Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Ring/Action/Basic.lean

Statistics

MetricCount
DefinitionsMulSemiringAction, compHom, toDistribMulAction, toMulDistribMulAction, toRingHom, applyMulSemiringAction
6
Theoremssmul_mul, smul_one, toRingHom_apply, applyFaithfulSMul, smul_def, toRingHom_injective
6
Total12

MulSemiringAction

Definitions

NameCategoryTheorems
compHom πŸ“–CompOpβ€”
toDistribMulAction πŸ“–CompOp
154 mathmath: Ideal.Quotient.map_ker_stabilizer_subtype, SkewMonoidAlgebra.coeff_single_one_mul, Polynomial.smul_mem_rootSet, NumberField.RingOfIntegers.instSMulDistribClass, SkewMonoidAlgebra.coeff_single_mul_of_not_exists_mul, Ideal.smul_closure, SkewMonoidAlgebra.single_algebraMap_eq_algebraMap_mul_of, Ideal.mem_pointwise_smul_iff_inv_smul_mem, MulSemiringActionHom.instMulSemiringActionSemiHomClassCoeMonoidHom, Subsemiring.mem_smul_pointwise_iff_exists, RingAut.smul_def, IsGaloisGroup.fixingSubgroup_top, AlgEquiv.apply_smulCommClass', IsGaloisGroup.fixedPoints_top, IsGaloisGroup.mulEquivAlgEquiv_apply_symm_apply, Subsemiring.smul_mem_pointwise_smul_iff, MulSemiringActionHom.map_smulβ‚›β‚—, Subring.mem_pointwise_smul_iff_inv_smul_mem, IsArithFrobAt.mul_inv_mem_inertia, Subalgebra.coe_pointwise_smul, MulSemiringActionHom.coe_fn_coe', Subring.mem_pointwise_smul_iff_inv_smul_memβ‚€, toRingEquiv_apply, Subsemiring.smul_mem_pointwise_smul, SkewPolynomial.Ο†_iterate_apply, Subsemiring.pointwise_smul_toAddSubmonoid, instSMulDistribClassSubtypeMemSubalgebraIntegralClosure, Subring.pointwise_smul_toAddSubgroup, Subring.coe_pointwise_smul, IsInvariantSubring.smul_mem, FixedPoints.instSMulCommClassSubtypeMemSubfieldSubfield, SkewMonoidAlgebra.nonUnitalAlgHom_ext'_iff, SkewMonoidAlgebra.coeff_mul_single_of_not_exists_mul, IsNilpotent.exp_smul, SkewMonoidAlgebra.coeff_mul_right, prodXSubSMul.smul, IsGaloisGroup.fixedPoints_fixingSubgroup, AlgEquiv.smul_def, IsGaloisGroup.le_fixedPoints_iff_le_fixingSubgroup, spinGroup.conjAct_smul_range_ΞΉ, toAlgEquiv_symm_apply, IsGaloisGroup.fixingSubgroup_le_of_le, Subring.mem_inv_pointwise_smul_iff, charpoly_eq_prod_smul, smul_coeff_charpoly, MulSemiringActionHom.map_smul, SkewMonoidAlgebra.single_mul_single, Ideal.inertia_le_stabilizer, Polynomial.smul_mem_rootSet_iff, instSMulDistribClassAlgEquiv, smul_charpoly, IsGaloisGroup.faithful, RingHom.applyFaithfulSMul, Subring.mem_smul_pointwise_iff_exists, IsGaloisGroup.fixingSubgroup_fixedPoints, IsGaloisGroup.mulEquivAlgEquiv_apply_apply, Polynomial.smul_X, Ideal.Quotient.stabilizerHom_apply, Polynomial.smul_eq_map, Subsemiring.smul_mem_pointwise_smul_iffβ‚€, SkewMonoidAlgebra.domCongr_refl, IsGaloisGroup.fixedPoints_bot, Polynomial.smul_eval_smul, Subring.smul_closure, IsGaloisGroup.ofDual_intermediateFieldEquivSubgroup_apply, Ideal.Quotient.stabilizerQuotientInertiaEquiv_mk, Polynomial.aeval_smul, SkewMonoidAlgebra.coeff_mul, instIsInvariantSubtypeMemSubalgebraSubalgebraSubgroupQuotient, Subsemiring.mem_inv_pointwise_smul_iffβ‚€, toRingEquiv_symm_apply, prodXSubSMul.coeff, SkewMonoidAlgebra.coeff_mul_antidiagonal_finsum, MulSemiringActionHom.map_one', MulSemiringActionHom.coe_fn_coe, pinGroup.conjAct_smul_range_ΞΉ, smul_mul, Subring.smul_mem_pointwise_smul_iffβ‚€, Subalgebra.smul_mem_pointwise_smul, MulSemiringActionHom.map_mul', SkewMonoidAlgebra.support_mul_single_subset, IsInvariantSubring.coe_subtypeHom', charpoly_eq, SkewMonoidAlgebra.coeff_mul_single, SkewMonoidAlgebra.support_mul, stabilizer_isOpen_of_isIntegral, MulSemiringActionHom.coe_polynomial, FixedPoints.smul_polynomial, SkewMonoidAlgebra.coeff_mul_single_one, Ideal.smul_mem_pointwise_smul, IsGaloisGroup.intermediateField, Subsemiring.coe_pointwise_smul, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply, Ideal.card_inertia_eq_ramificationIdxIn, FixedBy.intermediateField_mem_iff, toAlgEquiv_apply, RingHom.smul_def, integralClosure.coe_smul, FixedPoints.linearIndependent_smul_of_linearIndependent, Ideal.Quotient.ker_stabilizerHom, Subsemiring.mem_pointwise_smul_iff_inv_smul_mem, NormedSpace.exp_smul, SkewMonoidAlgebra.isScalarTower_self, isConjRoot_iff_orbitRel, IsGaloisGroup.fixingSubgroup_bot, IsGaloisGroup.subgroup, smul_one, Ideal.card_stabilizer_eq_card_inertia_mul_finrank, IsGaloisGroup.intermediateFieldEquivSubgroup_apply, SkewMonoidAlgebra.support_single_mul_subset, SkewMonoidAlgebra.coeff_mul_antidiagonal_of_finset, Polynomial.rootSet.coe_smul, toAlgHom_apply, SkewMonoidAlgebra.single_eq_algebraMap_mul_of, Polynomial.smul_mem_rootSet_iff_of_isUnit, AlgEquiv.apply_faithfulSMul, RingAut.apply_faithfulSMul, SkewMonoidAlgebra.coeff_mul_left, instSMulCommClassSubtypeMemSubalgebraIntegralClosure, IsGaloisGroup.fixedPoints_le_of_le, IsLocalRing.ResidueField.residue_smul, SkewMonoidAlgebra.coeff_mul_single_aux, Subring.smul_mem_pointwise_smul, Ideal.ncard_primesOver_mul_card_inertia_mul_finrank, Polynomial.smul_eval, FixedPoints.smul, FixedPoints.smulCommClass', IsInvariantSubfield.smul_mem, Subsemiring.smul_closure, Subalgebra.pointwise_smul_toSubmodule, IsGaloisGroup.card_fixingSubgroup_eq_finrank, SkewMonoidAlgebra.coeff_single_mul_aux, IntermediateField.forall_mem_adjoin_smul_eq_self_iff, IsGaloisGroup.finrank_fixedPoints_eq_card_subgroup, Ideal.smul_mem_pointwise_smul_iff, FixedPoints.mem_intermediateField_iff, Subring.smul_mem_pointwise_smul_iff, smul_inv'', Ideal.instNormalSubtypeMemSubgroupStabilizerSubgroupOfInertia, Subsemiring.mem_pointwise_smul_iff_inv_smul_memβ‚€, instSMulCommClassQuotientSubgroupSubtypeMemSubalgebraSubalgebra, Polynomial.eval_smul', Algebra.forall_mem_adjoin_smul_eq_self_iff, IsGaloisGroup.commutes, lipschitzGroup.conjAct_smul_range_ΞΉ, Subring.mem_inv_pointwise_smul_iffβ‚€, Subsemiring.mem_inv_pointwise_smul_iff, IsGaloisGroup.map_mulEquivAlgEquiv_fixingSubgroup, Ideal.mem_inv_pointwise_smul_iff, SkewMonoidAlgebra.coeff_single_mul, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply_toDual, FixedBy.subfield_mem_iff, IsCyclotomicExtension.Rat.galEquivZMod_smul_of_pow_eq, AlgEquiv.apply_smulCommClass
toMulDistribMulAction πŸ“–CompOp
12 mathmath: toRingHom_apply, NumberField.RingOfIntegers.instSMulDistribClass, Normal.minpoly_eq_iff_mem_orbit, ValuationSubring.mem_inv_pointwise_smul_iff, ValuationSubring.mem_pointwise_smul_iff_inv_smul_mem, ValuationSubring.smul_mem_pointwise_smul_iff, IsGaloisGroup.mulEquivCongr_apply_smul, instSMulDistribClassAlgEquiv, ValuationSubring.coe_pointwise_smul, ValuationSubring.mem_smul_pointwise_iff_exists, IsLocalRing.ResidueField.residue_smul, ValuationSubring.smul_mem_pointwise_smul
toRingHom πŸ“–CompOp
7 mathmath: Subring.pointwise_smul_def, toRingHom_apply, toRingHom_injective, SkewPolynomial.Ο†_def, Polynomial.smul_eq_map, Subsemiring.pointwise_smul_def, Ideal.pointwise_smul_def

Theorems

NameKindAssumesProvesValidatesDepends On
smul_mul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”
smul_one πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
toDistribMulAction
AddMonoidWithOne.toOne
β€”β€”
toRingHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
toRingHom
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toMulDistribMulAction
β€”β€”

RingHom

Definitions

NameCategoryTheorems
applyMulSemiringAction πŸ“–CompOp
2 mathmath: applyFaithfulSMul, smul_def

Theorems

NameKindAssumesProvesValidatesDepends On
applyFaithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
RingHom
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
instMonoid
MulSemiringAction.toDistribMulAction
applyMulSemiringAction
β€”ext
smul_def πŸ“–mathematicalβ€”RingHom
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
instMonoid
MulSemiringAction.toDistribMulAction
applyMulSemiringAction
DFunLike.coe
instFunLike
β€”β€”

(root)

Definitions

NameCategoryTheorems
MulSemiringAction πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
toRingHom_injective πŸ“–mathematicalβ€”RingHom
Semiring.toNonAssocSemiring
MulSemiringAction.toRingHom
β€”FaithfulSMul.eq_of_smul_eq_smul
RingHom.ext_iff

---

← Back to Index