiftAlgHom_def, SymmetricAlgebra.algebraMap_inj, LinearAlgebra.FreeProduct.lift_apply, IsSymmetricAlgebra.comp_equiv, ExteriorAlgebra.ιMulti_succ_curryLeft, IsSymmetricAlgebra.equiv_toAlgHom, TensorAlgebra.ringQuot_mkAlgHom_freeAlgebra_ι_eq_ι, exteriorPower.zeroEquiv_symm_apply, CliffordAlgebra.contractLeftAux_contractLeftAux, lipschitzGroup.conjAct_smul_range_ι, mkRingHom_rel, eq_liftAlgHom_comp_mkAlgHom, mkAlgHom_coe, ringQuotToIdealQuotient_apply
|
instSub 📖 | CompOp | 1 mathmath: sub_quot
|
instZero 📖 | CompOp | 3 mathmath: SymmetricAlgebra.algebraMap_eq_zero_iff, zero_quot, SymmetricAlgebra.instNoZeroDivisors
|
intCast 📖 | CompOp | — |
liftAlgHom 📖 | CompOp | 5 mathmath: liftAlgHom_def, liftAlgHom_mkAlgHom_apply, liftAlgHom_unique, LinearAlgebra.FreeProduct.lift_apply, eq_liftAlgHom_comp_mkAlgHom
|
mkAlgHom 📖 | CompOp | 10 mathmath: TensorAlgebra.ι_def, mkAlgHom_surjective, ringQuot_ext'_iff, mkAlgHom_def, liftAlgHom_def, liftAlgHom_mkAlgHom_apply, mkAlgHom_rel, TensorAlgebra.ringQuot_mkAlgHom_freeAlgebra_ι_eq_ι, eq_liftAlgHom_comp_mkAlgHom, mkAlgHom_coe
|
mkRingHom 📖 | CompOp | 10 mathmath: mkRingHom_def, idealQuotientToRingQuot_apply, eq_lift_comp_mkRingHom, lift_mkRingHom_apply, lift_def, ringQuot_ext_iff, mkRingHom_surjective, mkRingHom_rel, mkAlgHom_coe, ringQuotToIdealQuotient_apply
|
natCast 📖 | CompOp | — |
preLift 📖 | CompOp | 2 mathmath: preLift_def, lift_def
|
preLiftAlgHom 📖 | CompOp | 2 mathmath: liftAlgHom_def, preLiftAlgHom_def
|
ringCon 📖 | CompOp | — |
ringQuotEquivIdealQuotient 📖 | CompOp | — |
ringQuotToIdealQuotient 📖 | CompOp | 1 mathmath: ringQuotToIdealQuotient_apply
|
smul 📖 | CompOp | — |
toQuot 📖 | CompOp | 3 mathmath: preLift_def, preLiftAlgHom_def, ExteriorAlgebra.invertibleAlgebraMapEquiv_symm_apply_invOf_toQuot
|